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Abstract. The connection between picture languages and restarting
automata has been established in Otto (2014). An interesting class of
picture languages generated by parallel contextual array grammars was
studied with application in image generation and analysis in Subrama-
nian et al. (2008). In this paper, we introduce a variant of two dimensional
restarting automata that accepts a subclass of parallel internal contex-
tual array languages. We show that these automata can simulate parallel
internal column contextual array grammars in reverse order.

Keywords: Parallel internal column contextual array grammars ·
Membership problem · Restarting automaton

1 Introduction

Syntactic approaches, on account of their structure-handling capability, have
played an important role in the problem of description of picture patterns con-
sidered as connected digitized, finite arrays of symbols. Using the techniques of
formal string language theory, various types of picture or array grammars have
been introduced and investigated in [3,9,10,24,25]. Most of the array grammars
are based on Chomskian string grammars. Some recent results on picture lan-
guages can be found in [2,8,18]. Another interesting class of string grammars,
called the class of contextual grammars, was proposed by Marcus in [16]. A con-
textual grammar defines a string language by starting from a given finite set
of strings and adjoining iteratively pairs of strings (called contexts) associated
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to sets of words (called selectors), to the strings already obtained. These con-
textual grammars [6,23] are known to provide new approaches for a number of
basic problems in formal language theory. Recently, extension of string contex-
tual grammars to array structures has been attempted in [1,7,15,23]. A new
method of description of pictures of digitized rectangular arrays, through paral-
lel contextual array grammars, was introduced [4,26]. In this paper, we establish
a relationship between two dimensional restarting automata and parallel internal
column contextual array grammars.

The concept of restarting automaton was introduced in [14], in order to
model the ‘analysis by reduction’, which is a technique used in linguistics to
analyze sentences of natural languages. Analysis by reduction consists of step-
wise simplifications (reductions) of a given (lexically disambiguated) extended
sentence unless a correct simple sentence is obtained. A word is accepted until
an error is found - the process continues until either the automaton accepts or
an error is detected. Each simplification replaces a short part of the sentence by
an even shorter one. The one dimensional restarting automaton contains a finite
control unit, a head with a look-ahead window attached to a tape.

It has been shown in [12], that restarting automaton with delete (simply,
DRA) can represent the analyzer for characterizing the class of contextual gram-
mars with regular selector (CGR). Also [13] showed that restarting automata
recognize a family of languages which can be generated by certain type of con-
textual grammars, called regular prefix contextual grammars with bounded infix
(RPCGBI).

Here, we focus on two dimensional parallel restarting automata as we are
dealing with rectangular picture languages and bring the concept of multiple
windows in order to capture the parallel application of rules of parallel inter-
nal column contextual array grammars. A two dimensional parallel restarting
automaton can delete adjoined sub-arrays in a cycle and followed by restart
(DEL-RST). We exploit the DEL-RST operation to reverse the adjoining con-
texts that take place in a derivation of a parallel internal column contextual
array grammar. We use two dimensional parallel restarting automaton with mul-
tiple windows to simulate parallel internal column contextual array grammars
in reverse order.

The membership problem for a language asks whether, for a given grammar
G and a string w, w belongs to the language generated by G or not.

The remainder of this paper is organized as follows. Section 2 describes the
basic classes of contextual grammars in more detail which is followed by an
example in Subsect. 2.1. Section 3 presents the new variant of two dimensional
parallel restarting automata with multiple windows. In Sect. 4, we describe the
connection between parallel internal column contextual array grammars and
two dimensional parallel restarting automata with multiple windows, also an
example is given in Subsect. 4.1 for better understanding. Subsection 4.2 presents
some interesting properties of the proposed automata and in Subsect. 4.3 we
discuss about the complexity of membership problem for parallel internal column
contextual array languages, also we introduce some new definitions. Section 5
concludes the work and shows a future direction of work.
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2 Preliminaries

Let V be a finite alphabet. We write V ∗ for the set of all finite strings over V ,
which includes the empty string λ. An image or picture over V is a rectangular
m × n array of elements of V or in short [aij ]m×n. The set of all images over V
is denoted by V ∗∗. A picture language or two dimensional language over V is a
subset of V ∗∗. We define V m,n = {A ∈ V ∗∗ | A has m rows and n columns}.
If a ∈ V , then [am,n] is the array over {a} with m rows and n columns. In
this paper, Λ denotes any empty array. The notion of column concatenation is
defined as follows: if A and B are two arrays where

A =
[ a1,j ... a1,k

a2,j ... a2,k
... ... ...

al,j ... al,k

]
, B =

[
b1,m ... b1,n
b2,m ... b2,n
... ... ...

bl,m ... bl,n

]
then AΦB =

[
a1,j ... a1,k b1,m ... b1,n
a2,j ... a2,k b2,m ... b2,n
... ... ... ... ... ...

al,j ... al,k bl,m ... bl,n

]
.

If L1, L2 are two picture languages over an alphabet V , the column concatenation
L1ΦL2 of L1, L2 is defined by L1ΦL2 = {AΦB | A ∈ L1, B ∈ L2}. Column
concatenation is only defined for pictures that have the same number of rows.
Note that operation Φ is associative. If X is an array, the set of all sub-arrays
of X is denoted by sub(X). We now recall the notion of column array context
[4,26].

