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Motor cortex stimulation in 
chronic neuropathic orofacial pain 
syndromes: a systematic review 
and meta-analysis
Dylan Henssen1,2,3 ✉, Erkan Kurt2,3, Anne-Marie Van Cappellen van Walsum1, Tamas Kozicz  1,  
Robert van Dongen4 & Ronald Bartels  2

Invasive motor Cortex Stimulation (iMCS) was introduced in the 1990’s for the treatment of chronic 
neuropathic orofacial pain (CNOP), although its effectiveness remains doubtful. However, CNOP is 
known to be a heterogeneous group of orofacial pain disorders, which can lead to different responses to 
iMCS. Therefore, this paper investigated (1) whether the effectiveness of iMCS is significantly different 
among different CNOP disorders and (2) whether other confounding factors can be impacting iMCS 
results in CNOP. A systematic review and meta-analysis using a linear mixed-model was performed. 
Twenty-three papers were included, totaling 140 CNOP patients. Heterogeneity of the studies showed 
to be 55.8%. A visual analogue scale (VAS) measured median pain relief of 66.5% (ranging from 0–100%) 
was found. Linear mixed-model analysis showed that patients suffering from trigeminal neuralgia 
responded significantly more favorable to iMCS than patients suffering from dysfunctional pain 
syndromes (p = 0.030). Also, patients suffering from CNOP caused by (supra)nuclear lesions responded 
marginally significantly better to iMCS than patients suffering from CNOP due to trigeminal nerve 
lesions (p = 0.049). No other confounding factors were elucidated. This meta-analysis showed that 
patients suffering from trigeminal neuralgia and patients suffering from (supra)nuclear lesions causing 
CNOP responded significantly more favorable than others on iMCS. No other confounding factors were 
found relevant.

In the early 1990’s, Tsubokawa and his colleagues searched for a new therapy to treat intractable neuropathic pain 
as other forms of therapies, including continuous deep brain stimulation of thalamic nuclei, only provided satis-
factory pain relief in approximately 30% of the cases. For that reason, they started to empirically stimulate various 
brain regions in animal models for intractable neuropathic pain. During their experiments, they recognized the 
primary motor cortex as a target that could provide excellent pain relief. Within their experiments, Tsubokawa 
transected the spinothalamic tract in cats, which led to thalamic hyperactivity and pain-related behavior. By 
stimulating the primary motor cortex in these cats, it was found that both the hyperactivity was inhibited and the 
pain-related behavior diminished, indicating an analgesic effect of iMCS in the treated cats. These experimental 
findings were in line with their subsequent clinical investigations in individuals suffering from intractable neuro-
pathic pain as a consequence of thalamic syndrome1–5. Since then, iMCS has been carried out in approximately 
700 cases world-wide, yielding highly variable outcomes1,6–40. Nevertheless, iMCS has become a last resort neu-
rosurgical therapy for different intractable neuropathic pain syndromes3–5,14,17,21,26,35,41–44. In 1993, Meyerson et 
al. reported for the first time on the use of iMCS in chronic neuropathic orofacial pain (CNOP) as a last resort 
treatment. They reported that, in a case series of 10 individuals suffering from CNOP, iMCS seemed to be a prom-
ising treatment45. Over the years, various papers have been published discussing both favorable10,24,46 and less 
favorable9,47 outcomes of iMCS in treating CNOP (for a narrative review, please see48). Due to the mixed results 
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of iMCS, evidence-based inclusion and exclusion criteria for iMCS are lacking49, which creates a heterogeneous 
group of patients.

In order to help establishing inclusion and exclusion criteria, a recent publication from our group aimed to 
predict iMCS outcome by using artificial intelligence. This paper showed that various predictive variables existed 
in iMCS for neuropathic pain, including the sex of the patient and the location of the lesion within the nervous 
system50. In addition, a neuroanatomical paper from our group showed that a more extensive trigeminothalamic 
network is present in the brainstem of humans and could play an important role in pain processing51,52. Based on 
these two papers, we hypothesized that CNOP caused by lesions within the root of the trigeminal nerve and/or 
within the brain(stem) will respond more favorable to iMCS than lesions of the trigeminal branches. However, in 
line with our previous paper, other confounding factors are believed to play an important role in the effectivity of 
iMCS in CNOP. This meta-analysis therefore assessed whether the effectiveness of iMCS is significantly impacted 
by localization of a lesion within the somatosensory system (i.e., different CNOP disorders respond differently to 
iMCS). In addition, we assessed whether other confounding factors impacted the outcomes of iMCS in treating 
CNOP.

