Search for direct stau production in events with two hadronic \(\tau\)-leptons in \(\sqrt{s} = 13\) TeV \(pp\) collisions with the ATLAS detector

G. Aad et al.∗

(ATLAS Collaboration)

(Received 18 November 2019; accepted 16 January 2020; published 28 February 2020)

A search for the direct production of the supersymmetric partners of \(\tau\)-leptons (staus) in final states with two hadronically decaying \(\tau\)-leptons is presented. The analysis uses a dataset of \(pp\) collisions corresponding to an integrated luminosity of 139 \(fb^{-1}\), recorded with the ATLAS detector at the Large Hadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected Standard Model background is observed. Limits are derived in scenarios of direct production of stau pairs with each stau decaying into the stable lightest neutralino and one \(\tau\)-lepton in simplified models where the two stau mass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidence level for a massless lightest neutralino.

DOI: 10.1103/PhysRevD.101.032009

I. INTRODUCTION

Supersymmetry (SUSY) [1–7] postulates the existence of superpartners, referred to as sparticles, whose spin differs by one half unit from each corresponding Standard Model (SM) particle. In models that conserve \(R\)-parity [8], sparticles are always produced in pairs, and the lightest supersymmetric particle (LSP) is stable and is a dark-matter candidate [9,10].

In SUSY models, the sector of sparticles with only electroweak interactions contains charginos (\(\tilde{\chi}_i^\pm\), \(i = 1, 2\) in order of increasing masses), neutralinos (\(\tilde{\chi}_i^0\), \(j = 1, 2, 3, 4\) in order of increasing masses), charged sleptons (\(\tilde{\ell}\)), and sneutrinos (\(\tilde{\nu}\)). Charginos and neutralinos are the mass eigenstates formed from linear superpositions of the superpartners of the charged and neutral Higgs bosons and electroweak gauge bosons. The sleptons are the superpartners of the charged leptons and are referred to as left or right (\(\tilde{\ell}_L\) or \(\tilde{\ell}_R\)) depending on the chirality of their SM partners. The slepton mass eigenstates are a mixture of \(\tilde{\ell}_L\) and \(\tilde{\ell}_R\), and are labeled as \(\tilde{\ell}_k\) (\(k = 1, 2\) in order of increasing mass). In this work, the scalar superpartner of the left-handed \(\tau\)-lepton (the stau-left, \(\tilde{\tau}_L\)) and right-handed \(\tau\)-lepton (the stau-right, \(\tilde{\tau}_R\)) are assumed to be mass degenerate.

Final states with \(\tau\)-leptons originating from stau decays are of particular interest for SUSY searches. Models with light staus can lead to a dark-matter relic density consistent with cosmological observations [11] and light sleptons in general could play a role in the coannihilation of neutralinos [12,13]. Sleptons are expected to have masses of order 100 GeV in gauge-mediated [14–16] and anomaly-mediated [17,18] SUSY breaking models.

In some scenarios the direct production rate of sleptons can greatly exceed the production rate of squarks and gluinos at the Large Hadron Collider (LHC). In the simplified models studied in this paper, the lightest neutralino is the LSP and is purely the superpartner of the \(U(1)\) gauge field (the bino) and not admixed with the superpartner of the \(SU(2)\) gauge field (wino). Further, the two staus are assumed to be mass-degenerate. The stau-left and stau-right decay each with a 100% branching fraction into a binolike neutralino and a \(\tau\)-lepton. All sparticles other than those explicitly mentioned here are assumed to be inaccessible at the LHC energy. This paper focuses on the direct production of a stau pair, leading to the final state illustrated in Fig. 1.

Signal events are characterized by the presence of exactly two \(\tau\)-leptons and large missing transverse momentum due to the undetected neutrinos, as a result of the \(\tau\)-lepton decays, and lightest neutralinos. Final states with exactly two hadronically decaying \(\tau\)-leptons (\(\tau \rightarrow \ell\) hadrons \(\nu_\tau\)) are considered.

The search described in this document uses a dataset of \(\sqrt{s} = 13\) TeV \(pp\) collisions collected with the ATLAS detector from 2015 to 2018 at the LHC. At LEP [19–24], searches set a lower limit of 86.6 GeV at 95% confidence level (C.L.) on the mass of promptly decaying staus. Similar searches were performed previously by the ATLAS and CMS Collaborations using data collected at \(\sqrt{s} = 8\) TeV in 2012 at the LHC [25,26], with the ATLAS
result excluding a single $\tilde{\tau}$ mass hypothesis of 109 GeV decaying to a τ-lepton and massless neutralino. CMS has performed a similar search using an integrated luminosity of 77.2 fb^{-1} of $\sqrt{s} = 13 \text{ TeV}$ pp collisions and has excluded degenerate production of $\tilde{\tau}$ pairs with mass up to 150 GeV for a nearly massless neutralino [27].

II. ATLAS DETECTOR

The ATLAS detector [28] is a multipurpose particle physics detector with forward-backward symmetric cylindrical geometry and nearly 4π coverage in solid angle.1 It features an inner tracking detector (ID) surrounded by a 2 T superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer (MS). The ID covers the pseudorapidity region $|\eta| < 2.5$ and consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. One significant upgrade for the $\sqrt{s} = 13 \text{ TeV}$ running period is the presence of the insertable B-layer [29,30], an additional pixel layer close to the interaction point which provides high-resolution hits at a small radius to improve the tracking and vertex reconstruction performance. The calorimeters are composed of high-granularity liquid-argon (LAr) electromagnetic calorimeters with lead, copper, or tungsten absorbers (in the pseudorapidity region $|\eta| < 3.2$) and a steel-scintillator hadronic calorimeter (for $|\eta| < 1.7$). The end cap and forward regions are instrumented with LAr calorimeters for both the electromagnetic and hadronic measurements up to $|\eta| = 4.9$. The MS surrounds the calorimeters and consists of three large superconducting air-core toroidal magnets, each with eight coils, a system of precision tracking chambers ($|\eta| < 2.7$), and detectors for triggering ($|\eta| < 2.4$). A two-level trigger system is used to select events for recording [31].

III. DATA AND SIMULATED EVENT SAMPLES

After the application of beam, detector, and data quality requirements, the analyzed dataset corresponds to an integrated luminosity of 139 fb$^{-1}$ of pp collision data recorded from 2015 to 2018 at $\sqrt{s} = 13 \text{ TeV}$. The uncertainty in the combined 2015–2018 integrated luminosity is 1.7% [32], obtained using the LUCID-2 detector [33] for the primary luminosity measurements. The average number of interactions per bunch crossing ($\langle \mu \rangle$) for this dataset ranges from about 10 up to 60, with a mean value of 34.

Monte Carlo (MC) simulated event samples were used to estimate the SUSY signal yields and to aid in evaluating the SM backgrounds. Generated SM events were passed through a detailed detector simulation [34] based on GEANT4 [35]. SUSY MC events were processed with a fast detector simulation that parameterizes the response of the electromagnetic and hadronic calorimeters but uses GEANT4 for the other detectors. All simulated events were overlaid with multiple pp collisions (pileup) simulated with the soft strong-interaction processes of PYTHIA 8.186 [36] using the A3 set of tuned parameters [37] and the NNPDF23LO [38] parton distribution function (PDF) set. The simulated events were reconstructed using the same algorithms as the data, and were reweighted so that the distribution of the expected number of collisions per bunch crossing matched the one in the data.