Definition 1. Let V be an alphabet. A column array context c over V is of the
form

c = [ u1
u2 ] ψ [ v1

v2 ] ∈ V ∗∗ψV ∗∗,

where u1, u2 are arrays of sizes 1 × p, and v1, v2 are arrays of sizes 1 × q, for
some p, q ≥ 1, and ψ is a special symbol not in V .

The next definition deals with the parallel internal column contextual operation.

Definition 2. Let V be an alphabet, C a finite set of column array contexts
over V , and ϕ : V ∗∗ → 2C a mapping, called choice mapping. For an array

A =
[ a1,j ... a1,k

a2,j ... a2,k
... ... ...

al,j ... al,k

]
, j ≤ k, aij ∈ V , we define ϕ̂ : V ∗∗ → 2V ∗∗ψV ∗∗

such that

LψR ∈ ϕ̂(A), where

L =

⎡
⎣

u1
u2

...
ul

⎤
⎦ , R =

⎡
⎣

v1
v2

...
vl

⎤
⎦ ,

and ci = [ ui
ui+1 ] ψ [ vi

vi+1 ] ∈ ϕ
[ ai,j ...ai,k

ai+1,j ...ai+1,k

]
, with ci ∈ C, (1 ≤ i ≤ l − 1) , not

all need to be distinct. Given an array X = [aij ] of size m × n, aij ∈ V,X =
X1ΦX2ΦX3 where

X1 =

⎡
⎣

a1,1 ... a1,p−1
a2,1 ... a2,p−1

...
...

...
am1 ... am,p−1

⎤
⎦ ,X2 =

⎡
⎣

a1,p ... a1,q
a2,p ... a2,q

...
...

...
am,p ... am,q

⎤
⎦ ,X3 =

⎡
⎣

a1,q+1 ... a1,n
a2,q+1 ... a2,n

...
...

...
am,q+1 ... am,n

⎤
⎦

and 1 ≤ p ≤ q ≤ n, we write X ⇒in Y if Y = X1ΦLΦX2ΦRΦX3 such that
LψR ∈ ϕ̂(X2). Here L and R are called left and right contexts respectively.
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We say that Y is obtained from X by parallel internal column contextual
operation (⇒).

Now we consider the notion of parallel internal column contextual array grammar
[4,26].

Definition 3. A parallel internal column contextual array grammar (PICCAG)
is an ordered system G = (V,A, C, ϕ), where V is an alphabet, A is a finite subset
of V ∗∗ called the axiom set, C is a finite set of column array contexts over V ,
ϕ : V ∗∗ → 2C is the choice mapping which performs the parallel internal column
contextual operation. When ϕ is omitted we call G a parallel internal contextual
array grammar without choice.
We already discussed the notion of X ⇒in Y in the previous definition. Here
we denote by ⇒∗

in the reflexive transitive closure of ⇒in. The parallel internal
column contextual array language (PICCAL) generated by G is defined as the
set Lin(G) = {Y ∈ V ∗∗ | ∃X ∈ A such that X ⇒∗

in Y }.

2.1 Example

Let G = (V,A, C, ϕ) be a parallel internal column contextual array grammar

(PICCAG) where V = {a, b}, A =
{

B =
[

a a b b
a a b b
b b a a
b b a a

]}
,

C =
{
[ a

b ] ψ [ b
a ] , [ a

a ] ψ
[

b
b

]
,
[

b
b

]
ψ [ a

a ]
}
, ϕ is a choice mapping satisfying

ϕ
[

a b
b a

]
= [ a

b ] ψ [ b
a ] , ϕ

[
a b
a b

]
= [ a

a ] ψ
[

b
b

]
, ϕ

[
b a
b a

]
=

[
b
b

]
ψ [ a

a ] .

Then,
Lin(G) =

{[
(an bn)m
(bn an)m

]
| n ≥ 2,m = 2

}
, where an = aa...a (n times) and

am =
a
...
a

, with m rows. A simple derivation of a member of Lin(G) is as follows:

B =
[

a a b b
a a b b
b b a a
b b a a

]
⇒

[
a a a b b b
a a a b b b
b b b a a a
b b b a a a

]
=

[
(a3 b3)2
(b3 a3)2

]
∈ Lin(G).

Now, if we consider a = white box and b = black box, we get a nice rectangular
picture, see Fig. 1 and Fig. 2.

3 Two Dimensional Parallel Restarting Automata with
Multiple Windows

It is interesting to find the connection between picture languages
with deterministic two-dimensional three-way ordered restarting automata
(det-2D-3W-ORWW) and deterministic two-dimensional extended two-way
ordered restarting automata (det-2D-x2W-ORWW) in [19,20].

In this section we present a variant of two dimensional restarting automaton
called a two dimensional parallel restarting automaton with multiple windows
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Fig. 1. A rectangular picture of size 4 × 4

Fig. 2. A rectangular picture of size 4 × 6

(2D-PRA-Wm) in order to simulate PICCAL in reverse order. Here we introduce
multiple windows to deal with the parallel application of rules of parallel internal
column contextual array grammars. This automaton works when PICCAG is
given.

