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Abstract: The development of bone substitute materials (BSMs) intended for load-bearing bone
defects is highly complicated, as biological and mechanical requirements are often contradictory.
In recent years, biological BSMs have been developed which allow for a more efficient integration of
the material with the surrounding osseous environment and, hence, a higher mechanical stability
of the treated defect. However, while these materials are promising, they are still far from ideal.
Consequently, extensive preclinical experimentation is still required. The current review provides
a comprehensive overview of biomechanical considerations relevant for the design of biological
BSMs. Further, the preclinical evaluation of biological BSMs intended for application in highly
loaded skeletal sites is discussed. The selected animal models and implantation site should mimic the
pathophysiology and biomechanical loading patterns of human bone as closely as possible. In general,
sheep are among the most frequently selected animal models for the evaluation of biomaterials
intended for highly loaded skeletal sites. Regarding the anatomical sites, segmental bone defects
created in the limbs and spinal column are suggested as the most suitable. Furthermore, the outcome
measurements used to assess biological BSMs for regeneration of defects in heavily loaded bone
should be relevant and straightforward. The quantitative evaluation of bone defect healing through
ex vivo biomechanical tests is a valuable addition to conventional in vivo tests, as it determines the
functional efficacy of BSM-induced bone healing. Finally, we conclude that further standardization of
preclinical studies is essential for reliable evaluation of biological BSMs in highly loaded skeletal sites.

Keywords: biological bone substitute materials; highly loaded skeletal sites; animal models;
biomechanical evaluation

1. Introduction

Despite the remarkable capacity of bone tissue to regenerate itself after damage, critically
sized, load-bearing bone defects will not heal spontaneously without surgical intervention [1,2].
The appropriate strategy to treat such bone defects remains a clinical challenge and creates an enormous
societal and economic impact [3]. Still, the use of autologous bone grafts is considered the gold standard
to support the healing of large bone defects. Autografts are histocompatible, non-immunogenic
and have the desired osteogenic, osteoconductive and osteoinductive characteristics [4]. However,
autografts are not unlimitedly available, and their harvest often causes donor site morbidity [4,5].
In this context, the development of bone substitute materials (BSM) with a biological performance
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comparable to native bone and the capacity to withstand substantial mechanical loading in situ is
required [6].

Among the necessary experimental routes followed for BSM development, their evaluation in a
living organism (i.e., animal model) constitutes an essential requirement to establish the preclinical
safety and efficacy before human clinical trials can be considered [7]. In vivo animal models allow
the assessment of BSMs as a function of different loading conditions, implantation periods, tissue
qualities (e.g., healthy vs. osteopenic bone) and age [8]. The preclinical translation of BSM for
application in highly loaded skeletal sites has gained considerable interest during the past decades,
as mimicking human non-union or delayed bone healing conditions in animal models is extremely
complex. For example, the necessary type and quantity of cells, growth factors, and mechanical support
required to achieve vascularization and to stimulate bone formation in highly loaded bone remain
to be determined [9]. Moreover, loading patterns vary largely among different animal species and
similarity to human conditions with different implantation sites is very difficult to obtain. Consequently,
investigating the influence of each of these factors relies on using animal models that resemble the
complex interrelations of bone healing under load-bearing conditions as closely as possible.

The current review aims to analyze the load-bearing capacity of bone tissue and to provide a
comprehensive overview of the relevant biological and mechanical considerations for the design of
BSMs. Moreover, the relevant aspects of preclinical animal models for the quantitative evaluation of
biological BSMs intended for application in highly loaded skeletal sites are reviewed.

2. The Adaptive Load-Bearing Capacity of Bone

Bone is composed of nano-sized hydroxyapatite crystals, which are embedded within supercoiled
assemblies of collagen type I chains. From this nanoscopic level up to the macroscopic bone structure,
various levels of highly organized structural hierarchy are discerned. While the basic building blocks of
bone themselves are relatively weak, their hierarchical structural organization and intimate interactions
lead to remarkable mechanical properties [10,11]. Ultimately, this hierarchical organization culminates
in two different types of macroscopic bone structure: (i) cortical bone, which is denser, stiffer, stronger
and tougher; and (ii) cancellous bone, a more porous and mechanically ductile structure. As both
bone types have different physiological functions, their mechanical properties also vary significantly
(Table 1). Moreover, these mechanical properties are constantly adapting to mechanical loading.
Therefore, the reference values observed in Table 1 may change according to the age of the individual
human being, anatomical location and size of each individual bone, as well as the bone mineral density
and the direction of the trabeculae [12].

Table 1. Mechanical properties of human bone.

Parameter
Mechanical Characteristics 1

Cortical Bone Cancellous Bone

Compressive strength (MPa) 70.0–200.0 0.1–30.0
Tensile strength (MPa) 90.0–170.0 10.0–20.0

Flexural strength (MPa) 135.0–193.0 10.0–20.0
Ultimate strain at fracture (%) 1.0–3.0 5.0–7.0

Elastic modulus (GPa) 3.0–30.0 0.1–5.0
Porosity (%) 5.0–30.0 50.0–95.0

1 Values compiled from [11,13–18].

The load-bearing capacity of the skeleton results from an adaptive functional relationship between
the load a bone should sustain and its architecture. Therefore, specific features that determine the
functionality of the bone itself (i.e., girth, cortical thickness, cross-sectional geometry, curvature and the
number, orientation, thickness and connectivity of bone trabeculae) only develop and persist in response
to continued loading [19–22]. Specific examples of such adaptation include the trabecular arrangement
found in the femoral condyle [23] or the longitudinal orientation of trabeculae in vertebrae, which
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further allows for resistance against the predominant compressive loads [24]. This structural adaptation
to load, often referred to as the anisotropic behavior of bone [25], is regulated by mechanotransduction
processes by which mechanical energy is converted into signals that ultimately stimulate the remodeling
of the bone [26–29].

