Improving Survival for Patients With High-Risk Congenital Diaphragmatic Hernia by Using Extracorporeal Membrane Oxygenation

Nijmegen, The Netherlands

MATERIALS AND METHODS

All patients with CDH who were symptomatic within 6 hours after birth and who were referred between December 1987 and July 1994 were included in the study. All patients were treated by a protocol of delayed surgery after preoperative stabilization.5-8 When ECMO became available in our institution (in January 1991), it was incorporated into this protocol for CDH, whether preoperatively or postoperatively. ECMO was offered after conventional ventilatory and medical management had failed, if the patient fulfilled the entry criteria for ECMO, if there were no contraindications for ECMO, and if parental consent was obtained. No infant in this study was excluded from ECMO support on the basis of failure to achieve a minimum \(Pao_2 \) before the institution of ECMO.

Venoarterial ECMO was used as previously described by Bartlett et al.12 If ECMO was required for preoperative stabilization, the diaphragmatic defect was repaired during ECMO, at the end of the run, if the patient could be weaned from ECMO support.10 ECMO was discontinued when respiratory failure resolved (gas exchange requiring PIP of less than 30, ventilator rates of less than 40, and \(P_{A\text{CO}_2} \) of less than 50) or when a complication arose that required cessation of ECMO (such severe bleeding complications rendering a contraindication to continued heparinization). Survival is defined as “alive at the age of 3 months.” Survival statistics were compared for two time periods: (1) December 1987 through December 1990, when ECMO was not available and all children were treated with conventional ventilatory support and pharmacological management (the pre-ECMO era, \(n = 18 \)) and (2) January 1991 through July 1994, when ECMO was available and was used if conventional treatment failed (the ECMO era, \(n = 37 \)).

The children were classified into the three groups described below.

“Inretrievable” patients. These patients were (1) newborns with severe respiratory distress, noted immediately after birth, in whom a reasonable or normal gas exchange was never reached, despite endotracheal intubation and artificial ventilation, and who died within 2 hours after birth, before ECMO could be initiated; (2) newborns who died before or during transportation (pre-ECMO era, \(n = 1 \); ECMO era, \(n = 7 \)), or (3) newborns with a severe congenital anomaly (especially chromosomal) for whom not all therapeutic modalities were offered (pre-ECMO era, \(n = 1 \)).

Conventionally stabilized patients. These were newborns with high-risk CDH, who recovered well by (maximal) conventional treatment and who underwent surgical repair of their diaphragmatic defect after conventional stabilization. They never met...
ECMO-entry criteria before repair of their diaphragmatic defect (pre-ECMO era, n = 7; ECMO era, n = 12).

Unstable patients. These were newborns with high-risk CDH, and who could not be stabilized by maximal conventional treatment and who met one or more ECMO-entry criteria (pre-ECMO era, n = 9; ECMO era, n = 18). The patients in this category were subdivided into those who did (a) or did not (b) receive ECMO support.

We made this stratification because we wanted to evaluate the effect of ECMO on survival. The irretrievable patients were in such distress that ECMO could not be initiated before death or before severe brain damage had occurred. In these circumstances any therapy, which ever applied, is doomed for failure. The availability of ECMO equipment had no effect on survival, neither in this group nor in the conventionally stabilized patients. Because no patient in the latter category met the ECMO-entry criteria and nearly all patients survived, ECMO is not a therapeutic option for this group. Thus, only in the unstable patients could the effect of the availability of ECMO equipment be measured. For comparisons of survival rates, the two-sided Fisher’s Exact test was used.

RESULTS

Fifty-five newborns with high-risk CDH were evaluated—18 in the pre-ECMO era (Fig 1) and 37 in the ECMO era (Fig 2).

One patient in the pre-ECMO era was categorized as “irretrievable” because of a chromosomal anomaly. One neonate in the first period and seven in the latter period were irretrievable; they died of severe respiratory distress shortly after birth, before ECMO could be or could have been initiated. In this category, the average transcutaneous oxygen saturation was 64%, the average PaO₂ was 4.5 kilo-Pascals (kPa) (34 mm Hg), the average PaCO₂ was 10.9 kPa (82 mm Hg), and the average pH was 6.89.

In the pre-ECMO period, preoperative stabilization could be achieved by conventional treatment (CT) in seven patients (Fig 1). In these patients the diaphragmatic defect could be repaired, and six survived. Nine patients could not be stabilized conventionally; none of them had surgical repair, and none survived. These patients would have qualified for ECMO support had it been available.