We describe the basic working nature of 2D-PRA-Wm. It contains finite
control unit and multiple tapes and each tape is associated with individual head
and they work in a parallel way. At several points, it cuts-off sub-arrays from
each sub-window using DEL operation followed by restart (RST) operation, that



2D-PRA-Wm - PICCAG 111

is, DEL-RST. Here in each sub-window the same number of columns are deleted,
this happens in exactly the same positions.

All the heads move together right along the individual tape until it takes any
DEL-RST operation. RST implies that the restarting automaton places all the
windows over the left border of the individual tape and it completes one cycle.
After performing a DEL-RST operation, the restarting automaton is unable to
remember any step of computation that was performed already.

Let W be an array of size m × n, with m ≥ 2. Assume

W =

⎡
⎣

a1,1 ... a1,p−1
a2,1 ... a2,p−1

...
...

...
am1 ... am,p−1

⎤
⎦

Now W can be viewed as [W ]m,n =

⎡
⎢⎣

[Wi]
2,k

[Wi+1]
2,k

...
[Wf ]

2,k

⎤
⎥⎦where

[W1]2,n =
[ a1,1 ... a1,n

a2,1 ... a2,n

]
, [W2]2,n =

[ a2,1 ... a2,n
a3,1 ... a3,n

]
, [W3]2,n =

[ a3,1 ... a3,n
a4,1 ... a4,n

]
,

[Wm−1]2,n =
[ am−1,1 ... am−1,n

am,1 ... am,n

]
Now we present the concept of super window and sub-window.

[W ]f+1,k =

⎡
⎢⎣

[Wi]
2,k

[Wi+1]
2,k

...
[Wf ]

2,k

⎤
⎥⎦

where [W ]f+1,k is called the super window (array) of size ((f + 1) × k)
which contains sub-windows (arrays) [Wi]2,k of sizes (2 × k) where [Wi]2,k =
([�2,1]ΦV 2,k−1)∪(V 2,k)∪(V 2,k−1Φ[�2,1])∪([�2,1]ΦV 2,k−2Φ[�2,1]). Here f denotes
the number of sub-windows. The second row of each ith sub-window [Wi]2,k over-
laps with the first row of each (i+1)th sub-window [Wi+1]2,k. Now we show the
transition function δ of 2D-PRA-Wm for set of sub-windows. Here [�2,1], [�2,1]
denote one column and 2 rows of �, � marker respectively.

Suppose W =
[

a a a a b b b b
a a a a b b b b
b b b b a a a a
b b b b a a a a

]
.

Now W can be viewed in the following way with the help of sub window and
super window. The size of each sub window depends on the given grammar. Inter-
estingly, size of super window depends on the number of sub window. (Discussed
in detail in Theorem 1). We have shown below sub window [W1], [W2], [W3] and
the super window [W ] which contains [W1], [W2], [W3].

[W1] =
[

a a a a b b
a a a a b b

]
, [W2] =

[
a a a a b b
b b b b a a

]
, [W3] =

[
b b b b a a
b b b b a a

]
,

[W ] =
[
[W1]
[W2]
[W3]

]
,

Let G = PICCAG = (V,A, C, ϕ).
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Definition 4. A two dimensional parallel restarting automaton with multiple
window (2D-PRA-Wm), is given through a 6-tuple, M = (Q,V, �, �, q0, δ) where

– Q is a finite set of states,
– V is the input alphabet,
– �, � are left border, right border markers respectively,
– q0 ∈ Q is the initial state,

– δ : Q × [Wi]2,k → 2((Q×{MV R,DEL−RST})∪{Accept,Reject}) is the transition
function. This function describes four different types of transition steps:

• MVR: (q,MV R) ∈ δ(q, ([Wi]2,k, [Wi+1]2,k, ..., [Wf ]2,k)). Thus each sub-
window of M sees the sub-array of size 2 × k. Applying the transition
function δ, each sub-window of M moves through left to right using MV R
until it takes DEL-RST or � /∈ [Wi]2,k.

• DEL-RST: (q0,DEL − RST ) ∈ δ(q, ([Wi]2,k, [Wi+1]2,k, ..., [Wf ]2,k)) : For
possible contents of each sub-window, it deletes a subarray and causes M
to move its sub-window to the left border marker � and re-enters into the
initial state q0.

• ACCEPT: Accept ∈ δ(q, ([Wi]2,k, [Wi+1]2,k, ..., [Wf ]2,k)), it gets into an
accepting state.

• REJECT: Reject ∈ δ(q, ([Wi]2,k, [Wi+1]2,k, ..., [Wf ]2,k)) = ∅ (i.e., when δ
is undefined), then M will reject the input.

– Let P ∈ V r,s is accepted by 2D − PRA − Wm M , if there is a com-
putation, which starts from the initial configuration q0[�r,1]ΦPΦ[�r,1], and
reaching the Accept state. By L(M), we denote the language consisting
of all arrays accepted by M . In formal notation L(M) = {P ∈ V r,n |
q0[�r,1]ΦP r,sΦ[�r,1] 
∗ Accept}. Here [�r,1], [�r,1] denote one column and r
rows of �, � marker respectively.