Regarding the types of load that the human skeleton can experience, five different components
are distinguished: (i) compression, (ii) tension, (iii) shear, (iv) torsion and (v) bending [30,31] (Figure 1).
Compressive load is mainly generated by weight and gravity or by external loads applied parallel to
the axis of the bone. Tensile load, on the other hand, is mainly caused by muscular activity. These loads
can be applied simultaneously or sequentially. When applied simultaneously and parallel to each other,
but in opposite directions, shear forces are created, e.g., within the femoral condyle, tibial plateau and
pelvic region upon locomotion. Conversely, the application of loading perpendicular to the longitudinal
axis of a long bone (i.e., in upper or lower limbs) results in bending stresses, in which tensile load causes
convex deformation and compressive loads cause concave deformation [31]. Bending stresses occur,
e.g., in the tibia, upon external rotation (i.e., the propulsive phase of walking or running), but also in
the humerus due to medial-lateral movements of the arms [32].
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3. Biomechanical Considerations for the Design of BSMs

BSMs should ideally completely fill a bone defect and provide biological stimuli and initial
mechanical stability to allow for new bone formation. Subsequently, the BSM should degrade at a
rate that allows for gradual load transfer from the material to the newly formed bone. At a final stage,
when degradation is complete, the BSM should be fully replaced by newly formed bone of appropriate
functionality [7,33,34]. However, a major challenge remains in developing and optimizing BSMs that
are simultaneously load-bearing, biodegradable and osteopromotive.

The majority of BSMs that are currently applied in load-bearing skeletal regions in clinics are
non-degradable. Poly(methyl methacrylate) (PMMA), for instance, is a polymer frequently used in
orthopedics for procedures such as vertebral augmentation. While PMMA-based cements are innately
strong and stiff to support the loads commonly experienced, e.g., in the vertebral column [35,36],
they lack the capacity to degrade and remain therefore unaltered within the implantation site.
In addition, the implantation of PMMA causes a redistribution of load throughout the spine, which in
turn leads to loss of bone density in the vertebrae adjacent to the implantation site. In addition to
non-degradability, the implantation of PMMA causes a mechanical mismatch between the implanted
material and the surrounding bone (i.e., PMMA is much stronger and stiffer than native bone) that
invariably leads to subsequent fractures in neighboring bone due to this stress shielding phenomenon.
Consequently, long-term follow-up studies [36–38] confirmed that vertebrae adjacent to PMMA-filled
bone fracture more frequently. Various opinions have been expressed on the importance of a mechanical
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(mis)match between BSMs and bone tissue. While some authors argue that the strength of the BSMs
should be higher than the bone it replaces [39], clinical experience related to PMMA-based cements
seems to suggest otherwise. To address this issue, the American Society of Biomechanics (ASB) has
clearly highlighted the relevance of measuring in vivo loads and strains applied to bone as a basis for
engineering BSMs with load-bearing capacity after implantation. Nevertheless, no consensus has yet
been reached on this topic. While some authors state that BSM mechanical properties should match
the mechanical properties of the defected region as much as possible [40–42], other studies postulate
that the mechanical properties of the material should only be sufficient to allow for its handling during
surgery without causing collapse and dislocation during normal activities [43].

Structurally, the optimal balance between biology and mechanics in BSMs is very hard to
achieve. The presence of pores in BSMs, as well as their size, is essential to promote the ingrowth of
native bone [34]. However, introducing an interconnected structure of pores within a BSM severely
compromises its mechanical performance. For example, the literature demonstrates that porosity
levels in the range of 80–91% result in low compressive strength (1–12 MPa) and low Young’s modulus
(up to 25 MPa) values [44–46]. When lowering the porosity level to 70%, compressive strength can
be increased to values up to 80 MPa [47,48]. In general, highly porous BSMs typically demonstrate
low resistance to compressive and tensile stresses as well as a low stiffness. Additionally, the size of
the pores is also of importance, as it is claimed that BSMs should possess pores of at least 100 µm,
as smaller pore sizes (i.e., 75–100 µm) only allow for ingrowth of unmineralized osteoid tissue or
fibrous tissue [49]. Subsequent studies have shown that pore sizes larger than 300 µm display enhanced
osteogenesis, since they allow for more efficient vascularization and oxygenation of newly formed
bone [50,51]. Unfortunately, the strength of a BSM typically decreases with increasing pore size [52,53].

Biological BSMs

Over the recent years, hybrid biological BSMs have become commercially available. These consist
of an osteoconductive component combined with additional compounds to enhance their biological
performance [34]. Biological enhancements include the addition of cells, growth factors, and/or gene
therapy. The performance of a BSM is the result of concerted biological (i.e., integration, incorporation
and bioresorption) and biomechanical interactions. Improvement of the biological properties of a
BSM directly translates into a more efficient integration of the material with the surrounding osseous
environment, and hence a higher mechanical stability of the treated bone defect. Hybrid biological
BSMs can also be combined with mechanical enhancements to further improve (either chemically
and/or physically) their stability when subjected to load.