A. Simulated background samples

Events with $Z/\gamma^* \rightarrow \ell\ell (\ell = e, \mu, \tau)$ and $W \rightarrow \ell\nu$ produced with accompanying jets (including jets initiated by heavy flavor quarks) were generated with SHERPA 2.2.1 [39,40]. Matrix elements (ME) were calculated for up to two additional partons at NLO and four additional partons at leading order (LO), using the Comix [41] and OPENLOOPS [42,43] generators and merged with the SHERPA parton shower (PS) [44] using the ME+PS@NLO prescription [40]. The NNPDF3.0NNLO [45] PDF set was used in conjunction with a dedicated PS tuning developed by the SHERPA authors. The $W/Z +$ jets events were normalized using their next-to-next-to-leading-order (NNLO) cross sections [46].

Fully leptonically and semileptonically decaying diboson samples ($VV = WW/WZ/ZZ$) were simulated with the SHERPA 2.2.1 and 2.2.2 [39] generator at NLO. In this setup, multiple matrix elements were matched and merged with the SHERPA parton shower based on Catani–Seymour dipole factorization [44] using the MEPS@NLO prescription [40,47–49]. The virtual QCD corrections for matrix elements at NLO accuracy were provided by the OPENLOOPS library [43]. Samples were generated using

1. ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector, and the z-axis along the beam line. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. Observables labeled transverse refer to the projection into the x-y plane. The pseudorapidity is defined in terms of the polar angle θ by $\eta = -\ln \tan(\theta/2)$.

FIG. 1. A diagram illustrating the pair production of staus and subsequent decay into a two-τ-lepton final state with missing transverse momentum from the neutralinos.
of cross section predictions using different PDF sets and factorization and renormalization scales, as described in Refs. [71–75].

The masses of all charginos and neutralinos apart from the \(\tilde{\chi}_1^0 \), were set to 2.5 TeV, thus leaving a single kinematically allowed decay: \(\tilde{t} \rightarrow \tilde{\chi}_1^0 \tau \). The stau-left and stau-right were combined and have the same mass, which was varied between 100 and 440 GeV and no mixing was assumed between the gauge and mass eigenstates. The mass of the binolike \(\tilde{\chi}_1^0 \) was varied in the range 1–200 GeV.

Reference points with \(\tilde{t} \) masses of 120 GeV, 280 GeV, and a \(\tilde{\chi}_1^0 \) mass of 1 GeV are used throughout this paper to illustrate typical features of the SUSY models to which this analysis is sensitive. The theoretical cross section used at NLO + NLL was 140 (50) fb with \(\tilde{t}_L \tilde{t}_L \) (\(\tilde{t}_R \tilde{t}_R \)) of 120 GeV, and 5.8 (2.2) fb with \(\tilde{t}_L \tilde{t}_L \) (\(\tilde{t}_R \tilde{t}_R \)) of 280 GeV.

IV. EVENT RECONSTRUCTION

Events with at least one reconstructed primary vertex [76] are selected. A primary vertex must have at least two associated charged-particle tracks with transverse momentum \(p_T > 500 \) MeV and be consistent with the collision region. In events with multiple primary vertices, the one with the largest \(\sum p_T^2 \) of the associated tracks is chosen.

Jets are reconstructed from three-dimensional calorimeter energy clusters [77] using the anti-\(k_t \) algorithm [78,79] with a radius parameter of 0.4. Jet energies are corrected for detector inhomogeneities, the noncompensating response of the calorimeter, and the impact of pileup, using factors derived from test beam and \(pp \) collision data, and from a detailed GEANT4 detector simulation [80]. The impact of pileup is accounted for using a technique, based on jet areas, that provides an event-by-event and jet-by-jet correction [81]. Jets that are likely to have originated from pileup are not considered in this analysis [82]. The efficiency of this pileup-rejection selection is approximately 92%. Jets are required to have \(p_T > 20 \) GeV and \(|\eta| < 2.8 \). Events containing jets that are likely to have arisen from detector noise or cosmic rays are removed.

Jets containing b-hadrons (b-jets) are identified using the MV2c10 algorithm [83], based on a multivariate discriminant making use of track impact parameters and reconstructed secondary vertices [84]. Candidate b-jets are required to have \(p_T > 20 \) GeV and \(|\eta| < 2.5 \). A working point with an average b-tagging efficiency of 77% for simulated \(\bar{t}t \) events is used. This working point corresponds to a c-jet and light-jet rejection of 4.9 and 110, respectively [85,86].

Electron candidates are reconstructed by matching clusters in the electromagnetic calorimeter with charged-particle tracks in the inner detector. Electrons are required to have \(p_T > 17 \) GeV and \(|\eta| < 2.47 \), and to satisfy the “loose” working point according to a likelihood-based identification [87]. Muon candidates are reconstructed from

the NNPDF3.0NNLO set, along with the dedicated set of tuned parton-shower parameters developed by the SHERPA authors.

The production of top-quark pairs (\(t\bar{t} \)) and single top quarks in the \(Wt \) and \(s \)-channels was performed with POWHEG-BOX v2 [50–53], with the NNPDF2.3LO [54] PDF set at NLO in the ME calculations and the ATLAS underlying-event tune A14 [55]. Electroweak \(t \)-channel single-top-quark events were generated using the POWHEG-BOX v2 event generator. The PS, fragmentation, and the underlying event were simulated using PYTHIA 8.186 with the NNPDF2.3LO PDF set and a corresponding set of A14 tuned parameters. The top-quark mass was set to 172.5 GeV. The \(t\bar{t} \) sample is normalised to the cross section prediction at next-to-next-to-leading order (NNLO) in QCD including the resummation of next-to-next-to-leading logarithmic (NLL) soft-gluon terms calculated using \(\text{TOP}^{++2.0} \) [56–62]. The cross section for single-top-quark was computed for the \(Wt \)-channel at NLO in QCD with NNLL soft gluon corrections [63,64], and to NLO in QCD for the \(t \)- and \(s \)-channels [63,64]. Top-quark pair production with an additional \(W \) or \(Z \) boson was calculated using MADGRAPH5 \(\text{aMC@NLO} \) 2.2.2 [65] at NLO in the ME calculations, while fragmentation and hadronization were simulated with PYTHIA 8.186. The underlying-event tune A14 was used with the NNPDF2.3LO PDF set, and the cross sections were normalized using NLO predictions [66,67].

Small contributions from Higgs boson events produced by gluon-gluon fusion and vector-boson fusion were modeled using POWHEG-BOX v2 with the NNPDF3.0NNLO PDF and showered using PYTHIA 8.186. Contributions from the associated production of a Higgs boson with a vector boson and from a Higgs boson in association with two top quarks were simulated using PYTHIA 8.186 and MADGRAPH5 \(\text{aMC@NLO} \), respectively. All Higgs boson samples were normalized to cross sections from Ref. [68].

For all samples showered with PYTHIA 8, EVTGEN 1.2.0 [69] was used to simulate the decays of bottom and charmed hadrons.