Materials and methods
Search strategy. A systematical literature search was carried out in various databases (i.e., Pubmed, 
MEDLINE, Embase, The Cochrane Library and Google Scholar) until October 2018 adhering to PRISMA and 
MOOSE guidelines53,54. An independent, experienced librarian helped in conducting the searches. The search 
string included: “Electric Stimulation Therapy”; “Facial pain”; “Face pain”; “Headache and facial pain”; “Motor 
Cortex”; “Motor Cortex Stimulation”; “Neuralgia”; “Neuropathic”; “Pain”; “Pain Management”; “Precentral 
Cortex “; “Thalamus”; “Trigeminal nerve diseases”; and/or “Trigeminal neuralgia”. Medical Subject Headings 
(MeSH-) terms were used to enrich the results. Furthermore, the reference list of retrieved articles was cross-ref-
erenced to enrich the database. In addition, authors were contacted when papers or specific data were unavailable 
for the researchers.

Original studies (i.e., case-reports, case-series, RCTs) were included when: 1) iMCS was performed as a treat-
ment of CNOP; 2) individual patient characteristics were provided (i.e., age, sex, etiology, pain relief (either 
pre- or post-operative pain intensity scores on visual analogue scale (VAS)/numerical rating scale (NRS) or by 
use of percentage of pain relief); and 3) pain characteristics (i.e., etiology and disease duration) were provided. 
Other papers (e.g., systematic reviews, narrative reviews, technical notes, animal-based studies) were excluded. 
Furthermore, only papers written in English, Dutch or German were included. Based on these criteria, each arti-
cle was reviewed for full-text analysis by two researchers independently (D.H. and R.B.). Incongruently assessed 
papers were reviewed by a third researcher (E.K.), upon which the final decision was made. The selection-process 
is depicted in Fig. 1 as a flow-diagram.

Data extraction. Extracted individual patient data included: (1) age, (2) sex, (3) etiology of CNOP, (4) dura-
tion of pain, (5) method of iMCS, (6) pain relief post-operatively using VAS or NRS scores or percentages of pain 
relief, (7) duration of trial phase, (8) complications of iMCS surgery and (9) duration of follow-up of each patient.

Pain relief was categorized by use of a literature-based three-dimensional scale20. Level 1, a good pain relief, 
was defined as a VAS reduction of 70–100%. Level 2 was regarded as satisfactory pain relief and comprised a 

Figure 1. Flow-diagram of the study-selection process. CNOP: Chronic neuropathic orofacial pain.
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pain relief lying between 40–69%. Level 3, which indicated a reduction of pain by less than 40%, was defined as a 
failure. A relevant pain relief was defined as an analgesic effect >40%20,55. Patients with less than 40% pain relief 
were regarded as non-responders49. All other values were adapted to nominal numeric input as well. To correct 
for missing data, the authors of the included papers were contacted in an attempt to obtain missing values. Five 
feed-forward imputations were carried out by pooling the individual patient data in order to impute missing 
values.

To assess whether localization of the lesion within the somatosensory system influenced the outcome of iMCS, 
an anatomical-functional subdivision into 4 categories was made. These groups were:

 (1) absence of an intrinsic trigeminal nerve lesion (no sensory deficit, no nerve lesion on imaging) and cause 
of trigeminal nerve hyperexcitability (affecting either pre- or post-ganglion trigeminal fibers up to the 
nuclei) (e.g., trigeminal neuralgia);

 (2) trigeminal nerve lesion (affecting either pre- or post-ganglion trigeminal fibers up to the nuclei), resulting 
in partial or total sensory deficit (e.g., trigeminal neuropathic pain);

 (3) (supra)nuclear lesion affecting the central sensory pathways between the cortex and the trigeminal nuclei 
(e.g., post-stroke pain);

 (4) dysfunctional pain syndrome with central sensitization in the absence of neurological lesion or dispropor-
tionate to a possible peripheral lesion (atypical facial pain).