The biological improvement of BSMs has been widely explored, as evidenced by the large number
of reviews that have appeared in recent years [54–60]. The addition of cells to BSMs is generally
performed by seeding the material with the patient’s own (osteogenic stem) cells (e.g., obtained via
bone marrow aspiration) [61–66] prior to or during surgical bone defect repair [67]. In addition to
cell-based bone regeneration strategies, growth factors such as bone morphogenic proteins (e.g., BMP-2
and BMP-7) [63,68–71], transforming growth factor beta (TGF-β) [72], insulin-like growth factor
(IGF-1), platelet-derived growth factor (PDGF) [73], or vascular endothelial growth factor (VEGF),
have also been proposed. Some growth factors provide osteoinductivity, which enhances bone
regeneration [56]. However, recombinant DNA technology to produce growth factors is expensive,
cumbersome, and should be used with caution as the resulting growth factors are not fully similar to
native equivalents, which may have a significant prospect of abnormal bone growth and even tumor
formation [60,74]. For example, an FDA (Food and Drug Administration)-approved hybrid BSM
consisting of a collagen sponge loaded with BMP-2 (INFUSE Bone Graft, Medtronic, Minneapolis, MN,
USA) was developed in the early 2000s for spinal fusion. While the supraphysiologic therapeutic dose
of rhBMP-2 causes this BSM to efficiently induce rapidly growing, mechanically stable new bone in the
defect area, severe complications were reported, including uncontrolled bone formation, BMP antibody
formation, bone resorption, urethra-genital complications and malignancies [75,76]. Alternatives to
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INFUSE Bone Graft have also been extensively researched [77]; however, the previously mentioned
complications have severely hampered further R&D and clinical translation of novel carriers for BMP-2
delivery. Instead, gene therapy has been suggested to deliver genetic DNA fragments encoding growth
factors by viral or non-viral methods from BSMs [58,78,79]. While the principle of using gene therapy
via BSMs is similar to that of using growth factors, the main advantage of the former technique is that
local cells are stimulated to produce the protein of interest in the native configuration, including its
physiological glycosylation and in appropriate quantities [80].

Mechanical reinforcement of biological BSMs can be achieved by either fine-tuning physical
characteristics, such as improving the morphology and/or design of the BSM (i.e., the external
and/or internal architecture) [81], or by adding a reinforcing agent. This latter approach generally
uses polymeric fibers added to a ceramic matrix in order to improve its flexural strength and
toughness [82–84]. Alternatively, nano-ceramic components can be added to a polymeric matrix in
order to improve its resistance to compressive loads [85,86]. Chemical alterations, such as crosslinking
of polymeric structures, have also proven to successfully improve the mechanical properties of these
BSMs [87,88].

4. Animal Models for Critical Load-Bearing Bone Defects

A wide variety of animals has been used during the past decades for the preclinical evaluation
of highly loaded bone defects, ranging from small animals such as mice, rats and rabbits, to large
animals, namely sheep, dogs, pigs and cows [89–91]. In general, we argue that the selection of an
animal model for preclinically evaluating BSMs should follow the key principles explained in the
sections below [7,92,93] (Figure 2):

1. Selection of the animal species: the selected animal species should resemble the human
physiological and pathophysiological response as closely as possible;

2. Selection of implantation site: the selected implantation site should match the clinical setting
both anatomically, biomechanically and surgically;

3. Accessory treatment conditions: the need for additional treatment conditions such as fixation
devices should be carefully analyzed and mimic the real clinical intervention as much as possible;

4. Implantation period: the implantation period should be clinically relevant;
5. Outcome measurements: the experimental design should include concrete outcome

measurement evaluations.

4.1. Selection of the Animal Species

Animal species are selected based on both general factors as well as more specific aspects. General
factors include the cost of the purchase and maintenance of animals (i.e., housing, food and bedding),
animal tolerance to captivity and ease of handling, and finally the social/ethical acceptance of using the
animal experimentally [91,94]. In general, large animals are associated with more challenges regarding
these general aspects than small animals. Pigs, for example, are difficult to handle and house, as they
show aggressive behavior as a natural response to stress, and have, due to their size, very specific
housing needs [95]. Dogs, on the other hand, are relatively easy to maintain and house, which has,
in fact, led to their frequent use for musculoskeletal research until the 2000s. However, the use of dogs
has markedly decreased, mainly due to ethical, emotional and legal reasons [96,97].

Specific aspects related to the selection of animal species, on the other hand, include anatomical
and/or skeletal similarity, osseous macro- and microstructure, bone turnover and weight/loading
patterns. In this sense, skeletally mature animals of large size and weight (e.g., pigs, dogs, sheep or goats)
generally mimic the human physiological condition better than small animals [90,92,98]. Nonetheless,
the use of small animals (i.e., rats or rabbits) is acceptable for the preliminary biomechanical assessment
and initial validation of load-bearing models but should be followed by more clinically relevant animal
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models [92,99]. Detailed comparisons between pig, dog, sheep and goat models have been extensively
described in the literature [92,94,98,100].
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4.1.1. Anatomic Analogy and Bone Macro- and Microstructure

Pigs are often regarded as the most suitable animal model for biological evaluation of bone
healing and bone remodeling, as their remodeling capacity and bone turnover is nearly identical to
humans [101]. In addition, their bone morphology, anatomy and structure resemble human bone
closely, even though the trabecular network is slightly denser [102]. Special care should be taken when
selecting the breed of pigs, as the vast majority of pig breeds often have excessive body weight and
tend to have very high levels of bone density, and hence decreased structural similarity to human bone.
Consequently, load-bearing BSM research has also been conducted in mini- and micro-pigs [103,104],
as these animals are still very similar to the human condition but weigh less than common pigs [95].

Dogs and humans are qualitatively similar in terms of composition and bone mechanical
properties [89,105]. Nevertheless, dog and human bones are slightly different regarding bone
microstructure and remodeling, as dogs possess a combination of secondary bone structure with
plexiform bone. This type of bone is commonly found in fast-growing animals and is characterized by
a special bone architecture that provides bone stiffness and strength within a relatively short period of
time, while allowing for slow deposition of mature bone.