B. Simulated signal samples

Simulated signal samples were generated using MADGRAPH5 \(\text{aMC@NLO} \) 2.6.2 interfaced to PYTHIA 8.186 with the A14 tune for the PS modeling, hadronization, and underlying event. The ME calculation was performed at tree level and includes the emission of up to two additional partons. The NNPDF2.3LO PDF set was used. The ME–PS matching used the CKKW-L [70] prescription, with a matching scale set to one quarter of the mass of the pair of produced particles. Signal cross sections were calculated to next-to-leading order in the strong coupling constant, adding the resummation of soft gluon emission at next-to-leading-logarithm accuracy (NLO + NLL) using the PDF4LHC15mc PDF set [71]. The nominal cross section and its uncertainty were taken from an envelope
MS tracks matching ID tracks. Muons are required to have \(p_T > 14 \text{ GeV} \) and \(|\eta| < 2.7 \) and fulfill the “medium” quality criteria of Ref. [88]. Events containing a muon candidate with a poorly measured charge-to-momentum ratio \(\sigma(q/p)/|q/p| > 0.4 \) are rejected.

Electrons and muons are required to satisfy isolation criteria to reduce the number of jets misidentified as charged leptons. The scalar sum of the \(p_T \) of tracks inside a variable-size cone around the lepton (excluding its own track), must be less than 15% of the lepton \(p_T \). The track isolation cone size\(^2\) for electrons (muons) \(\Delta R \) is given by the minimum of \(\Delta R = 10 \text{ GeV}/p_T \) and \(\Delta R = 0.2 \) (0.3). In addition, for electrons (muons) the sum of the transverse energy of the calorimeter energy clusters in a cone of \(\Delta R = 0.2 \) around the lepton, excluding the energy from the lepton itself, must be less than 20% (30%) of the lepton \(p_T \). For electrons with \(p_T > 200 \text{ GeV} \) these isolation requirements are not applied, and instead an upper limit of \(\text{max}(0.015 \times p_T [\text{GeV}], 3.5 \text{ GeV}) \) is placed on the transverse energy of the calorimeter energy clusters in a cone of \(\Delta R = 0.2 \) around the electron.

The efficiencies for electrons and muons to satisfy the reconstruction, identification, and isolation criteria are measured in samples of leptonic \(Z \) and \(J/\psi \) decays, and corrections are applied to the simulated samples to reproduce the efficiencies in data.

The reconstruction of hadronically decaying \(\tau \)-leptons is based on information from tracking in the ID and three-dimensional clusters of energy in the electromagnetic and hadronic calorimeters. The \(\tau \)-lepton reconstruction algorithm is seeded by jets reconstructed as described above but with \(p_T > 10 \text{ GeV} \) and \(|\eta| < 2.5 \). The reconstructed energies of the hadronically decaying \(\tau \)-lepton candidates are corrected to the \(\tau \)-lepton energy scale, which is calibrated using simulation and in situ measurements using \(Z \rightarrow \tau \tau \) decays [89]. The \(\tau \)-neutrino from the hadronic \(\tau \)-lepton decay is not taken into account in the reconstruction and calibration of the \(\tau \)-lepton energy and momentum. Hadronic \(\tau \)-lepton decay candidates are required to have one or three associated charged-particle tracks (prongs) and the total electric charge of those tracks must be \(\pm 1 \) times the electron charge. To improve the discrimination between hadronically decaying \(\tau \)-leptons and jets a multivariate algorithm is used [89]. The \(\tau \)-lepton identification algorithm is based on a boosted decision tree (BDT) method. The BDT algorithm uses various track and variables as input to discriminate between \(\tau \)-leptons and jets. For 1-prong (3-prong) \(\tau \)-lepton candidates, the signal efficiencies are 75% (60%) and 60% (45%) for the “medium” and “tight” working points, respectively. In the following, \(\tau \)-lepton candidates are required to satisfy the “medium” identification criteria for jet discrimination (medium \(\tau \)-lepton candidates), unless otherwise stated. For electron discrimination, an additional BDT is trained to discriminate \(\tau \)-leptons from electrons and a selection is applied on the output of the discriminant. This requirement has about 95% efficiency for selecting \(\tau \)-leptons, and a background electron rejection factor from 10 to 50 depending on the \(\eta \). The \(\tau \)-lepton candidates are required to have \(p_T > 20 \text{ GeV} \) and \(|\eta| < 2.5 \), excluding the transition region between the barrel and end cap calorimeters (1.37 < \(|\eta| < 1.52 \)).

The simulation is corrected for differences between the efficiencies of \(\tau \) identification in data and simulation at both trigger and reconstruction level. For hadronically decaying \(\tau \)-leptons originating from prompt gauge-boson decays, the corrections are calculated with a tag-and-probe method in a sample of \(Z \rightarrow \tau \tau \) events where one \(\tau \)-lepton decays hadronically and the other leptonically into a muon and two neutrinos [90]. Small differences between data and simulation for electron, muon, jet identification, and trigger efficiencies are corrected with scale factors derived in control regions. For the trigger corrections, dedicated regions enriched in \(\tau \), \(Z \), and \(W \) events are used.

The measurement of the missing transverse momentum vector, \(p_T^{\text{miss}} \), and its magnitude, \(E_T^{\text{miss}} \), is based on the negative vectorial sum of the \(p_T \) of all identified jets, \(\tau \)-lepton candidates, electrons, muons, photons [87], and an additional soft term. The soft term is constructed from all high-quality tracks that are associated with the primary vertex but not with any identified particle or jet. In this way, the missing transverse momentum is adjusted for the best calibration of the jets and the other identified particles, while maintaining pileup independence in the soft term [91].

Possible double counting of reconstructed objects is resolved in the following order. The \(\tau \)-lepton candidates close to electron or muon candidates (\(\Delta R < 0.2 \)) are removed, as are electrons that share a track with a muon. For electrons close to a jet (\(\Delta R < 0.4 \)), the electron is removed, except when \(\Delta R < 0.2 \) and the jet is not \(b \)-tagged, in which case the jet is removed. For a muon close to a jet (\(\Delta R < 0.4 \)), the muon is removed unless the jet has less than three tracks associated with it and is within \(\Delta R < 0.2 \). In the latter case, the jet is removed. Any remaining jet with \(\Delta R = 0.2 \) of a \(\tau \)-lepton candidate is removed.

V. EVENT SELECTION

The events are required to have exactly two medium \(\tau \)-lepton candidates with opposite-sign electric charge (OS) and to have passed either an asymmetric \(di-\tau + E_T^{\text{miss}} \) trigger or a combined \(di-\tau + E_T^{\text{miss}} \) trigger [92]. In events selected by the \(di-\tau + E_T^{\text{miss}} \) trigger, the offline reconstructed \(E_T^{\text{miss}} \) must be larger than 150 GeV, to achieve full trigger efficiency. In 2015–2017 data the efficiency of the asymmetric \(di-\tau \) (\(di-\tau + E_T^{\text{miss}} \)) trigger is 75–80% for events with the leading \(\tau \)-lepton candidate \(p_T > 95 \) (50) GeV and the subleading

\(^2\Delta R = \sqrt{(\Delta y)^2 + (\Delta \phi)^2} \), where \(y \) is the rapidity and \(\phi \) the azimuthal angle.
\(\tau \)-lepton candidate \(p_T > 60(40) \text{ GeV} \). The efficiency is evaluated for events with correctly identified \(\tau \)-leptons and the \(p_T \) thresholds are quoted at reconstruction level. As the luminosity increased in later years, the trigger selection was tightened; in 2018 the same efficiency was reached as in 2016. For later years, the increased trigger efficiency was mainly due to the luminosity increase. In addition, the two \(\tau \)-lepton candidates are required for SR-lowMass to increase the signal sensitivity.