In general, the 2D-PRA-Wm is nondeterministic, that is, there can be two or
more instructions with the same left-hand side. If this is not the case, the automa-
ton is deterministic.

Proposition 1 (Error preservation of 2D-PRA-Wm). If [W ]f+1,k
∗
M [W ′]f+1,k′

and [W ]f+1,k /∈ L(M) then [W ′]f+1,k′
/∈ L(M) where [W ]f+1,k, [W ′]f+1,k′ ∈

V ∗∗, k > k′.

4 2D-PRA-Wm and PICCAG

Before we analyze the relationship between 2D-PRA-Wm and PICCAG, which
is the objective of this section, we first need to understand the relationship of
DRA with string contextual grammars [12].

External contextual grammars were introduced by Marcus in 1969 [16]. Inter-
nal contextual grammars [22] produce strings starting from an axiom and in each
step left context and right context are adjoined to the string based on certain
string called selector present as a sub-string in the derived string. u, v are called
left context and right context respectively. For more details on contextual gram-
mars, we refer to [21].
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– The selector in a contextual grammar can be of arbitrary type in nature, like
regular, context-free etc, but the strings u, v are finite.

– Normal DRA works in the opposite way of contextual grammars in accepting
strings [12]. In a normal DRA M , w is given as an input, it checks the items
of the window with the contextual grammar G that any given rule has been
used or not.

– If it finds that any rule has been used then the automaton deletes the left
and right context u, v and takes the RST operation, otherwise takes MVR
and checks whether any rule in G can be applied.

– In this way, the automaton simulates the derivation of contextual grammar
in reverse order and if the input string can be reduced back to the axiom B1,
it implies that the string w can be generated using the given grammar G,
thus w ∈ L(G).

– Here the size of the tape of the automaton M is same as the size of the array
w. Step by step, the automaton M only deletes subarrays of w, so the size of
the tape becomes smaller and smaller.

In this paper, we adapt the working nature of DRA to solve membership prob-
lem for PICCAL. We show that the membership problem for PICCAL is solvable
by the introduced 2D-PRA-Wm. The paradigm of this version of 2D-PRA-Wm

is closely related to PICCAG. A PICCAG works just in the opposite direction of
2D-PRA-Wm. The connection is established based on the following observation.
For a PICCAG rule ϕ[xi] = LiψRi, now if we present that in two-dimensional
form-

ϕ[xi] =
[

li,1 ... li,m
li+1,1 ... li+1,m

]
ψ

[
Ri,1 ... Ri,n

Ri+1,1 ... Ri+1,n

]

where 2D-PRA-Wm has to delete the left context Li and right context Ri, that
is, ϕ[xi] = LiψRi is occurred as a subarray in the given input array. In that case,
we informally say that a PICCAG rule is found in the window as a subarray.

Let M be 2D-PRA-Wm. A reduction system induced by M is RS(M) =
(V ∗∗,
M ). For each PICCAG G, we define a reduction system induced by G
as RS(G) = (V ∗∗,⇒−1

G ) where ([W ]f+1,k 
−1
M [W ′]f+1,k′

) iff [W ′]f+1,k′ ⇒G

[W ]f+1,k.
With the above detail we will construct a 2D-PRA-Wm in such a way that

if B ⇒∗
G P then P 
∗

M B for P,B ∈ V ∗∗, B ∈ A, thus RS(G) = RS(M). Also
L2D-PRA-Wm denotes the class of languages accepted by 2D-PRA-Wm.

Theorem 1. For a PICCAG G, a 2D-PRA-Wm automaton M can be con-
structed in such a way that RS(G) = RS(M) and Lin(G) = L(M).

Proof. Given a PICCAG G = (V,A, C, ϕ) we have to construct a 2D-PRA-Wm

automaton M = (Q,V, �, �, q0, δ), that accepts Lin(G) where

– Q = {q0, q, Accept,Reject}
– V is the input alphabet

1 We consider A is a singleton axiom set and B ∈ A.
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– �, � are left and right borders respectively and �, � /∈ V
– q0 is the initial state.

[W ]f+1,k =

⎡
⎢⎣

[Wi]
2,k

[Wi+1]
2,k

...
[Wf ]

2,k

⎤
⎥⎦

– Here number of columns in each window of M will be k = max(Rulemax, kb+
2) where Rulemax is the maximum size given rule - Rulemax = max{|Rule1|c,
|Rule2|c, ..., |Rulen|c} where |Rulei|c denotes the number of columns in the
ith rule and 1 ≤ i ≤ n, n ≥ 1.

– Let kb be axiom size. 2 is added there for the left border � and the right border
�. The reason for 2 is added with kb is to satisfy the accepting condition -
ACCEPT - Accept ∈ δ(q, ([Wi]2,k, [Wi+1]2,k, ..., [Wf ]2,k)) where [W ]f+1,k =
[�f+1,1]ΦBΦ[�f+1,1] where B ∈ A.

– If the rule is Rulei = (ϕ[xi] = [Li]ψ[Ri]) where xi, Li, Ri are arrays of size
2 × k, k ≥ 1, then we define |Rulei|c = |xi|c + |Li|c + |Ri|c, Rulemax =
max{|Rule1|c, |Rule2|c, ..., |Rulen|c}

Lemma 1. If the input is Pm,n, then number of windows will be m − 1.