Sheep and goats in their mature state possess a body morphology (i.e., weight and size) and
the specific dimensions of long bones very similar to adult humans. Microstructurally, both sheep
and goats possess plexiform bone combined with primary bone. At an early stage of development,
bone density in sheep is generally highly similar to humans [106]. As these animals age, remodeled
secondary osteonal bone becomes more prevalent and the density increases to levels higher than in
humans. Subsequently, skeletally mature sheep possess a higher bone strength than human bones [106].
Generally, bone mineral composition [107], as well as the bone turnover and remodeling capacity [96]
of both sheep and goats are comparable to humans.

4.1.2. Weight/Loading Patterns

Load distribution patterns should be considered in the process of animal selection, as animals
experiencing similar mechanical stresses in homologous anatomical locations to humans are more



Biomolecules 2020, 10, 883 7 of 24

likely to resemble the loading conditions experienced in humans. The distribution of loads is mainly
influenced by the body weight in combination with the type of gait. Body weight influences the extent
of biomechanical loading [108], and consequently goats or sheep, which have body weights comparable
to humans, are often selected in studies testing the biomechanical performance of bone substitutes.
Regarding the type of gait, dogs, goats, sheep or pigs exhibit a quadruped gait, i.e., use four limbs
for locomotion, in contrast with humans that have a bipedal gait and use two limbs. Consequently,
the load in a quadruped is distributed in a different way than in humans. Taylor et al. [109] compared
the quadruped nature of sheep with the bipedal gait of humans and concluded that the loading of the
hind limb bones of sheep is roughly half of the load observed for humans upon walking.

Through the implantation of in vivo strain gauge devices, mechanical straining can be assessed
locally. Since strain gauges measure bone deformation, these devices allow for the detection of
compressive and tensile stresses. In vivo strain measurements performed at different anatomical
locations of humans and animals during walking are presented in Figure 3. Figure 3A shows that at
homologous anatomical locations, such as the femur or the tibia, compressive and tensile strains vary
to a large extent, both between humans and animals and within different animal species. In addition,
Figure 3B demonstrates the load variation between the front limbs and the back limbs of a sheep.
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Figure 3. (A) Strain values obtained by implanting a strain gauge at different anatomical locations in
different animals as compared to humans during walking. (B) In vivo strain measurements obtained
by strain gauges at different locations on the radius and the femur of a sheep walking at a speed of
1 m/s. The strain gauge detected compression stresses dominating in the cranial aspect of the radius,
as well as the caudal aspect of the femur. In contrast, the caudal aspect of the radius and the medial
and lateral aspects of the femur were subjected to both compressive and tensile stress (the data used for
this figure were compiled from [19,21,110–116]).
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4.2. Selection of Implantation Site

Limb bones. Segmental bone defects. Clinically, segmental bone defects have a non-union rate as
high as 21% [117] and originate from trauma or resection of necrotic and/or infected bone. In humans,
the most commonly used anatomic region affected by segmental bone defects is the tibial shaft [98].
Critically sized segmental defects may include an entire segment of bone (Figure 4A) or just the cortical
component (Figure 4B). Limb bones are highly loaded, not only due to weight support (i.e., in the
case of lower limbs), but also because these structures are constantly subjected to tensile stresses that
originate from the action of muscles, tendons or ligaments.
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Preclinical animal model studies focusing on the assessment of biological BSMs in critical-sized
segmental bone defects have been performed by means of entire or partial segmental bone defect models,
using the ulna, tibia, radius and femur of mini-pigs, dogs, goat and sheep (Table 2). Ovine models are
among the most often selected animals. To this end, the tibia is the major weight-bearing bone of lower
leg [98] and, therefore, the most commonly used anatomical site [100].
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Table 2. Selection of preclinical segmental bone defect studies for development of biological BSMs.

Animal
Bone

Segmental Bone Defect
BSM Fixation Method

Time-Points
(Weeks)

Outcome
Measurements

Ref.
Type Species Weight

(Kgs) Type Dimensions
(cm)

Method of
Production

Pig

Yucatán mini-pigs
(Sus scrofa) 37.0 ± 3.6 Tibia

Partial
segmental
defect

1 Oscillating
bone saw

Collagen scaffold/
microbubble-enhanced
BMP6 plasmid

Internal fixation
(custom-made six-hole
LC-DCP plates)

1, 2 and 3

Protein expression
analysis, µCT scan,
histology and
histomorphometry and
ex-vivo mechanical test
(i.e., torsional)

[79]

Mini-pigs (Sus scrofa
domesticus) N.I. Femur

Total osseous
mid-diaphyseal
defect

1.5 Oscillating
bone saw

Nanocomposite scaffold
HaP/collagen/BMSCs

Internal fixation
(LC-DCP plates
(4.5 mm-thick) fixed
with four cortical
titanium locking screws
(diameter: 4.5 mm)

16
Plain X-ray, µCT scan,
histology and
histomorphometry

[64]

Dog

Mongrel dogs (Canis
lupus familiaris) 30.3 ± 8.6 Radius

Total
osteoperiosteal
middiaphyseal
defect

2.5 Oscillating
bone saw

rhBMP2/collagen
sponge carrier External fixation 24

Plain X-ray, histology
and histomorphometry
and ex-vivo mechanical
test (i.e., torsional)

[68]

