Electrical Conductance of Fissure Enamel in Recently Erupted Molar Teeth as Related to Caries Status

Abstract
Pit-and-fissure caries lesions contribute greatly to the caries incidence in permanent molar teeth in children. To date, the diagnosis of occlusal caries is still performed mainly by visual inspection, periodically aided by bite-wing radiography. However, in detecting small occlusal carious lesions, these methods perform inadequately, especially in low caries prevalence populations or individuals. The use of electrical conductance measurements (ECMs) has been evaluated to improve the diagnosis of small occlusal carious lesions. The aim of this study was to monitor the electrical conductance of fissure enamel in recently erupted molar teeth and to relate these measurements to the caries status. 50 children aged 5–15 years, having first or second permanent molars that were not exposed to the oral environment for more than 6 months, participated in the study. The diagnostic systems evaluated were visual inspection and ECMs. Following baseline data recording, diagnostic measurements were repeated three times within 18 months. Data were collected at predefined sites in the fissures. 18 months after baseline recording, 179 sites at 60 molar teeth in 27 children were judged to require a sealant based on visual inspection. After removal of carious tissue, two examiners jointly decided on the status of decay as per the criteria: 0 = no caries or caries limited to enamel, and 1 = caries involving dentine. The sensitivity of ECM continued to increase with time after a slight initial dip, whereas the specificity continuously increased after baseline measurements as a result of the decreasing amount of false-positive diagnoses. ECMs obtained after each 6-month interval from sites that developed caries were significantly higher than those from sites that remained caries free (all p < 0.02). Furthermore, ECMs obtained from sites that exhibited dentinal caries upon validation were significantly higher than those obtained from sites that showed no caries or caries limited to enamel on validation (p < 0.001). The areas under the receiver operating characteristic curves of visual inspection and ECMs were 0.67 and 0.77, respectively, a difference that was not statistically significant (p > 0.05). It was concluded from this study that ECMs can aid the detection of fissure caries in recently erupted molar teeth. The results imply that an ECM value of 6.5 can be considered as the cut-off between no caries or caries limited to enamel and dentinal caries. Furthermore, ECMs can be used to predict the probability that a sealant or a sealant restoration will be required within 18–24 months after eruption.
The pits and fissures in permanent molars of children have frequently been identified as caries predilection sites [Ripa et al., 1988; Wenzel et al., 1993]. At age 15, the average DMFS score for occlusal surfaces in Western communities has been reported to be 4.3 in contrast to 2.9 for proximal surfaces [Kalsbeek et al., 1993]. The caries susceptibility of pits and fissures has been attributed to plaque retention at these sites and to the incomplete closure of the fissure enamel. Part of the caries vulnerability at a young age has also been attributed to the low degree of enamel maturation during the first years following eruption [Crabb, 1976; Fejerskov et al., 1984; Driessens et al., 1985].

The diagnosis of occlusal carious lesions is still performed mainly by visual inspection, periodically aided by bitewing radiography [Angmar-Mansson and ten Bosch, 1993]. Radiographic diagnosis has been shown to be accurate, particularly when focused on large dentinal lesions [Weerheijm et al., 1989, 1992; Creanor et al., 1990; Wenzel et al., 1990, 1991; Pitts and Kidd, 1992]. Other studies concluded that visual inspection performed poorly in the detection of small occlusal carious lesions [Verdonschot et al., 1992; Wenzel and Fejerskov, 1992]. The value of electrical conductance measurements (ECMs) in caries diagnosis was described first by Pincus [1951]. Later, this method was the subject of many in vitro [White et al., 1978; Flaitz et al., 1986; Verdonschot et al., 1993b] and in vivo [White et al., 1978, 1981a, b; Williams et al., 1978; Rock and Kidd, 1988; Verdonschot et al., 1992], studies. The reported sensitivities of ECMs in diagnosing dentinal carious lesions at occlusal surfaces of permanent premolar and molar teeth ranged from 0.67 to 0.96, whereas the specificities ranged from 0.71 to 0.98, reflecting an acceptable performance. A recent meta-analysis comparing the performance of various diagnostic systems in occlusal caries diagnosis showed that ECMs were superior to visual inspection, fibre-optic translumination (FOTI), and radiography [Ie and Verdonschot, 1994]. However, the material used in reports on in vitro studies consisted of extracted teeth of unknown history, whereas in vivo studies used almost exclusively premolar and third molar teeth which had been scheduled for extraction. It is estimated that many teeth which had been extracted for orthodontic reasons, as well as third molars, had comparatively poorly matured enamel. Since the pore volume of immature enamel is an important variable in the measurement of its electrical conductance, the degree of post-eruptive maturation quantified by the time elapsed after eruption might have influenced the results of some of the above-mentioned studies, as the measurement of high electrical conductance has been associated with both a high pore volume [Huysmans et al., 1995] and dentinal caries [Flaitz et al., 1986].