Proof. Each window will take care of each rule in a parallel way. According to
Definition 2, we know that if the input is P of size m × n then the number of
parallel rules will be m − 1, from this fact we can conclude this. (see example
for better understanding)

• DEL-RST: The DEL-RST instruction of the 2D-PRA-Wm for solving mem-
bership problem of PICCAL, works in the following manner:

– Now M works in a parallel way on, (q, ([Wi]2,k, [Wi+1]2,k, ..., [Wf ]2,k))
where i ≥ 1, and applies DEL-RST on each sub-window from state q to
arrive at ((q0, [W ′

i ]
2,k′

), (q0, [W ′
i+1]

2,k′
), ..., (q0, [W ′

f ]2,k′
)) and eventually

reaching (q0, ([W ′
i ]
2,k′

, [W ′
i+1]

2,k′
, ..., [W ′

f ]2,k′
)) where [W ′]f+1,k′

, [W ′
i ]
2,k′

are scattered sub-array of [W ]f+1,k, [Wi]2,k respectively and k > k′, imme-
diately followed by a RST instruction: RST ∈ δ(q, [Wi]2,k) for any possible
contents [Wi]2,k of the window. If no PICCAG rule does belong to win-
dow as a subarray and � does not belong to window (� /∈ [Wi]2,k) then
the automaton takes MV R operation.

• ACCEPT: Accept ∈ δ(q, ([Wi]2,k, [Wi+1]2,k, ..., [Wf ]2,k)) where [W ]f+1,k =
[�f+1,1]ΦBΦ[�f+1,1] where B ∈ A. Here [�f+1,1], [�f+1,1] denote one column
of �, � marker respectively, here we deal with singleton axiom set.

• REJECT: Reject ∈ δ(q, ([Wi]2,k, [Wi+1]2,k..., [Wf ]2,k)) = ∅. That is when δ is
undefined. In other words, when 2D − PRA − Wm is unable to take any of
the DEL-RST or MVR operation, then the transition becomes undefined.
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2D-PRA-Wm simulates the derivation of PICCAG in reverse order, in case
of any PICCAG rule it deletes the left and right contexts using DEL-RST
instruction which is defined already. For PICCAG, the derivation starts from
the axiom to the generated array, the automaton starts the reduction from the
generated array to the axiom. If B ⇒∗

G P then P 
∗
M B where P,B ∈ V ∗∗, B ∈

A is axiom, thus RS(G) = RS(M).

Corollary 1. The membership problem for PICCAL can be solved by
2D-PRA-Wm.

Proof. We conclude this important result from Theorem 1.

4.1 Example

Consider the PICCAG G given in Example 2.1. Suppose P =
[

a a a a b b b b
a a a a b b b b
b b b b a a a a
b b b b a a a a

]

is given as an input and we note that P ∈ Lin(G). Now we can construct a
2D-PRA-Wm automaton M = (Q,V, �, �, q0, δ), that accepts P where

– Q = {q0, q, Accept,Reject}
– V is the input alphabet
– �, � are left and right borders respectively and �, � /∈ V
– q0 is the initial state
– The number of columns in each window is k = 6 and the number of windows

is 3 respectively.
– In the first cycle, rule and � are not found in the window and so it takes

MV R: (q,MV R) ∈ δ(q, ([W1]2,6, [W2]2,6, [W3]2,6)), where

[W1]2,6 =
[

� a a a a b
� a a a a b

]
, [W2]2,6 =

[
� a a a a b
� b b b b a

]
, [W3]2,6 =

[
� b b b b a
� b b b b a

]
,

– After taking the MV R operation the elements of windows get changed and
M takes DEL − RST : (q0, ([W ′

1]
2,4, [W ′

2]
2,4, [W ′

3]
2,4)) ∈ δ(q, [W1]2,6, [W2]2,6,

[W3]2,6)), where [W ′
i ]
2,4 is the scattered sub-array of [Wi]2,6, i ≥ 1 and

[W ]4,6 =

[
[W1]

2,6

[W2]
2,6

[W3]
2,6

]
, [W ′]4,4 =

[
[W ′

1]
2,4

[W ′
2]

2,4

[W ′
3]

2,4

]

[W1]2,6 =
[

a a a a b b
a a a a b b

]
, [W ′

1]
2,4 =

[
a a a b
a a a b

]
[W2]2,6 =

[
a a a a b b
b b b b a a

]
, [W ′

2]
2,4 =

[
a a a b
b b b a

]
[W3]2,6 =

[
b b b b a a
b b b b a a

]
, [W ′

3]
2,4 =

[
b b b a
b b b a

]
– In the next cycle, again M can take DEL − RST : (q0, ([W ′

1]
2,4,

[W ′
2]

2,4, [W ′
3]

2,4)) ∈ δ(q0, [W1]2,6, [W2]2,6, [W3]2,6)) where [W ′
i ]
2,4 is the scat-

tered sub-array of [Wi]2,6, i ≥ 1 and
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[W ]4,6 =

[
[W1]