Statistical assessment. Statistical analyses were carried out by use of IBM SPSS Statistics version 25 (IBM 
Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.). Three experts in 
biomedical statistics (TH, JH and MB) were independently involved in choosing and conducting the analyses. A 
linear mixed model analysis was fitted in order to include a study random effect that accounts for within-study 
dependency across the included patients. Furthermore, the influence of discordances between the studies and 
the in-between study variation was corrected by use of the applied linear mixed model. To identify outcome 
predictive factors and/or confounders regarding the analgesic effect of iMCS in treating CNOP, a linear mixed 
model analysis was applied to analyze the differences in mean pain relief in different subgroups. The mixed model 
analysis was run for each variable separately in order to analyze the effect of the variable on the outcome as an 
outcome predictive factor. When significantly influencing the outcome, the variable was assessed as a confounder 
by fitting the mixed model analysis repeatedly in combination with the residual variables. Variables and outcomes 
of the statistical assessment were represented as mean with ± standard deviation (SD) when normally distributed. 
When data was not normally distributed as a median with range (minimum-maximum)(if not normally distrib-
uted). Statistical significance was assumed when p < 0.05.

Part of the quantitative meta-analysis was carried out using OpenMeta[Analyst] software (MetaAnalyst, 
Tufts Medical Center (Wallace et al., 2012)), which is the visual front-end for the R package (www.r-project.
org; Metafor)56. A forest-plot was created to graphically display the estimated results from the included studies, 
along with the overall results In addition, OpenMeta[Analyst] was used to assess heterogeneity. Heterogeneity in 
a meta-analysis refers to the variation in outcomes between studies. To measure heterogeneity, the heterogeneity 
index (I2) was introduced. This measure can be interpreted as the proportion of total variability explained by 
heterogeneity and refers to the percentage of variation across studies57. I2 displays the inconsistency across studies 
and ranges from 0% (i.e., no heterogeneity) to 100% (i.e., the highest heterogeneity).

Quality assessment. To assess the risk of bias of the results of the included studies, the researchers used 
two Cochrane tools. Version 2 of the Cochrane risk-of-bias tool for randomized trials (RoB 2)(Version 22 August 
2019)58 was used for the randomized trials as this tool is the recommended tool to assess the risk of bias in such 
trials. The Risk Of Bias In Non-randomized Studies - of Interventions (ROBINS-I)(Version 19 September 2016)59 
was used to assess the risk of bias in the results of non-randomized studies that compare health effects of two or 
more interventions. Both bias-assessment tools were filled in by two researchers separately (D.H. and E.K.). When 
no agreement could be achieved between the two reviewers on the quality of the trial, a third reviewer (R.B.) was 
consulted according to the Cochrane methodology60,61.

The quality of the evidence of the studies was graded according to the GRADE approach guidelines defined 
by Cochrane62–71. Two members of the team (D.H. and E.K.) independently reviewed each selected article for risk 
of bias using the Cochrane criteria checklist. When no agreement could be achieved between the two reviewers 
on the quality of the trial, a third reviewer (R.B.) was consulted according to the Cochrane methodology60,61. 
Assessing the risk of bias was performed by the criteria presented in Table 1, following standardized instructions 
which were published before60,61,72–74.

Ethical approval. No ethical approval was needed for conducting this systematic literature review and 
meta-analysis.

Consent for publication. The authors give consent for publication of the presented data.

Results
From the retrieved 287 articles, 23 papers could be included for data-extraction (Fig. 1). The included stud-
ies represented a total of 140 individual patients, 92 of which were women (65.7%) and 48 of which were men 
(34.3%). Subjects showed a mean age of 55.7 ± 13.3years. Median duration of pain prior to iMCS showed to be 
6.4 years, ranging from 1.0–26.0 years. Mean preoperative and post-operative pain intensity scores showed to 
be 8.3 ± 1.5 and 3.9 ± 2.7, respectively. Median pain relief showed to be 64.8% (0–100%). A level 1 pain relief 
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(pain reduction of 70–100%) was observed in 43.7% of the cases.A level 2 pain relief (pain reduction of 40–69%) 
was noted in 25.2% of the cases and a level 3 pain relief (pain reduction of 0–40%) was observed in 31.1% of the 
cases. Table 2 provides a detailed overview of the non-imputed data of the characteristics of the included papers. 
Figure 2 presents the created forest-plot of the mean pain relief achieved in each of the included studies and shows 
that heterogeneity was calculated to be 55.8% (95% confidence interval 37.8–73.8). Neurologic adverse events 
(n = 22) occurred in 11 patients or 22% of all complications, and included temporary, partial seizures in 9 patients 
(18%), temporary speech arrests in 1 patient (2%) and facial spasms in 1 patient (2%). Other complications were 
wound infections (25 patients; 12%), post-incision pain (1 patient (2%), epidural infection (1 patient; 2%) and 
post-operative trauma (1 patient; 2%).