Hence, it was the aim of this study, to monitor the electrical conductance of fissure enamel of recently erupted molar teeth and to relate these measurements to caries status.

Materials and Methods

From the Department of Paediatric Dentistry, 50 children aged 5–15 years were recruited by pedodontists during recall visits. Criteria for inclusion in the study were that the first permanent molar teeth in 5- to 6-year-old and the second permanent molar teeth in 11- to 15-year-old participants had not been exposed to the oral environment for more than 6 months. The children received regular preventive care at 6-month intervals. Immediately prior to the first diagnostic measurements, an impression was made from the occlusal surfaces of the selected teeth and the impression poured in stone. Baseline diagnostic measurements were subsequently conducted at three or four predefined sites in maxillary molars (distal, central, and mesial fossae and in the middle of the palatal fissure, if present) and at three sites in the fissures of mandibular molar teeth (distal, central, and mesial fossae). The sites were marked on the stone replicas of the teeth for standardization. In some cases, diagnostic measurements in the palatal fissure and in the distal fossa could not be performed due to incomplete eruption or presence of an operculum.

Each site was examined by visual inspection, and subsequently the electrical conductance at this site was measured. The findings upon visual inspection were recorded using an ordinal rating scale: 0 = sound enamel; 1 = carious lesion restricted to enamel; 2 = carious lesion reaching the dentino-enamel junction; 3 = carious lesion in dentine. ECMs were conducted using a Vanguard (Massachusetts Manufacturing Company, Cambridge, Mass., USA) as described by Verdonschot et al. [1992]. The electrical conductance of enamel measured at the probe tip (fig. 1) is converted automatically into ordinal integer ratings ranging from 0 (indicating sound enamel) to 9 (indicating a dentinal lesion). Because the Vanguard was taken out of production by its manufacturer and to secure the continuity of this follow-up study, it was replaced by an Electronic Caries Monitor (Borsboom Sensortechology, Westeremden, The Netherlands) at the time that the measurements 12 months after baseline had yet to be conducted. The Electronic Caries Monitor was built such that it converted the measured electrical conductance into ordinal ratings in exactly the same manner as did the Vanguard (ECM manual; r = 1.00), albeit its rating scale was continuous and extended to range from about −1.00 to 13.00. The logarithm of the unit of electrical resistance (R; MQ) is a third power function of ECM readings [Huysmans et al., 1995]:

\[\log(R) = -0.002196 \ ECM^3 + 0.042114 \ ECM^2 - 0.37869 \ ECM + 4.5341 \]

For the purpose of this study, all negative ratings from the Electronic Caries Monitor were set to Vanguard rating 0, whereas ratings 9.00–13.00 were set to 9. All Electronic Caries Monitor ratings between 0.00 and 9.00 were then rounded to the nearest integer. Following baseline data recording, the diagnostic measurements were repeated three times at 6-month intervals. Both visual inspection and ECMs were conducted by the same observer. A random 10% of all measurements was also carried out independently by a second observer to evaluate interobserver reliability.
Table 1. Sensitivity and specificity values of ECMs and visual inspection of the locations validated at baseline and after 6, 12, and 18 months

<table>
<thead>
<tr>
<th>Time after baseline, months</th>
<th>Total (n = 179)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 (n = 30)</td>
</tr>
<tr>
<td>ECMs</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.86</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.43</td>
</tr>
<tr>
<td>Visual inspection</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.91</td>
</tr>
</tbody>
</table>

ROC curve, denoted A_z, represents observer performance in using a diagnostic system. Differences between the A_z values of visual inspection and ECMs were tested for statistical significance using a Z-score test at $\alpha = 0.05$ [Hanley and McNeil, 1983].