2,6

[W2]
2,6

[W3]
2,6

]
, [W ′]4,4 =

[
[W ′

1]
2,4

[W ′
2]

2,4

[W ′
3]

2,4

]

[W1]2,6 =
[

� a a a b b
� a a a b b

]
, [W ′

1]
2,4 =

[
� a a b
� a a b

]
[W2]2,6 =

[
a a a a b b
b b b b a a

]
, [W ′

2]
2,4 =

[
� a a b
� b b a

]
[W3]2,6 =

[
b b b b a a
b b b b a a

]
, [W ′

3]
2,4 =

[
� b b a
� b b a

]
– In the next cycle, Accept ∈ δ(q0, [W1]2,6, [W2]2,6, [W3]2,6) where

[W ]4,6 =
[

� a a b b �
� a a b b �
� b b a a �
� b b a a �

]

In this way, every member of Lin(G) is accepted by M . Now we consider the

input P ′ =
[

a a a a b b b
a a a a b b b
b b b b a a a
b b b b a a a

]
and we note that P ′ /∈ Lin(G).

In the first cycle, rule and � are not found in the window, so it takes MV R:
(q,MV R) ∈ δ(q, ([W1]2,6, [W2]2,6, [W3]2,6)), where

[W1]2,6 =
[

� a a a a b
� a a a a b

]
, [W2]2,6 =

[
� a a a a b
� b b b b a

]
, [W3]2,6 =

[
� b b b b a
� b b b b a

]
,

– Now M takes DEL − RST : (q0, ([W ′
1]

2,4, [W ′
2]

2,4, [W ′
3]

2,4)) ∈ δ(q, ([W1]2,6,
[W2]2,6, [W3]2,6)), where [W ′

i ]
2,4 is the scattered sub-array of [Wi]2,6, i ≥ 1

and

[W ]4,6 =

[
[W1]

2,6

[W2]
2,6

[W3]
2,6

]
, [W ′]4,4 =

[
[W ′

1]
2,4

[W ′
2]

2,4

[W ′
3]

2,4

]

[W1]2,6 =
[

a a a a b b
a a a a b b

]
, [W ′

1]
2,4 =

[
a a a b
a a a b

]
[W2]2,6 =

[
a a a a b b
b b b b a a

]
, [W ′

2]
2,4 =

[
a a a b
b b b a

]
[W3]2,6 =

[
b b b b a a
b b b b a a

]
, [W ′

3]
2,4 =

[
b b b a
b b b a

]
In the next cycle, again M can take DEL − RST : (q0, ([W ′

1]
2,4, [W ′

2]
2,4,

[W ′
3]

2,4)) ∈ δ(q0, ([W1]2,6, [W2]2,6, [W3]2,6)) where [W ′
i ]
2,4 is the scattered sub-

array of [Wi]2,6, i ≥ 1 and

[W ]4,6 =

[
[W1]

2,6

[W2]
2,6

[W3]
2,6

]
, [W ′]4,4 =

[
[W ′

1]
2,4

[W ′
2]

2,4

[W ′
3]

2,4

]

[W1]2,6 =
[

� a a a b b
� a a a b b

]
, [W ′

1]
2,4 =

[
� a a b
� a a b

]
[W2]2,6 =

[
a a a a b b
b b b b a a

]
, [W ′

2]
2,4 =

[
� a a b
� b b a

]
[W3]2,6 =

[
b b b b a a
b b b b a a

]
, [W ′

3]
2,4 =

[
� b b a
� b b a

]
In the next cycle, it rejects because this time transition function is undefined.
Reject ∈ δ(q0, ([W1]2,6, [W2]2,6, [W3]2,6)) where

[W ]4,6 =
[

� a a b �
� a a b �
� b b a �
� b b a �

]
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4.2 Properties of 2D-PRA-Wm

In this section, we introduce some important properties of 2D-PRA-Wm.

Lemma 2. The language class L(2D-PRA-Wm) is closed under 180◦ rotation.

Proof. Let 2D-PRA-Wm be M = (Q,V, �, �, q0, δ), that accepts a lan-
guage L ⊆ V ∗,∗ where Q = {q0, q, Accept,Reject}, V is the input alpha-
bet, �, � are left and right borders respectively and �, � /∈ V , q0 is
the initial state, Accept ∈ δ(q, ([Wi]2,k, [Wi+1]2,k, ..., [Wf ]2,k)), Reject ∈
δ(q, ([Wi]2,k, [Wi+1]2,k, ..., [Wf ]2,k)) = ∅ (i.e., when δ is undefined), then M will
reject.

Now, from M we can construct MR (after 180◦ rotation of M) where MR =
(Q,V, �, �, q0, δ), that accepts a language L ⊆ V ∗,∗ where Q = {q0, q, Accept′,
Reject}, V is the input alphabet, �, � are left and right borders respectively and
�, � /∈ V , q0 is the initial state, Accept′ ∈ δ(q, ([Wi]

2,k
R , [Wi+1]

2,k
R , ..., [Wf ]2,k

R ))
where [Wi]

2,k
R is the ith sub-window after 180◦ rotation of [Wi]2,k and 1 ≤ i ≤ f ,

Reject ∈ δ(q, ([Wi]
2,k
R , [Wi+1]

2,k
R , ..., [Wf ]2,k

R )) = ∅ (i.e., when δ is undefined),
then M will reject the input.