Mongrel dogs (Canis
lupus familiaris) 4.5 ± 0.5 Femur

Total
osteoperiosteal
middiaphyseal
defect

1.1 Oscillating
bone saw

PCL bread scaffolds,
PCL bead scaffold/BMP2

2.0 mm Intramedullary
pin and 2.7 mm
universal locking plate

4, 8 and 24

Plain X-ray, serum
chemistry, histology and
histomorphometry and
RT-qPCR

[69]

Goat N.I. 19.6 ± 3.4 Femur

Total
osteoperiosteal
mid-diaphyseal
cortical defect

2.5 Oscillating
bone saw Coral cylinder/BMSCs Internal fixation rod and

interlocking nails 16 and 32

Plain X-ray, histology
and histomorphometry
and ex-vivo mechanical
test (i.e., three-point
bending)

[66]

Sheep

North-Holland and
black-faced sheep
(Ovis aries)

54.2 ± 7.6 Tibia

Total osseous
total
mid-diaphyseal
defect

3 Oscillating
bone saw

Granular porous
HaP/rhOP-1, Granular
porous HaP/autologous
bone marrow aspirate

Intramedullary nail 12

Plain X-ray, histology
and histomorphometry
and ex-vivo mechanical
test (i.e., torsional)

[118]

German blackheaded
mutton sheep
(Ovis aries)

68.1 ± 8.4 Metatarsus
Total osseous
mid-diaphyseal
defect

2 Oscillating
bone saw

Titanium (Ti6Al4V)
implants/collagen/β-TCP

Internal fixation (LCP
3.5 mm-thick, stainless
steel, 8-holes)

12 and 24

Plain X-ray, µCT scan,
BMD and ex-vivo
mechanical test
(i.e., torsional)

[119]

N.I.: Not Indicated; LC-DCP: Dynamic compression plates with limited bone contact; µCT: Micro-computed tomography; DEX: Dual-energy X-ray absorptiometry; HaP: Hydroyiapatite;
BMSCs: Bone marrow stromal cells; BMP: Bone Morphogenic Protein; TCP: Tricalcium phosphate; RT-qPCR: Quantitative reverse transcription polymerase chain reaction; rhOP-1:
Recombinant human osteogenic protein-1; LCP: Locking compression plate.
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Critical-sized segmental defects are generally defined by considering the diameter of the shaft
multiplied by factor 2.0–2.5 [120,121], although some studies report the use of defects three times
larger than the diameter of the bone [120]. The creation of such defects is usually performed by an
oscillating saw, although the use of Gigli wire saws [122], motorized dental drills [123] and CO2

lasers [124] has also been reported. While creating the defect, special care should be taken in removing
the periosteum, as its presence can potentially affect the critical nature of the defect and facilitate
spontaneous healing [98,120]. Finally, the creation of a segmental bone defect in a limb bone weakens
the entire structure severely and the placement of a biological BSM alone might not be sufficient to
ensure mechanical stability for bone regeneration. Like the clinical situation, segmental bone defects
often require the use of fixation devices. For segmental defects that include a full segment of bone,
these devices will reduce movement between the bone extremities. In the case of defects that only
include the cortical bone, fixation devices will act as a cantilever by counteracting bending stresses.
The types and applications of specific fixation devices will be further discussed in Section 4.3.

Spine. Vertebral models. The spine of both humans and animals is a heavily loaded skeletal
structure composed of a series of freely hinged vertebrae to which axial compressive load originating
from weight support and gravity is counterbalanced by tensile loads originating from muscles and
ligaments [125]. In clinics, two surgical procedures are often performed for bone regeneration in the
spinal region: vertebral augmentation (Figure 5A) and spinal fusion (Figure 5B). Vertebral augmentation
aims to treat vertebral compression fractures (VCFs) by reinforcing and stabilizing fractured vertebral
bodies using PMMA-based cement through a minimally invasive percutaneous injection [126,127].
However, as the use of PMMA is associated with several drawbacks, extensive preclinical research has
been performed to simulate vertebral augmentation procedures and test new, alternative vertebral
cements (Table 3). Spinal fusion procedures, on the other hand, are clinically performed in the cervical,
lumbar and/or thoracic spine. This technique aims to fuse two or more vertebrae together in order to
treat medical conditions that arise from degenerative, traumatic and oncologic pathologies. However,
pseudarthrosis or failed fusion rates are reported to be as high as 40% in primary spinal fusion surgery
and up to 60% in revision cases [128], which leads to the need for the improvement of new spinal
fusion materials and their evaluation through preclinical models (Table 4).
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Table 3. Selection of preclinical vertebral augmentation studies for biological BSM development.

Animal Vertebral Defect

BSM
Time-Points

(Weeks)
Outcome

Measurements
Ref.

Type Species
Osteoporotic/
Osteopenic
Condition

Average
Weight (kg)

Selected
Vertebral
Segments

Defect Size
(Diameter × Depth) Surgical Technique

Pig Piétrain (Sus
scrofa domesticus) No N.I. L3 10 × N.I. mm N.I.