The reconstructed invariant mass of the invisible decay products of the two leading \(\tau \)-lepton candidates, \(m(\tau_1, \tau_2) \), must be larger than 120 GeV to remove \(\tau \)-leptons originating from decays of low-mass resonances and to suppress contributions from \(Z \) + jets and Higgs boson events (\(Z/H \)-veto).

In order to further discriminate between SUSY signal events and SM background processes, additional requirements are applied to define the signal region (SR) selections. To reject events from SM processes containing a top quark, selected events must not contain any \(b \)-tagged jets (\(b \)-jet veto). A lower bound on the transverse mass \(m_{T2} \) [93,94] is imposed to reduce contributions from \(t\bar{t} \) and WW events. The \(m_{T2} \) variable is defined as:

\[
m_{T2} = \min_{q}\left[\max(m_{T,\tau_1}(p_{T,\tau_1}, q_T), m_{T,\tau_2}(p_{T,\tau_2}, p_{T}^{\text{miss}} - q_T)) \right],
\]

where \(p_{T,\tau_1} \) and \(p_{T,\tau_2} \) are the transverse momenta of the two \(\tau \)-lepton candidates, and the transverse momentum vector of one of the invisible particles, \(q_T \), is chosen to minimize the larger of the two transverse masses \(m_{T,\tau_1} \) and \(m_{T,\tau_2} \). The latter masses are defined by

\[
m_{T}(p_{T}, q_T) = \sqrt{2(p_T q_T - p_T \cdot q_T)}.
\]

For \(t\bar{t} \) and WW events, in which two \(W \) bosons decay leptonically and \(p_{T}^{\text{miss}} \) is the sum of the transverse momenta of the two neutrinos, the \(m_{T2} \) distribution has a kinematic endpoint at the \(W \) boson mass. For large mass differences between the staus and the lightest neutralino, the \(m_{T2} \) distribution for signal events extends significantly beyond this endpoint.

The SRs were optimized for stau discovery by varying the kinematic selection criteria. Events are selected by the asymmetric di-\(\tau \) trigger to cover the low stau mass region (SR-lowMass) and by the di-\(\tau \) + \(E_T^{\text{miss}} \) trigger to cover the high stau mass region (SR-highMass), as shown in Table I. Values of \(E_T^{\text{miss}} < 150 \text{ GeV} \) (\(E_T^{\text{miss}} > 150 \text{ GeV} \)) are required for SR-lowMass (SR-highMass) to keep the two SRs orthogonal. Both (at least one) of the \(\tau \)-lepton candidates must satisfy the tight identification criteria for jet discrimination (‘tight’ \(\tau \)-lepton candidate) for SR-lowMass (SR-highMass). Values of \(E_T^{\text{miss}} > 75 \text{ GeV} \) are required for SR-lowMass to increase signal sensitivity.

Table I. Summary of selection requirements for the signal regions.

<table>
<thead>
<tr>
<th>SR-lowMass</th>
<th>SR-highMass</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 tight (\tau) (OS)</td>
<td>2 medium (\tau) (OS), (\geq 1) tight (\tau) asymptotic di-(\tau) trigger</td>
</tr>
<tr>
<td>(75 < E_T^{\text{miss}} < 150 \text{ GeV})</td>
<td>(E_T^{\text{miss}} > 150 \text{ GeV})</td>
</tr>
<tr>
<td>(\tau p_T) cut described in Sec. V</td>
<td>light lepton veto and 3rd medium (\tau) veto</td>
</tr>
<tr>
<td>(Z/H) veto ((m(\tau_1, \tau_2) > 120 \text{ GeV}))</td>
<td>(b)-jet veto</td>
</tr>
<tr>
<td>(</td>
<td>\Delta\phi(\tau_1, \tau_2)</td>
</tr>
<tr>
<td>(\Delta R(\tau_1, \tau_2) < 3.2)</td>
<td></td>
</tr>
<tr>
<td>(m_T > 70 \text{ GeV})</td>
<td></td>
</tr>
</tbody>
</table>

In addition, the two \(\tau \)-lepton candidates are required to satisfy \(\Delta R(\tau_1, \tau_2) < 3.2 \), \(|\Delta\phi(\tau_1, \tau_2)| > 0.8 \) and \(m_{T2} > 70 \text{ GeV} \) to further suppress contributions from SM backgrounds. The product of acceptance and efficiency is around 0.04% (0.03%) and 0.53% (1.22%) for the reference points with \(\tau \) masses of 120 GeV and 280 GeV, respectively, and a \(\mu^0_{\tau} \) mass of 1 GeV in SR-lowMass (SR-highMass).

VI. STANDARD MODEL BACKGROUND ESTIMATION

The main SM processes contributing to the selected final states are multijet, \(W \) + jets and diboson production. Background events may contain a combination of “real” \(\tau \)-leptons, defined as correctly identified prompt \(\tau \)-leptons, or “fake” \(\tau \)-leptons, which can originate from a misidentified quark or gluon jet, an electron, or a muon.

In multijet events in the SRs, nearly all \(\tau \)-lepton candidates are misidentified jets. The multijet contribution in the SRs is estimated from data, as described in Sec. VI A. The contribution arising from heavy-flavor multijet events containing a real \(\tau \)-lepton from the heavy-flavor quark decay is included in the multijet estimation. The contribution of \(W \) + jets events, which contain one real \(\tau \)-lepton from the \(W \) boson decay and one or more misidentified jets, is estimated from MC simulation and normalized to data in a dedicated control region (CR), as described in Sec. VI B.

Diboson production contributes mainly events containing real \(\tau \)-leptons originating from \(WW \) and \(ZZ \) decaying into a \(\tau \nu
\nu \) final state. Additional SM backgrounds arise from \(Z \) + jets production, or events that contain a top quark or a top-quark pair in association with jets or additional \(W \) or \(Z \) bosons (collectively referred to as top-quark background in the following). The contribution from real \(\tau \)-leptons exceeds 90% in \(Z \) + jets and diboson production, and ranges from 45% to 75% in backgrounds containing top quarks according to the MC simulation. The contribution of fake \(\tau \)-leptons from heavy-flavor decays in jets is found to be negligible in MC simulation. To estimate
the irreducible background, which includes diboson, Z + jets and top-quark events, only MC simulated samples are used and validated in dedicated validation regions (VRs), as described in Sec. VI C.

A simultaneous fit of the event yields in the control regions, based on the profile likelihood method, is performed to normalize the multijet and W + jets background estimates and propagate systematic uncertainties, as described in Sec. VIII. The sources of systematic uncertainty in the background estimates are described in Sec. VII. Results showing the level of agreement in the validation regions after the fit are labeled "postfit" and results shown in the control regions prior to the fit are labeled "prefit."