Since ECMO became available at our institution, preoperative stabilization by conventional therapy could be achieved in 12 patients (Fig 2). All 12 had repair of their diaphragmatic defect, and 10 survived, although postoperative ECMO support was required for one of them.

Eighteen cases were refractory to conventional management and were considered for ECMO treatment. In two of the patients, ECMO therapy was not instituted; in one patient ECMO treatment was refused by the parents, and in the very first patient, who was an ECMO candidate, we thought it was better to repair the diaphragmatic defect before initiation of ECMO, during preparation of the ECMO circuit. Both patients died. Thus, in 16 patients ECMO was used for preoperative stabilization. In one patient the ECMO treatment was discontinued because of severe cerebral bleeding, and the patient died without having repair of the diaphragmatic defect. The other 15 patients could be weaned from ECMO, and all had repair of their diaphragmatic defect during ECMO, late in the ECMO run. Eleven survived. The four deaths after ECMO were related to multiorgan failure (n = 1), severe lung hypoplasia (n = 1), or recurrent persistent pulmonary hypertension (n = 2). The demographic data of the different patient groups, for the two time periods, are reported in Table 1.

The overall survival rate was 33% in the pre-ECMO era and 57% in the ECMO era. Excluding the irretrievable patients in both periods, the survival rate
Table 1. Demographic Data for Both Time Periods

<table>
<thead>
<tr>
<th></th>
<th>Pre-ECMO</th>
<th>ECMO</th>
<th>Pre-ECMO</th>
<th>ECMO</th>
<th>Pre-ECMO</th>
<th>ECMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male:female ratio</td>
<td>0:2</td>
<td>4:3</td>
<td>3:4</td>
<td>5:7</td>
<td>5:4</td>
<td>10:8</td>
</tr>
<tr>
<td>Gestational age (wk) Average</td>
<td>42.0</td>
<td>38.7</td>
<td>38.5</td>
<td>38.0</td>
<td>40.3</td>
<td>39.8</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>(42-42)</td>
<td>(36-42)</td>
<td>(34-42)</td>
<td>(34-42)</td>
<td>(34-42)</td>
</tr>
<tr>
<td>Birth weight (g)</td>
<td>Average</td>
<td>2,850</td>
<td>2,740</td>
<td>2,780</td>
<td>2,660</td>
<td>3,100</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>(2,300-3,400)</td>
<td>(1,500-3,460)</td>
<td>(1,480-3,500)</td>
<td>(1,760-3,740)</td>
<td>(2,460-3,930)</td>
</tr>
<tr>
<td>Apgar scores (average & range)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 min</td>
<td>1.5 (1-2)</td>
<td>1.8 (1-4)</td>
<td>7.4 (4-9)</td>
<td>5.0 (3-9)</td>
<td>4.5 (1-9)</td>
<td>3.2 (0-6)</td>
</tr>
<tr>
<td>5 min</td>
<td>2.9 (1-4)</td>
<td>3.8 (2-9)</td>
<td>6.0 (4-8)</td>
<td>5.5 (4-9)</td>
<td>4.8 (1-9)</td>
<td>4.8 (0-8)</td>
</tr>
<tr>
<td>Side</td>
<td>Left:Right</td>
<td>2:0</td>
<td>5:2</td>
<td>5:2</td>
<td>10:2</td>
<td>8:1</td>
</tr>
</tbody>
</table>

was 38% in the first period and 70% in the second period (Fisher's Exact test, \(P = .08 \)). The survival rate among infants who could be stabilized conventionally was 86% in the pre-ECMO era and 83% in the ECMO era (Fisher's Exact test, \(P > .50 \)). The survival rate for the conventionally not-stabilized patients was 0% in the first period and 61% in the latter period (Fisher's Exact test, \(P = .004 \)).

Ultimately, 11 of the 16 unstable patients who were supported by ECMO survived (69%), whereas no unstable patient survived without ECMO support (Fisher's Exact test, \(P = .0006 \)).

DISCUSSION

In this report we present our experience with 48 severely afflicted infants with CDH, who were treated according to a protocol of preoperative stabilization and delayed surgery.\(^5\)\(^6\) This protocol was unchanged during the entire period of the study.