CNOP was found to be caused by various diagnoses, which are summarized in Table 3. Using an 
anatomical-functional classification system, these diagnoses were categorized as: Group 1) Absence of intrinsic 
trigeminal nerve lesions (including trigeminal neuralgia; n = 14); Group 2) Trigeminal nerve lesions (including 
anesthesia dolorosa, dental avulsion pain, neurofibromatosis type 1, post-herpetic neuropathic pain, post-surgical 
pain, post-traumatic pain, trigeminal neuropathic pain and trigeminal deafferentation pain; n = 79); Group 3) 
(Supra)nuclear lesions (including pain after brain(stem) lesions (post-stroke pain), post-neurosurgical pain, 
symptomatic trigeminal neuralgia; n = 36); and Group 4) Dysfunctional pain syndromes (including atypical 
facial pain, idiopathic facial pain; n = 11).

Linear mixed-model analysis. Linear mixed-model analysis showed a mean pain relief of iMCS of 67.4% 
± 8.7% in Group 1, 53.3 ± 4.5% in Group 2, 66.0 ± 5.9% in Group 3 and 40.8 ± 9.2%% in Group 4. Pairwise 
comparisons showed a statistically significant difference in pain relief between patients belonging to Group 1 and 
Group 4, in favor of patients within Group 1 (p = 0.030; 95%-CI = 2.7–50.7). Also, statistically significant differ-
ences in pain relief were found between Group 2 and Group 3 (p = 0.049; 95%-CI = −25.4-0.05, in favor of Group 

Authors (ref)