A. Multijet background estimation

One of the dominant backgrounds in the SRs originates from jets misidentified as τ-leptons in multijet production. It accounts for 44% (30%) of the total SM contribution in SR-lowMass (SR-highMass). This contribution is estimated from data using the so-called ABCD method. All regions used for the ABCD method are schematically drawn in Fig. 2. Four exclusive regions, labeled as A, B, C, and D, are defined in a two-dimensional plane as a function of two (or more) discriminating variables that are largely uncorrelated. The ratio of events in the regions C and B is then equal to that in the regions D and A. The number of multijet events in region D, \(N_D \), can therefore be calculated from the multijet events in region A, \(N_A \), multiplied by the transfer factor \(T = N_C/N_B \), where \(N_C \) (\(N_B \)) is the number of multijet events in region C (B). The region D corresponds to the SR defined in Sec. V, whereas the regions A, B, and C are control regions defined accordingly. In the following, the regions A, B, C, D are labeled as CR-A, CR-B, CR-C and SR-lowMass (or SR-highMass), respectively. The ABCD method only provides a first-order estimate of multijet background, the normalization and uncertainty being then modified by a combined fit to CR-A (lowMass) and CR-A (highMass) described in Sec. VIII, in which the transfer factor is used as an input and fixed. The above two-fold method has the advantages of taking the possibility of contamination from signal in multijet CR-A into account in the signal exclusion fit described in Sec. X, as well as considering the correlation of systematic uncertainties among control regions and among background processes.

The definition of the regions used in the ABCD method for the multijet estimation is given in Table II; only those requirements that differ between the CRs/VRs and the SRs are listed. In all of the regions, the di-τ + \(E_T^{\text{miss}} \) or asymmetric di-τ triggers described in Sec. V are used. CR-A and CR-B include the events with two "loose" τ-leptons, either same sign (SS) or OS, and veto the events with two medium OS τ-leptons to remain orthogonal to the SR and reduce the potential contamination by signal events. CR-C and CR-B have events with lower \(m_T^2 \) and \(E_T^{\text{miss}} \); no \(\Delta R(\tau_1; \tau_2) \) requirement is applied. Furthermore, two sets of VRs, VR-E and VR-F, are defined corresponding to each SR. The validation regions are used to validate the extrapolation of the ABCD estimation to the SRs and to estimate the systematic uncertainty from the residual correlation between the τ-lepton identification and charge requirements and the kinematic variable \(m_T^2 \).

The number of multijet events in each control region and validation region is estimated from data after subtraction of other SM contributions estimated from MC simulation. In CR-B and VR-E, respectively, around 96% and 90% (75% and 79%) of the events are from multijet production in the lowMass (highMass) region. For CR-A and CR-C, respectively, the multijet purity is 74% and 57% (58% and 53%).

![Fig. 2. Illustration of the ABCD method for the multijet background determination for SR-lowMass (left) and SR-highMass (right). The control regions A, B, C, and signal region D for the ABCD method described in the text (labeled as CR-A, CR-B, CR-C and SR-lowMass/SR-highMass) are drawn as white boxes. Shown shaded and labeled VR are the regions E and F, which are used to validate the ABCD method and to estimate the systematic uncertainty. The transfer factor \(T \) used in the ABCD method is the ratio of number of multijet events in the regions C and B.](image-url)
TABLE II. Definition of the regions used in the ABCD method for the multijet estimation in the SRs. Only those requirements that differ between the CRs/VRs and the SRs are listed.

<table>
<thead>
<tr>
<th>CR–A (lowMass)</th>
<th>SR–lowMass</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 2 loose τ</td>
<td>2 tight τ (OS)</td>
</tr>
<tr>
<td>< 2 medium τ (OS)</td>
<td>≥ 1 tight τ</td>
</tr>
<tr>
<td>$\Delta R(\tau_1, \tau_2) < 3.2$</td>
<td>$\Delta R(\tau_1, \tau_2) < 3.2$</td>
</tr>
<tr>
<td>$75 < E_T^{miss} < 150$ GeV</td>
<td>$50 < E_T^{miss} < 100$ GeV</td>
</tr>
<tr>
<td>$m_{T2} > 70$ GeV</td>
<td>$m_{T2} > 70$ GeV</td>
</tr>
<tr>
<td>VR–E (lowMass)</td>
<td>VR–F (lowMass)</td>
</tr>
<tr>
<td>≥ 2 loose τ</td>
<td>2 tight τ (OS)</td>
</tr>
<tr>
<td>< 2 medium τ (OS)</td>
<td>≥ 1 tight τ</td>
</tr>
<tr>
<td>no $\Delta R(\tau_1, \tau_2)$ cut</td>
<td>no $\Delta R(\tau_1, \tau_2)$ cut</td>
</tr>
<tr>
<td>$E_T^{miss} < 150$ GeV</td>
<td>$E_T^{miss} < 150$ GeV</td>
</tr>
<tr>
<td>$10 < m_{T2} < 30$ GeV</td>
<td>$10 < m_{T2} < 30$ GeV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CR–A (highMass)</th>
<th>SR–highMass</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 2 loose τ</td>
<td>2 medium τ (OS)</td>
</tr>
<tr>
<td>< 2 medium τ (OS)</td>
<td>≥ 1 tight τ</td>
</tr>
<tr>
<td>$E_T^{miss} > 150$ GeV</td>
<td>$E_T^{miss} > 150$ GeV</td>
</tr>
<tr>
<td>$\Delta R(\tau_1, \tau_2) < 3.2$</td>
<td>$\Delta R(\tau_1, \tau_2) < 3.2$</td>
</tr>
<tr>
<td>$m_{T2} > 70$ GeV</td>
<td>$m_{T2} > 70$ GeV</td>
</tr>
<tr>
<td>VR–E (highMass)</td>
<td>VR–F (highMass)</td>
</tr>
<tr>
<td>≥ 2 loose τ</td>
<td>2 medium τ (OS)</td>
</tr>
<tr>
<td>< 2 medium τ (OS)</td>
<td>≥ 1 tight τ</td>
</tr>
<tr>
<td>$50 < E_T^{miss} < 100$ GeV</td>
<td>$50 < E_T^{miss} < 100$ GeV</td>
</tr>
<tr>
<td>$\Delta R(\tau_1, \tau_2) < 3.2$</td>
<td>$\Delta R(\tau_1, \tau_2) < 3.2$</td>
</tr>
<tr>
<td>$50 < m_{T2} < 70$ GeV</td>
<td>$50 < m_{T2} < 70$ GeV</td>
</tr>
<tr>
<td>CR–B (highMass)</td>
<td>CR–C (highMass)</td>
</tr>
<tr>
<td>≥ 2 loose τ</td>
<td>2 medium τ (OS)</td>
</tr>
<tr>
<td>< 2 medium τ (OS)</td>
<td>≥ 1 tight τ</td>
</tr>
<tr>
<td>no $\Delta R(\tau_1, \tau_2)$ cut</td>
<td>no $\Delta R(\tau_1, \tau_2)$ cut</td>
</tr>
<tr>
<td>$50 < E_T^{miss} < 100$ GeV</td>
<td>$50 < E_T^{miss} < 100$ GeV</td>
</tr>
<tr>
<td>$30 < m_{T2} < 50$ GeV</td>
<td>$30 < m_{T2} < 50$ GeV</td>
</tr>
</tbody>
</table>

The multijet background estimation is also validated using a different method, the *fake-factor method*. Fake factors (FF) are derived in a region enriched in multijet events consisting of events with two τ-lepton candidates with the same electric charge. Both τ-lepton candidates are used to compute the fake factor as the ratio to the number of leading or subleading τ-lepton candidates satisfying all of the nominal signal identification criteria over the number of τ-lepton candidates failing the requirement on the jet-veto BDT, and are parametrized by the p_T, η and N_{miss} of the τ-lepton candidates. An observed dependence on the BDT output score of the second τ-lepton candidate in the event is also taken into account. The expected number of multijet events entering a selection is computed by applying the fake factors to the yields in a set of sideband regions where either the leading, subleading or both τ-lepton candidates fail the identification requirements. The predicted multijet event yields from the ABCD method and the FF method in both SRs and the multijet VRs agree within the statistical and systematic uncertainties.