The only difference in management was the addition of ECMO for (pre- or postoperative) stabilization since January 1991. This offers the opportunity to evaluate the role of ECMO in the treatment of high-risk CDH, by dividing the patients into two groups with respect to ECMO availability (pre-ECMO and ECMO).

The overall survival rate for high-risk CDH patients increased from 33% in the pre-ECMO era to 57% in the ECMO era. This means improvement, but the difference is not significant statistically. For this reason, and because infants with CDH have gained less advantage by ECMO than have infants with respiratory distress from other causes, the benefits of ECMO support for high risk CDH patients remain controversial.\(^2\)\(^4\)\(^13\)\(^18\) However, to assess the impact of ECMO we must compare identical populations with respect to demographic data as well as severity of disease, because differences in the composition of the groups can influence the outcome. Over the past decade, many attempts have been made to grade the seriousness of the disease and to establish criteria by which survival could be predicted or by which patients could be considered for a certain kind of (aggressive) therapy. Parameters used, are the interval from birth until the appearance of symptoms; the occurrence of a "honeymoon period"\(^21\); and blood-gas analysis, with and without linkage with ventilator settings and time, eg, \(\text{AaDO}_2 \), oxygenation index, and ventilation index linked with \(\text{Paco}_2 \).\(^5\)\(^12\)\(^13\)\(^14\)\(^16\)\(^22\)\(^28\)

Nevertheless, all criteria appear to be unreliable; there is no single, simple objective criterion by which the clinical course and outcome can be predicted and by which the two interrelated pathophysiological mechanisms (lung hypoplasia and pulmonary hypertension) can be unraveled.\(^6\)\(^14\)\(^16\)\(^23\)\(^31\) In the literature there is agreement that neonates who are in respiratory distress within 6 hours after birth constitute a high-risk group. We divided this high-risk group into three subgroups, based on the clinical course at the time (maximal) conventional treatment was applied.

Some patients are considered to be irretrievable because they are unable to attain satisfactory oxygenation despite maximal conventional therapy immediately begun after birth. These patients have not even the ability to meet standard ECMO criteria because of lack of time. They die before ECMO can be initiated. Most investigators report only a few such cases, but these comprise 19% of the CDH patients referred to our institution in the ECMO era. This group reflects the impact of the availability of ECMO on referral patterns, but this group has a negative influence on the overall survival rate, which can lead to misinterpretation of the efficacy of ECMO treatment in CDH patients. The amount of functional lung tissue in these infants is inadequate for survival. Since January 1991, 14 infants were transferred, pre- or
postnatally, specifically for ECMO. Two could be treated conventionally, nine received ECMO support, and three died before ECMO could be initiated. In other patients, respiratory distress can be alleviated by immediate applied conventional therapy. Some such patients can be stabilized by conventional ventilatory management and never meet ECMO-entry criteria. Others cannot be stabilized conventionally and meet standard ECMO criteria. Only in this latter group of patients can a reliable judgment be made of the benefit of ECMO for CDH.

In both periods the conventionally stabilized patients and the unstable patients were comparable with respect to gestational age, birth weight, gender distribution, Apgar scores, and side of the defect (Table 1). As might be expected, the survival rate of category II patients was virtually the same in both periods—86% in the pre-ECMO era and 83% in the ECMO era. However, the survival rate for unstable patients is significantly better in the ECMO era than it was beforehand (61% v 0%). Because the groups are comparable for both time periods, and because the only difference in treatment is the addition of ECMO in the latter period, the better survival rate can be attributed completely to ECMO therapy.

All children who had stabilization with ECMO survived; this represents an increase in the overall survival rate. All unstable children who met ECMO entry criteria died without ECMO support.

The fact that all children who met ECMO criteria died without ECMO support is in accordance with the aim of ECMO as a treatment of last resort, ie, only applied in critically ill infants, whose projected mortality rate was more than 80%.

From the experience with high-risk CDH patients treated in our institution by a protocol of delayed surgery after preoperative stabilization, with and without ECMO, we draw the following conclusions. (1) The overall mortality rate among high-risk CDH patients is still high. (2) Some infants have such severe lung hypoplasia that they were unable to attain sufficient gas exchange to bridge the time until initiation of ECMO. (3) Use of ECMO support is an improvement in our therapy protocol for cases that cannot be stabilized by conventional treatment; the survival rate associated with ECMO (61%) is significantly better than that without ECMO (0%). (4) ECMO availability changed the referral pattern; increasingly sicker patients are seen, who previously would not have survived.

REFERENCES