Lemma 3. The language class L(2D-PRA-Wm) is closed under complement.

Proof. Let M be a 2D-PRA-Wm, that accepts a language L ⊆ V ∗,∗. Now, from
M we can construct Mc (complement of M) by interchanging undefined and
accepting transitions.

Lemma 4. The language class L(2D-PRA-Wm) is closed under column con-
catenation.

Proof. Let M1 be a 2D-PRA-Wm, on V , that accepts a language L1 ⊆ V ∗,∗

where Accept ∈ δ(q, ([Wi]2,k, [Wi+1]2,k, ..., [Wf ]2,k)). Consider M2 be another
2D-PRA-Wm which accepts a language L2 ⊆ V ∗,∗ where Accept ∈ δ(q, ([W ′′

i ]2,k,
[W ′′

i+1]
2,k, ..., [W ′′

f ]2,k)). Now, we can construct M which can accept L1ΦL2 by
modifying the accepting state, that is, Accept ∈ δ(q, ([Wi]2,kΦ[W ′′

i ]2,k, [Wi+1]2,k

Φ[W ′′
i+1]

2,k, ..., [Wf ]2,kΦ[W ′′
f ]2,k)).

Lemma 5. The language class L(2D-PRA-Wm) with auxiliary special symbol is
closed under intersection.

Proof. Let 2D-PRA-Wm be a M1 = (Q1, V, Γ1, �, �, q′
0, δ1) with auxiliary special

symbols. Let M2 = (Q2, V, Γ2, �, �, q′′
0 , δ2) be another 2D-PRA-Wm with special

symbols where Γ1, Γ2 ⊇ V . Now we can construct M = (Q,V, Γ, �, �, q0, δ) such
that L(M) = L(M1)

⋂
L(M2). Essentially, M will work as follows:

– M first simulates M1, that is, it behaves exactly like M1. If M1 should get
stuck on the given input, that is, M1 does not accept, then neither does M . If,
however, M1 accepts, then instead of accepting, M marks the position (i, j)
at which M1 accepts, using a special symbol.
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– Now only M should start simulating M2. So, it is understood that we need to
mark the last position by special symbol and because of that we introduced
Γ = V ∪ T is the tape alphabet, Γ ⊇ V .

Lemma 6. The language class L(2D-PRA-Wm) is not closed under
transposition.

Proof. Let G = (V,A,C, ϕ) be a parallel internal column contextual array gram-
mar where V = {a, b},

A =
{

B =
[

a a a a b
a b a b b
a b a b b

]}
, C =

{
[ a

b ] ψ [ a
b ] ,

[
b
b

]
ψ

[
b
b

]}
,

where B ∈ A, ϕ is a choice mapping,

ϕ [ a a a
b a b ] = [ a

b ] ψ [ a
b ] , ϕ

[
b a b
b a b

]
=

[
b
b

]
ψ

[
b
b

]

We can construct 2D-PRA-Wm such that L(M) = L(G) where the configuration
of acceptance , ACCEPT- [W ]3,7 = [�]3,1B[�]3,1. where B ∈ A. Now, if we
consider the transposition of B, we obtain

BT =

[
a a a
a b b
a a a
a b b
b b b

]
.

Clearly, BT /∈ L(M) because in this case we cannot construct MT . If
BT ∈ L(M) then the content of each sub-window wj in each cycle ci should
be transposed to wjT such that ∀i∀j Transpose(wj , wjT ). In order to do that,
the working procedure of our M for given G, needs to be changed.

4.3 Complexity of Membership Problem for PICCAL

In this section, we discuss the complexity of solving the membership problem for
PICCAL. Let us start with internal contextual string languages with finite choice
(ICSL(FIN)). ICSL(FIN) is contained in the family of languages generated
by growing context-sensitive grammars (GCSG), and from this scenario we will
comment on the time complexity of solving membership problem for PICCAL.
So here, first we recall the definition of ICSL(FIN) and GCSG.

Definition 5 [17]. For an alphabet Σ, we denote by Σ∗ the free monoid gen-
erated by Σ, by λ its identity, and Σ+ = Σ∗ − {λ}. The family of finite
languages is denoted by FIN . Contextual grammar is a construct, G =
(Σ,A, (sel1, C1), (sel2, C2), ..., (selk, Ck)), for some k ≥ 1, where Σ is an alpha-
bet, A ⊂ Σ∗ is a finite set, called the axiom set, seli ⊆ Σ∗, 1 ≤ i ≤ k, are
the sets of selectors, and Ci ⊂ Σ∗ × Σ∗ where 1 ≤ i ≤ k, and Ci is a finite
set of contexts. There are two basic modes of derivation, the internal mode of
derivation as follows. For two words x, y ∈ Σ∗, we have the internal mode of
derivation:
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x =⇒in y iff x = x1x2x3, y = x1ux2vx3, x2 ∈ seli, (u, v) ∈ Ci, for some
1 ≤ i ≤ k.
The language generated by internal mode of derivation is: Lin(G) = {w ∈ Σ∗ |
x ∈ A, x =⇒∗

in w}, where =⇒∗
in denotes the reflexive - transitive closure of

=⇒in.
If the sets sel1, sel2, ..., selk are languages in a given family FIN , then G

is said to be with FIN choice. The family of languages generated by contextual
grammars with FIN choice in the internal mode of derivation is denoted by
ICSL(FIN).