Internal validity

Score Quality1 2 3 4 5 6 7 8 9 10 11 12

Meyerson, Lindblom et al.45 − − − − − − + + + + + + 6 Moderate

Ebel, Rust et al.10 − − − − − + + + + + + + 7 Moderate

Rainov, Fels et al.24 − − − − − − + + + + + + 6 Moderate

Carroll, Joint et al.9 − − − − − − + + + + + + 6 Moderate

Brown and Pilitsis78 − − − − − + + + + + + + 7 Moderate

Rasche, Ruppolt et al.47 + + + + + + + + + + + + 12 High

Hosomi, Saitoh et al.13 − − − − − + + + + + + + 7 Moderate

Velasco, Arguelles et al.76 + + + + + − + + + + + + 11 High

Pirotte, Voordecker et al.79 − − − − − − + + + + + + 6 Moderate

Nguyen, Velasco et al.77 + + + + + − + + + + + + 11 High

Anderson, Kiyofuji et al.80 − − − − − − + + + + + + 6 Moderate

Perdok, van Dongen et al.81 − − − − − − + + + + + + 6 Moderate

Lefaucheur, Drouot et al.75 + + + + + + + + + + + + 12 High

Esfahani, Pisansky et al.82 − − − − − − + + + + + + 6 Moderate

Raslan, Nasseri et al.83 − − − − − + + + + + + + 7 Moderate

Tanei, Kajita et al.42 − − − − − − + + + + + + 6 Moderate

Delavallee, Finet et al.44 − − − − − + + + + + + + 7 Moderate

Buchanan, Darrow et al.43 − − − − − + + + + + + + 7 Moderate

Sachs, Babu et al.84 − − − − − + + + + + + + 7 Moderate

Slotty, Eisner et al.85 − − − − − − + + + + + + 6 Moderate

Sokal, Harat et al.40 − − − − − − + + + + + + 6 Moderate

Kolodziej, Hellwig et al.55 − − − − − + + + + + + + 7 Moderate

Henssen, Kurt et al.86 − − − − − − + + + + + + 7 Moderate

Table 1. Quality assessment of the individual papers. 1. Was the method of randomization adequate? 2. Was 
the treatment allocation concealed? 3. Was the patient blinded to the intervention? 4. Was the care provider 
blinded to the intervention? 5. Was the outcome assessor blinded to the intervention? 6. Was the dropout 
rate described and acceptable? 7. Were all randomized participants analyzed in the group to which they were 
allocated? 8. Are reports of the study free of suggestion of selective outcome reporting? 9. Were the groups 
similar at baseline regarding the most important prognostic indicators? 10. Were co-interventions avoided or 
similar? 11. Was the compliance acceptable in all groups? 12. Was the timing of the outcome assessment similar 
in all groups? (Questions derived from60,61,72–74). +, criterion achieved; −, criterion not achieved; ∗, assessors 
initially disagreed High [≥10/12]: Where criteria were not fulfilled, the conclusions of the study or review are 
thought very unlikely to have been altered. Moderate [6–9/12]: Where criteria were not fulfilled, the conclusions 
of the study or review are thought unlikely to have altered the conclusions. Low [6/12]: Where criteria were not 
fulfilled, the conclusions of the study or review are thought likely or very likely to alter had those criteria been 
fulfilled.
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3) and between Group 3 and Group 4 (p = 0.017; 95%-CI = 4.8-45.6, in favor of Group 3). The duration of pain 
prior to iMCS did not contribute to the outcome (p = 0.33), nor did the preoperative pain intensity (p = 0.88). 
Neither sex of the patient and the preoperative pain intensity score were found to be a confounder (p = 0.07; 
p = 0.13; p = 0.39).

Quality assessment. Risk of bias as assessed by the RoB2 showed that all included papers had a low overall 
risk-of-bias judgement47,75–77. Risk of bias as assessed by the ROBINS-I showed that all included papers had a 
moderate overall risk-of-bias judgement9,10,13,24,40,42–45,55,78–86. Table 1 provides an overview of the quality of the evi-
dence of the included papers, respectively. This overview shows that the evidence of the four papers were of high 
quality47,75–77. The other papers were assessed as being of low/moderate quality of evidence9,10,13,24,40,42–45,55,78–86.

Discussion
This study shows that a broad variety of diagnoses, which all can cause CNOP, have been described in the iMCS 
literature. This broad variety of disorders causes a relatively heterogeneous group of patients, possibly explaining 
the reported variable outcome of iMCS. This study furthermore suggests that the effectiveness of iMCS is associ-
ated with the neuroanatomic location of the lesion causing CNOP. It was found that the outcomes of iMCS were 
most optimal in patients in whom the integrity of the trigeminal nerve was not affected. More specific, patients 
suffering from CNOP caused by (supra)nuclear lesions respond more favorable than others.

Effectiveness of iMCS and confounding factors. iMCS is considered a last-resort, experimental tech-
nique for patients with CNOP who do not respond to regular treatments. However, there is no international 
consensus on how to define a patient as a non-responder during treatment of CNOP. Nevertheless, all patients in 
the included papers were described as sufferers from severe CNOP that did not respond to regular treatments (i.e. 
oral analgetics, including opioids and anti-epileptic medication). In addition, most patients in the included papers 
were also reported to be non-responders less regular treatments (i.e. cervical spinal cord stimulation, thalamic 
deep brain stimulation).

Ref. Article type N
Sex 
M/F

Mean age 
(years) Diagnoses

Mean 
duration of 
pain (years)

Mean 
preoperative 
VAS

Mean VAS 
at last 
follow-up

Mean period 
of follow-up 
(months)

Mean pain 
relief after 
iMCS (%)

Cases with 
significant 
pain control 
(%)

Complications (%)

Neurological Other

1 55 Retrospective analysis 9 1/8 57.1 ± 13.8 3;7;8;9;11 4.1 ± 3.4 — — — 85.6 ± 8.8 100 — —

2 44 Observational study 7 5/2 52.6 ± 25.3 8;13 13.8 ± 8.5 8.5 ± 0.6 2.3 ± 3.3 121.2 ± 35.4 69.2 ± 38.0 83.3 28.6 42.9

3 10 Observational study 7 1/6 55.4 ± 15.3 1;7 10.6 ± 9.5 — — 14.5 ± 0.0 77.5 ± 38.6 75.0 14.3 0.0

4 78 Observational study 9 5/4 59.3 ± 11.0 3;7;12;13 — 8.7 ± 1.8 3.4 ± 2.4 10.0 ± 0.0 63.3 ± 28.4 85.7 — —