Results

Baseline recordings were made in 23 children aged 5–6 and in 27 children aged 11–15 years. During the course of the study, 2 children moved to other cities and, therefore, cancelled their participation. Within 18 months after baseline, 74 sites of 24 first permanent molars in 11 5- to 6-year-old children and 105 sites of 36 second permanent molars in 16 11- to 15-year-old children were judged to require treatment. Thus, a total of 179 sites of 60 molar teeth in 27 children had received a sealant or a sealant restoration at the end of the study. The numbers of sealed and restored sites at baseline and 6, 12, and 18 months after baseline measurements were 30, 90, 47, and 12, respectively (table 1). The total FS score occlusal surfaces at the end of the study was 36 for first and 43 for second molar teeth. The incidence of occlusal caries in the study population was 1.46 occlusal surface per child per year. Kappa statistics for interexaminer reliability were 0.57 for visual inspection and 0.76 for ECMs, indicating moderate and acceptable reproducibility, respectively.

The distribution of ECMs obtained immediately prior to validation is shown in figure 2. Rating 9 accounted for approximately 50% of all measurements. Consequently, the selected cut-off between 'no caries or caries limited to enamel' and 'dentinal caries' implied that about 50% of the sites received a positive ECM test outcome, of which 60% (54 sites) actually showed dentinal caries upon validation.

The data in figure 3 depict the mean ECM values against time of sites that showed no caries or caries limited to enamel...
el and dentinal caries upon validation at baseline and after 6, 12, and 18 months and of the sites that remained caries free throughout the study as judged by visual inspection. The mean ECM value from the caries-free sites obtained at baseline was significantly higher than those obtained 6, 12, and 18 months after baseline (paired t-test; p < 0.05). ECMs obtained after each 6-month interval from sites that developed caries were significantly higher than those from sites which remained caries free (Mann-Whitney U tests; all p < 0.02). Also, ECMs obtained from sites that exhibited dentinal caries upon validation were significantly higher than those obtained from sites that showed no caries or caries limited to enamel upon validation (Mann-Whitney U test; p < 0.001).

Sensitivity and specificity of ECMs in predicting the need for a sealant or sealant restoration 18 months after baseline were 0.75 and 0.63, respectively.

The sensitivities and specificities of visual inspection and ECMs performed at the 179 sites which were validated are presented in table 1. There is a tendency for the sensitivities and specificities of ECMs to increase during the course of the observation period, whereas those of visual inspection remained almost constant. The sensitivity of the pooled measurements for visual inspection was low (0.04), whereas the specificity was high (0.97). The ECMs were characterized by moderate sensitivity (0.77) and specificity (0.62).

The areas under the ROC curves (pooled data from one observer) of visual inspection and ECMs were 0.66 and 0.76, respectively (fig. 4). The difference between both areas was not statistically significant (Z-score test; p = 0.08).

Fig. 2. Histogram of ECMs obtained immediately prior to validation (n = 179).

Fig. 3. Mean ECMs (± SEM) from validated sites at baseline and 6, 12, and 18 months after baseline and from sites that remained caries free throughout the study as judged by visual inspection.

Fig. 4. ROC graphs depicting the performance of ECMs and visual inspection in occlusal caries diagnosis. The landmarks indicate the observed operating points. (For visual inspection rating 3 had not been recorded which resulted in two operating points for this diagnostic system.)
Discase

Because of the high resistivity of human enamel, the electrical conductance becomes measurable only when the enamel is either very thin or when a connection exists between the probe tip and the electrolyte-containing dentine. In this study in which ECMs were used as a caries-diagnostic system, high and true-positive measurements were associated with the presence of dentinal caries. High, but false-positive test outcomes could originate from fissure enamel defects, a high pore volume due to low enamel maturation, or from an incorrectly performed measurement during which electrons 'escape' from the probe tip through a superficial layer of moisture to the contra-electrode which is held by the patient. Immediately after eruption, the escape of electrons is facilitated by the small distance between the probe tip and the gingiva or the operculum. As these situations were seen quite often at baseline, it is estimated that the false positives were, in part, caused by this phenomenon.