Now we recall the definition from [11].

Definition 6. A context-sensitive grammar (CSG) is a tuple G = (V, T, P, S),
where V is a set of alphabets, T is a finite set of terminal symbols, P is a finite
set of production rules, and S is the starting symbol. We say that G is growing
if S does not appear on the right and |α| < |β| for any (α → β), with α �= S,
from P .

Definition 7. A CSG G = (V, T, P, S) is QGCSG if there exists a function
f : (V ∪ T )∗ �→ Z

+ such that, for all p ∈ P , f(α) > f(β).

Lemma 7. ICSL(FIN) ⊂ GCSG

Proof. G = (Σ,A, (sel1, C1), (sel2, C2), ..., (selk, Ck)) be ICSL(FIN). We can
assume that (λ, λ) /∈ Ci for all 1 ≤ i ≤ k. The problem in developing a QGCSG,
is to simulate an insertion step x ⇒in y if x = x1x3, λ ∈ Si, y = x1uvx3, and
(u, v) ∈ Ci for some 1 ≤ i ≤ k. In order to avoid this, we do as follows:
We define homomorphism h : Σ∗ → Σ′∗ where Σ′ = {a′ | a ∈ Σ} such that
Σ ∩ Σ′ = φ and h(a) = a′ for a ∈ Σ. Now we are ready to construct QGCSG
G′ = (Σ′ ∪ S,Σ, P, S) where S /∈ Σ′, the P is given below.
P = {S → h(x) | x ∈ A} ∪ {S → h(u, v) | λ ∈ A ∩ Si, (u, v) ∈ Ci, 1 ≤ i ≤ k} ∪
{h(x) → h(uxv) | x ∈ Si \ {λ}, (u, v) ∈ Ci, 1 ≤ i ≤ k} ∪ {h(a) → h(uva), h(a) →
h(auv) | a ∈ Σ,λ ∈ Si, (u, v) ∈ Ci, 1 ≤ i ≤ k} ∪ {h(a) → a | a ∈ Σ} with the
valuation f(S) = 1 and f(h(a)) = 2, f(a) = 3, if a ∈ Σ. So, here the constructed
grammar is QGCSG and L(G′) = Lin(G).

Since QGCSG = GCSG, we can state that ICSL(FIN) ⊂ GCSG. Here the
inclusion is strict because the cross-dependency language Lcross−dependency =
{anbmcndm | n,m ≥ 1} /∈ ICSL(FIN) but Lcross−dependency ∈ GCSL.

Lemma 8 [11]. The membership problem for internal contextual string lan-
guages with finite choice (ICSL(FIN)) is LOG(CFL) − hard.

Proof. From Lemma 7, we concluded that ICSL(FIN) ⊂ GCSG. In [5], it is
shown that GCSL family of languages, is contained in LOG(CFL). This shows
that the upper bound for membership problem for ICSL(FIN) is LOG(CFL).

Lemma 9. The membership problem for parallel internal column contextual
array languages (PICCAL) is contained in NP .
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Proof. Let V ERIFIER(W,C) be a procedure where W,C are given inputs and
denote a word and certificate respectively. Here C is a certificate, i.e., a deriva-
tion. The procedure V ERIFIER(W,C) returns “YES” if the given certificate
C is correct, otherwise “NO”. In other words, V ERIFIER(W,C) verifies the
correctness of C. Moreover the running time of V ERIFIER(W,C) is bounded
by a polynomial in |W | where |W | denotes the size of W . See Algorithm 1.

Algorithm 1. Polynomial Time Verifier
1: procedure Verifier(W, C)
2: Initialize wi ← Axiom � wi stores the Axiom
3: Initialize k ← |W | � k stores the length of W
4: Initialize N ← |C| � Nstores the length of C
5: for i = 1 to N do
6: wi ⇒ithstep wi+1

7: if wi+1 == W then � ith step of the derivation
8: print YES return � C is correct
9: else
10: i ← i + 1
11: end if
12: end for
13: if |wi| > k then
14: Print NO � C is incorrect
15: end if
16: end procedure

Corollary 2. The membership problem for PICCAL is at least LOG(CFL) −
hard and is contained in NP.

Proof. From Lemma 8 and Lemma 9, we can easily conclude this Corollary 2.

5 Conclusion and Future Work

In this paper, we have introduced a non-deterministic 2D-PRA-Wm to solve the
membership problem of PICCAL. Here we have introduced multiple windows in
order to capture the parallel application of the parallel column contextual array
rules. Also we discussed some of the important properties of 2D-PRA-Wm and
commented on the complexity of membership problem for PICCAL.

Here our focus was on column concatenation only. We can extend our work
to take care of row concatenation too. In terms of future direction of work, it
could be also interesting, if we can define a powerful subclass of PICCAG and
solve the membership problem using deterministic 2D-PRA-Wm.
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