5 43 Observational study 5 1/4 58.2 ± 15.5 1 — 9.8 ± 0.5 3.5 ± 1.3 3.0 ± 0.0 54.2 ± 24.9 80 20.0 0.0

6 75 RCT 7 1/6 58.9 ± 16.6 4;6;7;9;12;15 11.4 ± 15.5 9.5 ± 0.7 — — 42.6 ± 34.8 60.0 0.0 14.3

7 79 Observational study 7 2/5 52.1 ± 12.4 4;11;13 — 7.7 ± 0.5 2.6 ± 2.3 — 67.1 ± 28.3 85.7 0.0 14.3

8 47 Retrospective analysis 10 0/10 64.1 ± 10.1 1;4;9;12 6.3 ± 3.3 8.0 ± 0.0 5.5 ± 3.0 4.2 ± 3.5 36.1 ± 29.8 50 — —

9 84 Retrospective analysis 8 4/4 48.4 ± 7.4 9;13 — 7.2 ± 1.2 5.4 ± 1.7 13.1 ± 15.0 24.6 ± 22.4 12.5 37.5 12.5

10 13 Observational study 5 3/2 54.6 ± 17.8 3;11;13 3.5 ± 0.7 — — 54 ± 5.7 47.5 ± 46.0 50 — —

11 81 Retrospective analysis 7 3/4 53.3 ± 7.4 3;9;10;11;13 — 8.1 ± 1.6 3.0 ± 1.7 21.6 ± 3.3 63.2 ± 15.8 100 — —

12 83 Retrospective analysis 11 3/8 47.4 ± 13.0 1;4;9;10;11;12 4.7 ± 3.3 — - 31.6 ± 21.2 100 ± 0.0* 100 — —

13 77 Double-blinded 
crossover trial 4 2/2 53.8 ± 18.1 11;13 3.75 ± 2.2 — — — 66.3 ± 45.0 75 — —

14 9 Observational study 3 1/2 71.3 ± 15.0 3;10;11 6.7 ± 4.0 — — 31.0* 55.0* 100 0.0 33.3

15 82 Observational study 3 2/1 61.3 ± 21.0 7;14 9.3 ± 1.2 9.0* 0.0* — 87.7 ± 11.0 100 66.7 33.3

16 86 Observational study 14 6/8 58.9 ± 7.3 2;4;9;10;11;12 8.7 ± 6.5 8.9 ± 1.1 10.2 ± 18.9 36.0 ± 0 40 ± 28.9 42.9 7.1 7.1

17 42 Retrospective analysis 5 3/2 53.0 ± 11.4 11 — — — — 75.0 ± 10.0 100.0 20 0.0

18 24 Case report 2 0/2 51.5 ± 12.0 5;12 15.0* 7.5 ± 0.7 2.5 ± 0.7 44.5 ± 46.0 66.0 ± 12.7 100.0 50.0% 0.0

19 40 Retrospective analysis 2 0/2 61.0 ± 4.2 2 7.0 ± 1.4 8.5 ± 0.7 6.5 ± 3.5 182.0 ± 110.3 25.0 ± 35.4 50.0 0.0 0.0

20 45 Observational study 10 3/7 51.2 ± 8.6 10;11;13 6.3 ± 3.9 — — — 0.0* 0.0 0.0

21 76 Observational study 2 1/1 47.5 ± 6.4 7;11 3.9 ± 4.4 10.0 ± 0.0 3.0 ± 1.4 — 70.0 ± 14.1 100.0 — —

22 85 Retrospective analysis 2 1/1 70.5 ± 12.0 14 6.9 ± 0.1 9.0 ± 0.0 8.5 ± 0.7 25.0 ± 4.2 6.25 ± 8.8 100.0 — —