B. W + jets background estimation

The production of $W +$ jets events with at least one misidentified τ-lepton accounts for about 25% of the expected SM background in the two SRs. A dedicated control region (WCR) is used to normalize the $W +$ jets MC estimate to data and another region is used to validate the $W +$ jets estimate (W validation region, WVR). To suppress contamination by multijet events, the WCR is enriched in events where the W boson decays leptonically into a muon and a neutrino. Events are selected with a single-muon trigger using the lowest unprescaled p_T thresholds available. Events containing exactly one muon and one candidate τ-lepton with opposite electric charge are selected. The muon is required to have $p_T > 50$ GeV. The τ-lepton candidate must satisfy the medium τ-lepton identification criteria and is required to have $p_T > 60$ GeV.

The contribution from events with top quarks is suppressed by rejecting events containing b-tagged jets, and rejecting events which are kinematically compatible with $t\bar{t}$ production (top-tagged) through the use of the *constransverse mass* variable m_{C_T} [95]. The definitions of the WCR and WVR are given in Table III. The transverse mass of the $\mu + E_T^{miss}$ system, $m_{T,\mu}$, is used to reduce the contribution from $Z +$ jets, top-quark, and diboson events. To further suppress multijet and $Z +$ jets events, E_T^{miss} and $\Delta R(\tau, \mu)$ cuts are applied. The invariant mass of the muon and τ-lepton, $m(\mu, \tau)$, and $m_{T,\tau} + m_{T,\mu}$ are used to improve the $W +$ jets purity. Events in the WCR (WVR) are selected by requiring low (high) m_{T2}. The multijet contribution in the WCR (WVR) is estimated using the so-called OS–SS method by counting the number of events in data satisfying the same requirements as for the WCR (WVR) but with the electric charge of the two leptons having the same sign. Events from SM
processes other than multijet production are subtracted from the data counts in the SS region using MC simulation. The OS–SS method relies on the fact that in the multijet background the ratio of SS to OS events is close to unity, while it is around one-seventh for \(W + \text{jets} \) production. The latter is dominated by \(gu/gd \)-initiated processes that often give rise to a jet originating from a quark, the charge of which is anticorrelated with the \(W \) boson charge. Based on studies with simulated samples, a systematic uncertainty of 100% is assigned to the multijet estimate in the WCR.

The purity of the \(W + \text{jets} \) selection is around 79% (69%) in the WCR (WVR). The prefit \(m_{T2} \) distribution in the WCR is shown in Fig. 4, and good agreement, both for the normalization and shape, between data and SM predictions is observed. The contamination from signal in the WCR and WVR is negligible.

C. Irreducible background estimation

Irreducible SM backgrounds arise mainly from \(t\bar{t} \), single top quark, \(t\bar{t} + V \), \(Z + \text{jets} \), and multiboson (diboson (WW, WZ and ZZ), triboson (VVV)) and Higgs boson. They are estimated with MC simulation. Other SM backgrounds are found to be negligible.

The total contribution from \(t\bar{t} \), single top quarks, \(t\bar{t} + V \) and \(Z + \text{jets} \) amounts to about 8% and 20% of the total background in SR-lowMass and SR-highMass, respectively. The diboson background accounts for 23–25% of the

![Image of two plots showing postfit distributions in the multijet background validation region VR-F (lowMass) at left and VR-F (highMass) at right. The stacked histograms show the contribution of each relevant SM process. The multijet shape is taken from VR-E in the ABCD method and the normalization is determined by the transfer factor \(T \) and rescaled by a correction factor determined by the background-only fit to data, described in Sec. VIII. The hatched bands represent the combined statistical and systematic uncertainties in the sum of the SM backgrounds shown. For illustration, the distributions from the SUSY reference points (defined in Sec. III) are also shown as dashed lines.]

Table III. Summary of selection requirements for the W control (WCR) and validation (WVR) regions.

<table>
<thead>
<tr>
<th>WCR</th>
<th>WVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 medium (\tau) and 1 isolated (\mu) (OS) single-muon trigger</td>
<td>(p_T(\tau) > 60 \text{ GeV}, \ p_T(\mu) > 50 \text{ GeV}) (E_T^{\text{miss}} > 60 \text{ GeV})</td>
</tr>
<tr>
<td>(b)-jet veto and top-tagged events veto</td>
<td>(m(\mu, \tau) > 70 \text{ GeV}) (1 < \Delta R(\mu, \tau) < 3.5) (50 < m_{T,T,\tau} < 150 \text{ GeV}) (m_{T,T,\mu} + m_{T,T,\tau} > 250 \text{ GeV}) (m_{T2} > 70 \text{ GeV})</td>
</tr>
<tr>
<td>30 < (m_{T2}) < 70 GeV</td>
<td></td>
</tr>
</tbody>
</table>
total SM contribution in the SRs and mainly arises from $WW \to \ell^+\ell^-\nu\bar{\nu}$ and $ZZ \to \ell^+\ell^-\nu\bar{\nu}$ events, in which more than 96% of the contribution is from events with two real tauleptons according to the MC simulation.

The MC estimates are validated in regions enriched in $Z + \text{jets}$, top-quark, and multiboson events. For these validation regions, events are required to pass the combined di-$\tau + E_T^{\text{miss}}$ trigger or the asymmetric di-τ trigger with the same offline threshold as described in Table IV. Events are required to have at least two τ-lepton candidates satisfying the medium τ-lepton identification criteria or opposite electric charge, and at least one τ-lepton candidate must satisfy the “tight” τ-lepton identification criteria in order to be close to the SRs. In the top-quark validation regions (TVR), to increase the contribution from top-quark events, each event must satisfy the requirement $\Delta R(\tau_1, \tau_2) > 1.2$ and contain at least one b-tagged jet with $p_T > 20 \text{ GeV}$. In order to be close to the SRs, $m_{T2} > 60 \text{ GeV}$ is required. In the $Z + \text{jets}$ and multiboson validation regions (ZVR, VVVR), in order to suppress top-quark backgrounds, events containing b-tagged jets are vetoed. To further enhance the purity of $Z + \text{jets}$ events, $\Delta R(\tau_1, \tau_2)$, $m(\tau_1, \tau_2)$, and m_{T2} requirements are applied. Further, $m(\tau_1, \tau_2)$, $m_{T1} + m_{T2}$ and m_{T2} cuts are applied in order to enhance multiboson purity. The ZVRs, TVRs and VVVRs requirements are summarized in Table IV.

The data event yields and the SM predictions in the $W + \text{jets}$ (WVR), top quark (TVR), $Z + \text{jets}$ (ZVR) and multiboson (VVVR) validation regions are shown in Fig. 5. The data and SM predictions in each validation region agree within the uncertainties. The purity of the selection in $Z + \text{jets}$ and $t\bar{t}$ (multiboson) events is 83%–96% (47%–71%) in the respective validation regions.

VII. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties have an impact on the estimates of the background and signal event yields in the control and signal regions. Uncertainties arising from experimental and theoretical sources are estimated.