TCP, TCP/rhBMP7,
TCP/autologous
bone marrow
aspirate

4
Plain X-ray, ex-vivo
mechanical test
(i.e., compression)

[70]

Goat
Domestic goat
(Capra aegagrus
hircus)

Yes 17.0 ± 1.5 L2 and L4 5 × 10 mm
Lateral
retro-peritoneal
exposure of spine

rhBMP2/GM/CPC,
rhBMP2/CPC 6 and 16

µCT scan, DEX,
histology and
histomorphometry,
ex-vivo mechanical test
(i.e., push-out/
compression)

[71]

Sheep

Merino sheep
(Ovis aries) Yes 90.9 ± 10.7 L1, L4, L5 5.0 × 14.0 mm

Fluoroscopy-guided
minimally invasive
ventrolateral
approach

CPC/PLGA fibers,
CPC/PLGA
fibers/BMP2

12 and 36

Plain X-ray, µCT scan,
DXA, histology and
histomorphometry,
mechanical testing
(i.e., compression)

[83,84]

Swiss alpine
sheep (Ovis aries) No 72.6 ± 16.4 C3–C5 2.8 × N.I. mm

Fluoroscopy-guided
minimally invasive
ventral approach

Fs/SrCo3,
Fs/SrCo3/PTH. 16

Plain X-ray, µCT scan,
histology and
histomorphometry

[129]

N.I.: Not Indicated; PPF: Poly(propylene fumarate); TCP: Tricalcium phosphate; HaP: Hydroxiapatite; TtCP: Tetracalcium phosphate; DCP: Dicalcium phosphate; µCT: Micro-computed
tomography; CaP: Calcium Phosphate; GM: Gelatin microparticles; DEX: Dual-energy X-ray absorptiometry; rt-PCR: Reverse transcription polymerase chain reaction; Fs: Fibrin scaffold;
SrCO3: Strontium Carbonate; PTH: Human parathyroid hormone.
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Table 4. Selection of preclinical spinal fusion studies for biological BSM development.

Animal Spinal Fusion
BSM Fixation

Method
Time-Points

(Weeks)
Outcome

Measurements
Ref.

Type Species Average
Weight (kg)

Vertebral
Segment

Method of Vertebrae
Dislocation

Surgical
Approach

Dog

Beagle (Canis
lupus familiaris) 14.5 ± 0.5 L1/L2 and

L4/L5

Vertebrae were
decorticated by high
speed burr

Posterolateral
approach

BCP, BCP/rhBMP2 and
BCP/AB204 N.U. 8

Plain X-ray, µCT scan,
manual palpation,
histology and
histomorphometry

[130]

Beagle (Canis
lupus familiaris) 10.5 ± 1.5 T9/T10

No dislocation, only
curetting of the anterior
longitudinal ligament
and intervertebral disc

Anterolateral
approach RhBMP2/PLA-PEG N.U. 4, 8 and 12

months

Plain X-ray, µCT scan,
manual palpation,
histology and
histomorphometry

[131]

Goat N.I. N.I. C3/C4 Anterior discectomy
Right
anterolateral
approach

Hat shaped titanium
cervical intervertebral
fusion cage coated with
HaP, IGF-I and TGF-β1

N.U. 1, 2, 4, 8, 12

Plain X-ray, ex-vivo
mechanical test
(i.e., compression and
bending), histology and
histomorphometry

[132]

Sheep
Texas/Gotland
breed sheep
(Ovis aries)

715 ± 15.5 L2/L3 and
L4/L5

Vertebrae were
decorticated by high
speed burr

Posterior
approach

i-Factor™ Flex
(ABM+P-15) N.U. 18 µCT scan, histology and

histomorphometry [78]

BCP: Biphasic calcium phosphate; AB204: Activin A/BMP2 chimera; N.U.: Non-utilized; HaP: Hydroxiapatite; IGF-I: Insulin-like growth factor 1; TGF: Transforming growth factor;
ABM+P-15: Anorganic bovine-derived hydroxyapatite matrix + synthetic 15 amino acid sequence.
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Several studies have shown striking similarities between the spine of humans and quadrupeds,
not only in the osseous structural arrangement (suggesting that quadruped and biped spines experience
similar loads), but also in mechanical properties of specific spinal segments [133,134]. Nonetheless,
it should be mentioned that the axial compression stress experienced in quadrupeds is higher than in
humans, which limits the transferability of the results of animal experiments to the human situation [125].
In addition, the shape of the vertebral bodies of virtually all domestic animals is quite different to those
of humans [135].

Mini-pigs, dogs and goats have been used as preclinical models in vertebral augmentation,
but the used protocols vary considerably, as well as the selected surgical approach and vertebral
defect characteristics. Recent trends demonstrate that (i) sheep are the animal species of choice for
preclinical vertebral augmentations, and (ii) these procedures are mainly performed through minimally
invasive, standardized techniques [35,84,127]. However, in sheep, the surgical access of the vertebrae
is often complicated by the large muscle mass in the lumbar area, the size of the transverse processes,
the different orientation of the facet joints and mainly the slim and hour-glass shaped vertebral bodies
(i.e., slightly different from humans) [135]. For this reason, preclinical vertebral augmentations should
be performed under fluoroscopic guidance.

The basic requirements for preclinical studies mimicking spinal fusion procedures depend on the
selection of animal species with parallel and sufficiently large vertebral endplates [136]. Canine models
have been often utilized for mimicking lumbar fusion experiments [130], although some authors also
considered this model for cervical and thoracic fusions [131]. Conversely, goat models are only used to
study cervical fusions [132]. Finally, in sheep, the lumbar spine is frequently studied [78], whereas
the thoracic spine and cervical spine are less often studied. Pigs are more often selected to study
spinal fusion techniques (i.e., operative procedure, fixation placement, etc.) rather than preclinical
experimentation of new biological BSMs for spinal fusion applications.

4.3. Acessory Treatment Conditions

Fixation devices. Due to the heavily loaded nature of many critically sized skeletal defects,
fixations devices are often required in experimental animal studies. Fixation techniques are generally
performed externally or internally and have been extensively reviewed in the literature [98,137,138].