23 80 Case report 1 0/1 54.0 13 14.0 10.0 7.0 5.0 30.0 100.0 0.0 0.0

Table 2. Characteristics from patients suffering from trigeminal neuropathic pain derived from the available 
eligible publications (non-imputed data). 1 = Anesthesia dolorosa; 2 = Atypical facial pain; 3 = Brainstem 
lesion; 4 = Dental avulsion pain; 5 = Glossopharyngeal neuralgia; 6 = Neurofibromatosis type 1; 7 = Post-
herpetic neuropathic pain; 8 = Post-neurosurgical pain; 9 = Post-surgical pain; 10 = Post-traumatic pain; 
11 = Symptomatic trigeminal neuralgia; 12 = Trigeminal neuralgia; 13 = Trigeminal neuropathic pain; 14 = 
Trigeminal deafferentation pain; *= limited subjects in subanalysis due to missing information; VAS = Visual 
analogue scale; − = Missing.
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With regard to the effectiveness of iMCS, the neuromodulation society is divided into believers and 
non-believers49. The present study shows that in 68.9% of the cases, a clinically significant pain reduction was 
achieved. A narrative review reported that of the 100 reviewed patients suffering from CNOP, 84 experienced 
good pain control by iMCS48. These authors also acknowledged that CNOP can be caused by a large variety 
of disorders via different pathophysiological pathways, although they did not discuss the possible confounding 
effects of this variety48.

Other confounding factors, next to the variety of diagnoses, have been investigated as well. For example, an 
intact corticospinal tract has been considered mandatory for adequate analgesia14, whereas others found that 
neither age, sex, preoperative motor status, pain characteristics, etiology of pain, quantitative sensory testing or 
neurophysiological monitoring were of significant influence. Only the pain intensity scores in the first months 
of follow-up seemed to be of significant influence. The influence of the duration of pain before surgery and the 
outcome of iMCS was found significant in one study, whereas other studies did not find this to be significant13,21,87. 
Also, the use of several transcranial magnetic stimulation (TMS) protocols has been demonstrated to be predic-
tive of iMCS outcome13,88–90. For example, the study of André-Obadia showed in 2006 that high-frequency rTMS 
may become useful to select candidates for iMCS. Nevertheless, all papers discuss that placebo effects are poten-
tially powerful and should be controlled for, if possible. A previous paper of our group also investigated outcome 
prediction factors involved in iMCS outcome. These factors included the sex of the patient, the origin of the lesion 
within the somatosensory nervous system, the preoperative VAS score, the preoperative use of rTMS, the preop-
erative intake of opioids and the duration of the follow-up period50.However, with the exception of the possible 
effect of the localization of the lesion, these factors were not reproduced in the present research.

Figure 2. Forest-plot of pain relief (%) per study, the overall pain-relief (%) and heterogeneity as assessed by I2. 
Note: the study of Meyerson, Lindblom et al. 1993 could not be included in the forest-plot as this paper does not 
provide mean pain relief (%) data.

Causes of orofacial pain

Anatomical-
functional 
classification

Number 
of patients 
described

Number of 
patients with 
missing data

Percentage 
of all 
patients

Mean pain reduction 
(%)based on the pre- 
and post-operative VAS

Standard 
deviation 
(±SD)

Median pain reduction 
(%)based on the pre- 
and post-operative VAS Range

Anesthesia dolorosa Group 2 11 4 7.9% 73.7% ±28.6% 80.0% 20–100%

Atypical facial pain Group 4 4 0 2.9% 23.8% ±27.5% 22.5% 0–50%

Brainstem lesions Group 3 9 3 6.4% 62.8% ±28.0% 65.0% 15–100%

Dental avulsion pain Group 2 8 3 5.7% 34.4% ±23.7% 39.0% 11–69%

Neuro-fibromatosis type 1 Group 2 1 1 0.7% 5.0% N/A 5.0% N/A

Post-herpetic neuropathic pain Group 2 8 2 5.7% 86.7% ±45.6% 85.0% 70–100%

Post-neurosurgical pain Group 3 4 1 2.9% 63.7% ±45.6% 90.0% 11–90%

Post-surgical pain Group 2 11 3 7.9% 34.5% ±34.0% 22.5% 0–90%

Post-traumatic pain Group 2 6 2 4.2% 53.8% ±36.8% 52.5% 10–100%

Symptomatic trigeminal neuralgia 
(post-stroke, MS-lesions) Group 3 23 8 16.4% 69.3% ±21.7% 70.0% 20–100%