The main sources of experimental systematic uncertainty in the SM background estimates include τ-lepton and jet energy scale and resolution, τ-lepton identification, pileup, and uncertainties related to the modeling of E_T^{miss} in the simulation. The uncertainties in the energy and momentum scale of each of the objects entering the E_T^{miss} calculation are estimated, as well as the uncertainties in the soft-term resolution and scale. A pileup reweighting procedure is applied to simulation to match the distribution of the number of reconstructed vertices observed in data [96]. The corresponding uncertainty is derived by a reweighting in which $<\mu>$ is varied by ±4%. The main contributions to experimental systematic uncertainties in the SRs are from the τ-lepton identification and energy scale [89], and jet energy scale and resolution. Systematic uncertainties associated with the τ-lepton triggers are also included.

Table IV. Summary of selection requirements for top quark (TVR), $Z + \text{jets}$ (ZVR) and multiboson (VVVR) validation regions.

<table>
<thead>
<tr>
<th>Selections</th>
<th>TVR -lowMass</th>
<th>ZVR -lowMass</th>
<th>VVVR -lowMass</th>
<th>TVR -highMass</th>
<th>ZVR -highMass</th>
<th>VVVR -highMass</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m(\tau_1, \tau_2)$</td>
<td>≥1 b-jet</td>
<td>b-jet veto</td>
<td>≥2 medium τ (OS), ≥1 tight τ</td>
<td>≥1 b-jet</td>
<td>b-jet veto</td>
<td></td>
</tr>
<tr>
<td>$\Delta R(\tau_1, \tau_2)$</td>
<td>> 1.2</td>
<td>< 1</td>
<td>> 1.2</td>
<td>< 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_{T1} + m_{T2}$</td>
<td>—</td>
<td>—</td>
<td>> 250 GeV</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>m_{T2}</td>
<td>> 60 GeV</td>
<td></td>
</tr>
<tr>
<td>Trigger</td>
<td>asymmetric di-τ trigger</td>
<td>$60 < E_T^{\text{miss}} < 150$ GeV</td>
<td>$60 < E_T^{\text{miss}} < 150$ GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>τp_T and E_T^{miss} cuts described in Sec. V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

032009-9
with the τ-lepton identification. Other contributions are less than 3%.

Theoretical uncertainties affecting the SHERPA MC event generator predictions, for the $W +$ jets, $Z +$ jets and multijet production, are estimated by varying the PDF sets following the PDF4LHC recommendations [97] as well as the seven variations of the QCD renormalization and factorization scales in the matrix element by factors of 2 and 0.5 avoiding variations in opposite direction [98]. For $t\bar{t}$ production, uncertainties in the parton shower simulation, modeling of initial- and final-state radiation, and associated with the choice of event generator are considered. The theory uncertainties are implemented as a separate nuisance parameter for each scale variation and process; they are not constrained. The theory uncertainty in $W +$ jets (multijet) production is mainly due to the QCD renormalization scale variation, which amounts to 2%—3% (5%—6%) compared to the total background yield.

The following sources of uncertainty are considered for the ABCD method used to determine the multijet background: the correlation among the τ-lepton identification, the charge requirement, and the kinematic variable m_{T2}, the limited number of events in the CRs, and the subtraction of other SM backgrounds. The systematic uncertainty in the correlation is estimated by comparing the transfer factor from CR-B to CR-C to that of VR-E to VR-F. The combined experimental systematic uncertainty and theory uncertainty in the nonmultijet background subtraction in the control regions is estimated by considering the systematic uncertainty of the MC estimates of the nonmultijet background in these regions. These uncertainties are negligible due to high multijet purity in the CRs. The statistical uncertainty of the event yields in the control regions is propagated to the signal regions as a systematic uncertainty.

The systematic uncertainties of the background estimates in the SRs are summarized in Table V. The dominant uncertainties in the SRs are the statistical uncertainty of the MC predictions (11%—21%), τ-lepton identification and energy scale (10%—19%), and multijet background normalization (8%—12%).

The total uncertainty in the signal yields for the SUSY reference points defined in Sec. III is about 17%—31%. The dominant uncertainties in the SRs are from τ-lepton identification and energy scale, and from normalization uncertainties of the MC samples.

Table V. The postfit relative systematic uncertainty (%) in the background estimate (signal reference points) in the SR-lowMass and SR-highMass regions from the leading sources at top (bottom).

<table>
<thead>
<tr>
<th>Source of systematic uncertainty</th>
<th>SR-lowMass</th>
<th>SR-highMass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical uncertainty of MC samples</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>τ-lepton identification and energy scale</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>Normalization uncertainties of the multijet background</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Multijet estimation</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Jet energy scale and resolution</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Diboson theory uncertainty</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>$W +$ jets theory uncertainty</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>E_T^{miss} soft-term resolution and scale</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of systematic uncertainty</th>
<th>SR-lowMass</th>
<th>SR-highMass</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m(\tau, \tilde{\chi}^0_1)$ [GeV]</td>
<td>(120, 1)</td>
<td>(280, 1)</td>
</tr>
<tr>
<td>τ-lepton identification and energy scale</td>
<td>29</td>
<td>14</td>
</tr>
<tr>
<td>Statistical uncertainty of MC samples</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Jet energy scale and resolution</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Signal cross section uncertainty</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>E_T^{miss} soft-term resolution and scale</td>
<td>3</td>
<td><1</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>17</td>
</tr>
</tbody>
</table>
TABLE VI. Observed and expected numbers of events in the control and signal regions. The expected event yields of SM processes are given after the background-only fit described in Sec. VIII. The entries marked as “−” are negligible. The uncertainties correspond to the sum in quadrature of statistical and systematic uncertainties. The correlation of systematic uncertainties among control regions and among background processes is fully taken into account.

<table>
<thead>
<tr>
<th>SM process</th>
<th>Multijet CR-A</th>
<th>Multijet CR-A</th>
<th>WCR</th>
<th>SR</th>
<th>SR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-lowMass</td>
<td>-highMass</td>
<td></td>
<td>-lowMass</td>
<td>-highMass</td>
</tr>
<tr>
<td>Diboson</td>
<td>1.4 ± 0.6</td>
<td>1.9 ± 1.0</td>
<td>63 ± 21</td>
<td>1.4 ± 0.8</td>
<td>2.6 ± 1.4</td>
</tr>
<tr>
<td>W + jets</td>
<td>13 ± 4</td>
<td>4.7 ± 0.2</td>
<td>850 ± 70</td>
<td>1.5 ± 0.7</td>
<td>2.5 ± 1.8</td>
</tr>
<tr>
<td>Top quark</td>
<td>2.7 ± 0.9</td>
<td>3.3 ± 1.6</td>
<td>170 ± 40</td>
<td>0.04^+0.80^-0.04</td>
<td>2.0 ± 0.6</td>
</tr>
<tr>
<td>Z + jets</td>
<td>0.25^+1.43^-0.25</td>
<td>1.5 ± 0.8</td>
<td>13 ± 7</td>
<td>0.4^+0.5^-0.4</td>
<td>0.05^+0.13^-0.05</td>
</tr>
<tr>
<td>Multijet</td>
<td>55 ± 10</td>
<td>16 ± 6</td>
<td>–</td>
<td>2.6 ± 0.7</td>
<td>3.1 ± 1.4</td>
</tr>
<tr>
<td>SM total</td>
<td>72 ± 8</td>
<td>27 ± 5</td>
<td>1099 ± 33</td>
<td>6.0 ± 1.7</td>
<td>10.2 ± 3.3</td>
</tr>
<tr>
<td>Observed</td>
<td>72</td>
<td>27</td>
<td>1099</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>

Identification and the τ-lepton energy scale (14%–29%) and the statistical uncertainty of the signal MC predictions (6%–10%). The cross section uncertainty is taken into account as the main source of the signal modeling theoretical uncertainty; and it varies from 2% to 3% for the SUSY models considered.