External fixation is a versatile method, often reported for segmental bone defects, in which
pins are placed widely separated within bone fragments. These pins are screwed into the bone and
subsequently connected by a rod outside the body. Since the stabilizing devices are located outside
the body, this technique provides an open space for the implantation of the selected biological BSM.
On the other hand, due to the creation of a percutaneous exit-site, infections of the pin track can occur.
In addition, the pins can loosen during the healing process, resulting in an unstable defect site [139].
Also, internal fixation devices, such as intramedullary nails and plate fixators, have been used to
stabilize and join segmental bone defects. Intramedullary nails consist of a metal rod inserted into
the medullar cavity of the bone. Since the intramedullary nail is placed in the center of the bone, it is
able to tolerate the applied stresses due to weight in a parallel direction, thereby ensuring mechanical
stabilization and avoiding axial deviation of the components of the fixation device. Intramedullary
nails should nonetheless be used with caution, as they have been associated with the impairment of
blood circulation and thermal necrosis [140]. In addition, the size of the nail might severely limit the
space available to apply the biological BSM.

Plate fixators are extensively utilized, both for segmental bone defects and spinal procedures.
In this technique, the selected plates, which might be metallic or polymeric in nature, are tightly
screwed to the edges of the defect and remain attached to the bone surface for a determined period of
time. In segmental bone defects, plate fixation has a minimal influence on the defect and provides
space for the implantation of biological BSMs. However, since the plates carry the load in an eccentric
manner, this fixation method is prone to axial deviations, causing either failure of the BSM or healing
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in an erroneous direction [141,142]. In the spine, these fixation devices are only utilized in the case of
pronounced vertebrae mobility to ensure an accurate fusion between vertebrae.

4.4. Implantation Period

To determine if a biological BSM succeeds to regenerate bone under the influence of physiological
loading, the implantation period should be sufficiently long to allow for both bone formation and
remodeling. Since each animal species requires a different period of time for bone regeneration,
the implantation period depends on the selected animal. Another important aspect is the age
of the animal and the presence/absence of an artificially induced osseous pathological condition
(i.e., osteoporosis), as both these factors influence bone healing. ASTM standards [121], for example,
recommend implantation intervals longer than 12 weeks for skeletally mature (i.e., >15 months old),
healthy ovine models. Dogs display faster bone remodeling rates than sheep and require therefore
shorter implantation periods. Pigs, which have a bone formation process comparable to humans,
require 6 months to 1 year to achieve complete healing of a critically sized defect.

In general, however, the majority of the available studies rely on follow-up periods that do not
exceed six months, which has previously been considered too short to evaluate long-term effects of
BSMs on bone regeneration and remodeling as well as BSM degradation [98]. Nevertheless, it should be
emphasized that the selected implantation period is often compromised by practical aspects regarding
costs and ethical concerns. Consequently, researchers tend to select the shortest implantation period as
possible to answer the specific research question under investigation.

4.5. Outcome Measurements

In general, the repair of large, load-bearing bone defects is analyzed in vivo by various outcome
measurements, all of which focus on the characterization of the former defected region in terms of bone
formation and functionality relative to the pre-defect condition. To this end, several techniques have
been employed, both during and after animal experiments to allow for the monitoring of bone healing
and regeneration [143–145]. Monitoring healing progression in vivo can be performed using fracture
stiffness measurements via, e.g., goniometers or transducer fixators [143]. Further, radiographic
and computed tomography (CT) or cone beam CT (CBCT) have been applied for measuring bone
volume and mineralized tissue formation and density [142,145]. In addition, histological techniques
are commonly employed to evaluate: (a) mineralized tissue formation, (b) integration with the host,
(c) cellular components such as marrow and vasculature, and (d) the host inflammatory response to
the BSM. Together, these techniques can provide a comprehensive assessment of the regenerated bone
and its effectiveness in mitigating bone loss [100]. Nonetheless, the functional capability and structural
integrity of both the newly formed and surrounding bone cannot be assessed solely through the
previously mentioned techniques [144], for which ex-vivo mechanical testing of the freshly explanted
bone samples is essential and arguably the most important outcome measurement [92,98].

Ex-vivo mechanical tests rely on the comparison between the mechanical properties of an intact
bone structure (i.e., control) vs. an explanted experimental bone structure. Four classical biomechanical
tests are commonly used for the assessment of these biomechanical properties, i.e., tension, compression,
bending and torsion tests. Bending and torsion combine both compression and tension and allow
for a more complete assessment of the mechanical properties of the evaluated bone [52]. Table 5
lists the biomechanical tests that are reported in literature as well as their respective advantages
and disadvantages.
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Table 5. Types of ex-vivo mechanical tests for the evaluation of the biomechanical properties of explanted bone specimens.

Mechanical Test Schematic Representation Advantages Disadvantages Observations

Tensile test
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Can be performed in a 3- or
4-point bending set-up.

Both components of load are
applied—tensile stresses are
present on one side of the specimen
and compressive stresses on the
opposite side.

1. Highly influenced by the size and
shape of the specimen—defects
throughout the specimen may lead to
non-accurate results;
2. A 3-point bending produces
several transverse shear stresses in
the middle of the specimen while
4-point bending model applies
almost pure bending stresses.

1. Since bone is weaker in
tension than compression,
failure usually occurs on the
tensile side of the bone;
2. Positioning of the specimen
should be very precise, since
each loading point has to be
equal to obtain accurate results.

Torsion test
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midsection of the specimen. 
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test 

 

Specimen is usually a 
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2. Fabrication of the specimens is 
easier than for tensile tests. 

1. The presence of “end effects”1 often 
leads to errors; 
2. Strain is very difficult to measure; 
3. Only one component of load is 
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mechanical properties. 