Trigeminal neuralgia Group 1 14 2 10.0% 60.2% ±28.5% 66.5% 0–100%

Trigeminal neuropathic pain Group 2 30 6 21.4% 55.4% ±35.0% 70.50% 0–100%

Trigeminal deafferentation pain Group 2 4 0 2.9% 43.9% ±43.8% 45.8% 0–84%

Idiopathic facial pain Group 4 7 2 5% 45.2% ±18.9% 50.0% 15–67%

Table 3. Overview of diagnoses causing orofacial pain and efficacy of iMCS. Group 1 = Absence of intrinsic 
trigeminal nerve lesion; Group 2 = Trigeminal nerve lesion; Group 3 = Nuclear- and supranuclear lesion; 
Group 4 = Dysfunctional pain syndrome; N/A = Not applicable; VAS = Visual analogue scale.
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Mechanisms of action of iMCS. Every thalamic nucleus is known to receive feedback from the sixth layer 
of the motor cortex91. That these connections and the zona incerta are involved in the regulation of pain, via the 
GABA-ergic pathways, has been shown before92–94. The opioidergic system has also been described to be involved 
in pain relief by iMCS as it is thought to modulate the descending volleys towards the PAG and related nuclei95–99. 
Activation of the striatal dopaminergic system, on the other hand, seems to be involved as well100,101. The release 
of noradrenalin (locus coeruleus)102 and serotonin (the rostroventromedial medulla)103,104 has been described to 
be involved in the analgesic effects of iMCS as well. The role of N-meyhyl-D-aspartate receptors in explaining 
the effects of iMCS has also been reported as important105,106. Finally, mechanisms of the descending volleys in 
the spinal cord have also been described103,104,107. The activation of stellate interneurons in the fourth layer of the 
cerebral cortex is assumed to explain such wide-spread effects of iMCS108–114.

Next to these neuroanatomical substrates, corollary discharges have recently been investigated to explain the 
effect of iMCS. A corollary discharge is a copy of a motor command that is sent to the muscles to produce a move-
ment. This corollary is directed to other brain regions to inform them of the impending movement but does not 
inflict movement on its own115. It has been discussed that sensory feedback comes from the peripheral nerves, the 
visual input, but also from the motor cortex itself. Therefore, a possible mechanism of action of iMCS is thought 
to lie in corollary discharges from the primary motor cortex that counterbalance other feedback deficiencies115. 
Although several clinical trials showed a significant difference in analgesic effects between sham and active stim-
ulation of the primary motor cortex76,116,117, the placebo effect is known to play a role in pain relief118.

Strengths and limitations. One of the strengths of this study concerns its novel attempt to integrate unique 
data sources to investigate an understudied research area. Nevertheless, as the quality of the retrieved literature 
was considered to be moderate/low, the conclusions must be interpreted with caution. The inconsistent use of the 
nomenclature of several diagnoses forms another limitation of this study as it complicates the analysis of groups 
of diagnoses. In addition, the lack of psychometric properties of the VAS scores that were used as an outcome 
measurement in all the included studies forms another limitation of these studies and the present meta-analysis 
as it hampers the direct translation of these results to clinical decision making. For example, the included papers 
often did not report on modifications in quality of life scores before and after iMCS. The absence of a large ran-
domized controlled trial with regard to iMCS CNOP forms an important limitation of this meta-analysis. The 
absence of such well-designed trials indicate a crucial shortage in the scientific literature with regard to iMCS and 
CNOP. Furthermore, part of the scientific literature could not be included in this analysis due to the fact that these 
papers did not meet the strict, predefined inclusion criteria20,41,119,120. It is known that randomized controlled 
trials are well-suited to investigate the influence of the placebo response and to evaluate the true treatment effect 
in an appropriate manner. The relative absence of such well-designed trials indicate a crucial shortage in the 
scientific literature with regard to iMCS and CNOP. Based on other invasive treatment studies, the placebo-effect 
is possibly stronger as compared to studies in which less invasive treatments were carried out. Therefore, it is not 
possible to rule out or determine the placebo-effect in the included studies or the current paper. This limitation 
provokes a risk of bias that precludes the drawing of a sound conclusion. Finally, it is for ethical reasons impossi-
ble to perform a sham operation to provide a control group. Possibly a double blinded on/off-phase trial could be 
a valuable addition with regard to the lack of a control group.

conclusions
The overall analgesic effect of iMCS might be relevant for CNOP patients who do not respond to other treatments. 
The best results of iMCS are achieved in patients with CNOP etiologies affecting the central portion of the trigem-
inal system. No other factors were found to significantly influence the outcome of iMCS in CNOP disorders. 
However, due to the small sample size, the relatively poor quality of the analyzed literature and the inconsistent 
use of diagnoses, this statement needs further exploration in future studies.
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