The results of this study indicate that about 50% of the ECM diagnoses which were conducted immediately prior to validation were positive (fig. 2), of which 60% actually showed dentinal caries upon validation (true positives). Thus ECMs, when used as a caries-diagnostic tool, still produced a considerable number of false-positive results. Since the majority of data from validated sites were obtained 6-12 months after eruption, most of the validated teeth were measured when fully erupted. As the numbers of false positives caused by incomplete eruption should have decreased after baseline measurements, the observed false-positive rate of 40% cannot be explained fully by incomplete eruption. At least part of this percentage should be attributed to the presence of porosities in enamel. Several studies have demonstrated that the outer enamel layer is highly porous at the time of eruption [Crabb, 1976; Fejerskov et al., 1984; Driessens et al., 1985; Deutsch and Shapira, 1987]. Low matured, highly porous enamel of recently erupted molar teeth will, therefore, increase the probability of false-positive test outcomes when using ECMs for caries diagnosis.

Data in figure 3 illustrate that the averaged electrical conductance of sound fissure enamel from sites that remained caries free (as judged by visual inspection) throughout the evaluation period decreased with time. The mean ECM value from these sites obtained at baseline was significantly higher than those obtained 6, 12, and 18 months after baseline. Hoppenbrouwers et al. [1986] found that the resistivity of erupted premolar enamel was considerably higher than that of unerupted premolar enamel. White et al. [1981a] observed an increased electrical resistance of demineralized enamel after surface treatment with fluoride, suggesting that an increase of mineralization was associated with a decrease in electrical conductance. Both studies, therefore, support the hypothesis that enamel mineralization and electrical conductance are inversely related. This finding is confirmed by the results from this study, as the number of false-positive ECMs decreased during the successive measurements which is reflected by increasing specificities.

In figure 2 a cut-off can be placed at a mean ECM value of 6.5 to distinguish ECMs from sites that developed no caries (or caries limited to enamel) from those that developed dentinal caries during the course of 18 months. Thus, sites which had an ECM value of 6.5 or higher, measured within 6 months after eruption, had an increased probability of developing dentinal caries. This cut-off for dentinal caries is in accordance with the findings of Flaitz et al. [1986] who reported a mean ECM reading of 6±0.5 for the group of molars which showed dentinal caries upon histological validation. A sensitivity of 0.75 and a specificity of 0.63 indicate that ECMs can be used to predict the need for a sealant or sealant restoration within 18 months after baseline.

To explain further the high false-positive ECM rate in this study, it is hypothesized that defective fissure enamel may play a role. Enamel defects could form a connection between the dentine and the oral environment, through which electrons can pass easily when electrical conductance is being measured. Such defects may develop during enamel formation and consist of a chain of large pores in a comparatively thin layer of fissure enamel. Although enamel defects will generate false-positive test results when the sites are validated for caries, they are in fact true positives when the ECMs are used to detect enamel 'leakages'. Assuming that enamel fissure defects can be colonized by cariogenic microorganisms, dentinal caries may result without the adjacent enamel being involved. The onset of 'hidden occlusal caries' [Weerheijm et al., 1989; Verdonschot et al., 1992] could hence be predicted, in part, by ECMs. As this clinical study continues, measurements made 5-10 years after baseline will produce further data to investigate this hypothesis in more detail. At baseline, 30 sites were judged to require a sealant. All lesions which had actually reached dentine were judged to have caries restricted to the enamel by visual inspection. This finding supports further the 'hidden-caries' theory, according to which carious lesions develop and progress while obscured by visually intact enamel.

In figure 4 a larger area under the ROC curve for ECMs (A_Z = 0.76) than for visual inspection (A_Z = 0.66) is shown, although this difference was not statistically significant. The study of Verdonschot et al. [1993a] yielded an area of
0.82 for ECMs and of 0.76 for visual inspection. The difference between the areas was also not statistically significant. The investigators used extracted third molar teeth without visible cavitation from 18- to 20-year-old adolescents. Thus, ECMs were conducted on molar teeth which had probably been erupted for only a short period. Consequently, immature enamel might have influenced the results as in the present study. This explanation is consistent with the results of another study by the same group [Verdonschot et al., 1993b]. Here, teeth which had not erupted recently were used, and it was reported that a much larger area for ECMs (A2 = 0.94) was found than in the other two studies.

It is concluded from this study that ECMs can aid the detection of fissure caries in recently erupted molar teeth. The results imply that an ECM value of 6.5 can be considered as the cut-off between no caries (or caries restricted to enamel) and dentinal caries. Furthermore, ECMs can be used to predict the probability that a sealant or a sealant restoration will be required within 18–24 months after eruption.

References

