P174

GEOGRAPHICAL DIFFERENCES IN MORTALITY FROM PNEUMOCONIOSIS AND CHRONIC BRONCHITIS AND EMPHYSEMA IN BRITISH COAL MINERS

David Coopman, Hazel Inskip, Paul Winter, Brian Pannett. MRC Environmental Epidemiology Unit, University of Southampton, UK.

To investigate whether the hazard of chronic bronchitis and emphysema in coal miners relates to dust exposure in the same way as that of coal workers' pneumoconiosis, we compared mortality from the two diseases among miners in 22 counties of England and Wales during 1979-80 and 1982-90. Information about the cause of death, age, place of residence and occupation of decedents was obtained from death certificates, and used to derive age-standardised PMRs with proportions for all occupations combined in the whole of England and Wales as the standard. PMRs for coal workers' pneumoconiosis in miners varied from 135 (95% CI 16-488) in Leicestershire to 3825 (95% CI 1538-7881) in South Glamorgan. PMRs for chronic bronchitis and emphysema in miners were consistently higher than those in other occupations, but showed much less geographical variation and did not correlate geographically with those from pneumoconiosis. These findings indicate that the pathogenetic mechanisms leading to bronchitis and emphysema in coal miners depend on different characteristics of dust exposure from those that produce pneumoconiosis. The hypothesis that the higher prevalence of pneumoconiosis in mines with high coal rank is explained by their having higher mass concentrations of respirable dust may be incorrect.

P175

HYPERREACTIVITY IN RELATION TO EXPOSURE AND WORKING CHARACTERISTICS IN SWINE CONFINEMENT WORKERS

Vogelzang PFJ, van der Gulden JWJ, Preller L*, van Schayk CP.
University of Nijmegen, Nijmegen, Netherlands *University of Wageningen, Wageningen, Netherlands

In 1992 196 Dutch swine confinement workers, 86 with and 100 without chronic respiratory symptoms, participated in a histamine provocation test to assess specific airway reactivity. The objective was to obtain more insight into mechanisms leading to the development of airway morbidity in swine farmers. In the same period measurements of their exposure to dust, endotoxins and ammonia were carried out. To elicit factors directly accessible to preventive measures, an inventory of farm characteristics was made with a checklist by a trained student. Increased airway reactivity, defined as PC_{20} less or equal than 16 mg/ml, was more prevalent among those with chronic symptoms (43 %) then among those without (17 %). The strong association with symptoms remained statistically significant after correction for age and smoking. There was a strong and significant association between symptoms and lung function, expressed as percentage of predicted value. Further analysis was performed by logistic regression, using age, smoking status, work experience, and work conditions. Occupational exposure to dust, endotoxins, and ammonia can be identified as risk factors for hyperreactivity in swine confinement workers.

P176

RESPIRATORY SYMPTOMS AND LUNG FUNCTION IN WORKERS EXPOSED TO MOLYBDENUM AND TUNGSTEN DUST

A cross-sectional study was carried out among 158 workers exposed to Mo and W dust in a sintered wires section as against 165 nonexposed workers. Air dust concentrations were determined (gravimetry). Workers have undergone a respiratory symptoms questionnaire, clinical examination, ORL examination, lung ventilatory tests (FEV1, FEV1/FVC%, FPM). Chronic rhinitis and pharyngitis were higher as compared to control group. A mild increase of chronic bronchitis was found in the exposed workers as compared to controls. Significant differences between exposed workers and controls were found regarding the mean average values of FMF: exposed women, exposed nonsmokers and workers aged up to 40 years old who had lower values as compared to the same control groups. Occupational exposure to Mo and W dusts in sintering technology represents a risk factor for the respiratory system of these workers.