Reducing the size of the specimen 
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and compressive stresses on the 
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of the specimen—defects throughout the 
specimen may lead to non-accurate results; 
2. A 3-point bending produces several 
transverse shear stresses in the middle of 
the specimen while 4-point bending model 
applies almost pure bending stresses. 

1. Since bone is weaker in tension 
than compression, failure usually 
occurs on the tensile side of the bone; 
2. Positioning of the specimen should 
be very precise, since each loading 
point has to be equal to obtain 
accurate results. 

Torsion test 

 

Specimen has a reduced 
central portion to ensure 
that the failure occurs in 
the middle part. 

1. Measures the biomechanical 
properties of bone under shear 
stress; 
2. When the specimen is twisted, 
shear stresses vary from zero at the 
center of the specimen to the 
maximum value at the surface; 
3. Both compression and tension 
are present. 

1. Requires the specimen to be machined; 
2. Practical issues may occur (i.e., clamping 
the sample to the testing device). 

Testing strongly influenced by the 
shape of the specimen. 

1  “End effects” are measurement errors that originate from the damage incurred at the end surfaces of machined specimens. 
 

Specimen has a reduced central
portion to ensure that the failure
occurs in the middle part.

1. Measures the biomechanical
properties of bone under
shear stress;
2. When the specimen is twisted,
shear stresses vary from zero at the
center of the specimen to the
maximum value at the surface;
3. Both compression and tension
are present.

1. Requires the specimen to
be machined;
2. Practical issues may occur
(i.e., clamping the sample to the
testing device).

Testing strongly influenced by
the shape of the specimen.

1 “End effects” are measurement errors that originate from the damage incurred at the end surfaces of machined specimens.
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Ex-vivo mechanical tests may be performed on either entire bones or partial bone segments
containing the implanted BSM. Entire bones are usually tested without further processing, whereas
partial bone segments are machined into a specific shape to comply with the requirements of specific type
of mechanical test. This methodology results in specimens with identical dimensions, which decreases
the possible experimental errors that may arise from shape discrepancy between samples. However,
it should be recognized that machining a specimen harvested from an animal might alter the properties
of the bone, Therefore, when machining these specimens, special care should be taken to minimize
damage to the specimen by, e.g., constant cooling during cutting and/or machining in s frozen state.
Additionally, ex-vivo mechanical tests should be performed as soon as possible after explantation to
avoid excessive drying of the specimens. Immediately after harvesting, bone specimens should be
stored in ice. It has been demonstrated that bone specimens kept at room temperature for 24 h lost
3% of their Young’s modulus [146]. If long-term storage cannot be avoided, bone tissue should be
frozen and kept hydrated (to avoid freeze drying), either by maintaining the surrounding musculature
or by wrapping the structure in gauzes soaked in saline solution. Submersing the bone specimen in
embalming solutions such as formalin or alcohol as a preservation method should be avoided, as these
solutions might change the mechanical properties of bone [147].

5. Progress in the BSM Field—Clinical Translatability

In recent years, the bone substitute field has evolved from the traditional one-way
“bench-to-bedside” into an interactive “bench-to-bedside-and-back-again” approach [148]. The driving
forces behind this interactive back-and-forth approach are currently unmet clinical needs. A precise
understanding of current clinical practice is therefore required in order to identify specific clinical
needs that are yet to be addressed and ultimately lead to an adequate balance between technology-push
(i.e., the development and fine tuning of a product) and market-pull (i.e., the need/requirement for
a new product/treatment). Equally important to the clinical need are additional practical factors,
such as ethical and regulatory issues (both on institutional and governmental levels), funding issues for
product development, product upscaling and production, and aspects related to physician acceptance
of a new treatment method. Failing to consider all these aspects will cause BSMs to fail to reach the
clinical setting despite outstanding performances at the preclinical level. A good example of such
failure are scaffold-based bone substitute therapies, from which the translation to clinical has still not
been achieved despite 25 years of research, research funding totaling hundreds of millions of dollars,
and over 12,000 research papers published in the past 10 years alone [149,150]. Ceramic scaffolds,
for example, have demonstrated excellent preclinical results over the years [151,152]. Nonetheless,
these materials are expensive and cumbersome to produce and upscale, difficult to use in clinics,
and subject to multiple regulatory conditions (especially when containing hybrid matrixes or living
cells). Therefore, the ability to bring clinical requirements associated with the practical aspects of
its clinical application earlier into the development process of a BSM is a critical requirement for
investigators, study sections and funding agencies to efficiently ease the path to clinics.

6. Closing Remarks

Nowadays, newly developed biological BSMs reflect the concept that biological and mechanical
properties can work synergistically and ultimately allow for a degradable, mechanically stable and
osteocompatible BSM to successfully regenerate highly loaded bone defects. Preclinical surrogate
models play a vital role in the continuous optimization of bone regenerative technologies. Nonetheless,
mimicking human load-bearing bone defect conditions is extremely complex and requires a detailed
planning of the selected preclinical models. In fact, the translational value of a preclinical animal
model is strictly dependent on the design of the selected model and its influence in the obtained
outcome. For this reason, although challenging, animal models should resemble the clinical course
of the human indication for a BSM as closely as possible. Further, preclinical studies should be
systematically standardized into predefined protocols, facilitating direct comparisons between the
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outcome of different BSMs evaluated under the same preclinical experimental conditions. Finally, it is
also critical that the access to large animal models is made available for the entire scientific community,
as well as the expertise necessary to perform such animal studies successfully. Unfortunately, while the
number of bioengineers, biomaterial scientists, molecular and cellular biologists working in the BSM
field continues to increase, the number of research groups which have the expertise, infrastructure
and track record of well characterized and validated large preclinical animal models continues to
decrease inexorably.
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