VIII. STATISTICAL ANALYSIS

The statistical interpretation of the results is performed using the profile likelihood method implemented in the HistFitter framework [99]. The likelihood function is a product of the probability density functions for every region contributing to the fit. The number of events in a given CR or SR is described using a Poisson distribution. The likelihood function is a product of the probability density functions for every region contributing to the fit. The number of events in a given CR or SR is described using a Poisson distribution. The free parameters in the fit are the normalizations of the W + jets and nuisance parameters and are assumed to follow a Gaussian distribution with a width determined by the size of the uncertainty. Correlations between control and signal regions, and among background processes are taken into account through common nuisance parameters. The fit parameters are determined by maximizing the product of the Poisson probability functions and the Gaussian probability constraints for the nuisance parameters.

Three types of fits are performed for the combined SR-lowMass and SR-highMass regions.

(i) The background-only fit uses as input the number of observed events and expected SM contributions in the multijet CR-A and WCR as well as the transfer factors, which relate the number of multijet or W + jets events in the control regions to the number in the signal regions. The free parameters in the fit are the normalizations of the W + jets and

FIG. 6. The postfit m_{T2} distribution for SR-lowMass (left) and SR-highMass (right). The stacked histograms show the expected SM backgrounds. The multijet contribution is estimated from data using the ABCD method. The contributions of multijet and W + jets events are scaled with the corresponding normalization factors derived from the background-only fit described in Sec. VIII. The hatched distributions from the SUSY reference points (defined in Sec. III) are also shown as dashed lines. The last bin includes the overflow events.
TABLE VII. Expected event yields for the SUSY reference points (defined in Sec. III) are shown along with the one-sided p_0-values, and the observed and expected 95% C.L. upper limits on the visible non-SM cross section (σ_{vis}^{95}) are given. Values of $p_0 > 0.5$ are truncated at $p_0 = 0.5$.

<table>
<thead>
<tr>
<th>$m(\tilde{t}, \tilde{g}_{\chi})$</th>
<th>SR-lowMass</th>
<th>SR-highMass</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(120, 1)$ GeV</td>
<td>9.8 ± 3.0</td>
<td>7.2 ± 2.2</td>
</tr>
<tr>
<td>$(280, 1)$ GeV</td>
<td>6.1 ± 1.5</td>
<td>14.4 ± 2.5</td>
</tr>
<tr>
<td>p_0</td>
<td>0.11</td>
<td>0.50</td>
</tr>
<tr>
<td>Expected σ_{vis}^{95} [fb]</td>
<td>0.055\pm0.025</td>
<td>0.065\pm0.025</td>
</tr>
<tr>
<td>Observed σ_{vis}^{95} [fb]</td>
<td>0.08</td>
<td>0.05</td>
</tr>
</tbody>
</table>

multijet contributions. The signal is assumed to be absent in this fit.

(ii) A model-independent limit fit combines the data event yield in a given SR with the SM background estimate and its uncertainties to test whether any non-SM signal contributes to the SR. The significance of a possible excess of observed events over the SM prediction is quantified by the one-sided probability, $p(\text{signal} = 0)$ denoted by p_0, of the background alone to fluctuate to the observed number of events or higher using the asymptotic formula described in Ref. [100]. The background yields and uncertainties are taken from the background-only fit results. The presence of a non-SM signal would manifest itself as a small p_0 value.

(iii) In the model-dependent limit fit the SUSY signal is allowed to populate both the signal regions and the control regions, and it is scaled by a freely floating signal normalization factor. The background normalization factors are also determined simultaneously in the fit. A SUSY model with a specific set of sparticle masses is rejected if 95% C.L. upper limit on the signal normalization factor obtained in this fit is smaller than unity.

IX. RESULTS

The observed number of events in each control, and signal region and the expected contributions from SM processes are given in Table VI. The contributions of multijet and $W + j$ events are scaled with the normalization factors obtained from the background-only fit described in Sec. VIII. The multijet normalization in the SR is 1.03 times the prediction from the ABCD method and has an uncertainty of around 28%, due to the small number of observed events in the multijet CR-A. The $W + j$ events normalization is 0.91 ± 0.12. The m_{T2} distributions are shown in Fig. 6 for data, expected SM backgrounds, and the SUSY reference points defined in Sec. III. In both signal regions, observations and background predictions are found to be compatible within uncertainties.

Individual model-independent fits of the SR-lowMass and SR-highMass are used to derive the one-sided p_0-values. In addition, the observed and expected 95% C.L. upper limits on the visible non-SM cross section (σ_{vis}^{95}) are derived using the same model-independent fits. The σ_{vis}^{95} is defined as the product of acceptance, reconstruction efficiency and production cross section, obtained normalizing the limit on the non-SM yield in the SR by the integrated luminosity of the data sample. These results are shown in Table VII. All limits are calculated using the CL$_s$ prescription [101].

X. INTERPRETATION

In the absence of a significant excess over the expected SM background, the observed and expected numbers of events in the signal regions are used to set exclusion limits at 95% C.L. using the model-dependent limit fit. The exclusion limits for the combined SR-lowMass and SR-highMass for the simplified models described in Sec. III are shown in Fig. 7. The solid (dashed) lines show the observed (expected) exclusion contours. The band

FIG. 7. The 95% C.L. exclusion contours for the combined fit of SR-lowMass and SR-highMass for simplified models with (a) combined $\tilde{t}^+_R \tilde{g}^+_R$ production and (b) $\tilde{t}^+_L \tilde{g}^+_L$ only production. The text provides details of exclusion curves and uncertainty bands.
around the expected limit shows the ±1σ variations, including all uncertainties except theoretical uncertainties in the signal cross section. The dotted lines around the observed limit indicate the sensitivity to ±1σ variations of the theoretical uncertainties in the signal cross section.

Stau masses from 120 GeV to 390 GeV are excluded for a massless lightest neutralino in the scenario of combined stau-left and stau-right $\tilde{\tau}_L, \tilde{\tau}_R$ production. For stau-left pair production only, $\tilde{\tau}_L^+ \tilde{\tau}_L^-$, the exclusion region extends from 155 GeV to 310 GeV. While the stau-left pairs have a higher production cross section, the stau-right pairs have a higher efficiency times acceptance due to kinematic differences in the resulting decay products.

These limits extend significantly beyond previous results [25,27,102,103] in the high $\tilde{\tau}$ mass region.

Uncertainties in each background from scale variations are fully correlated across regions and bins, and uncorrelated between processes. In some cases this may result in uncertainties canceling out, while the higher-order corrections may not cancel out. A different fit with scale variations uncorrelated in all bins results in a less than 1% change in the limits on the excluded cross section near the edge of exclusion for combined left and right $\tilde{\tau} \tilde{\tau}$ production.

XI. CONCLUSION

Searches for stau-pair production in events with at least two hadronically decaying τ-leptons and missing transverse momentum were performed using 139 fb$^{-1}$ of pp collision data at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector at the LHC. Agreement between data and SM predictions is observed in two optimized signal regions. The results are used to set limits on the visible cross section for events beyond the Standard Model in each signal region.

Exclusion limits are placed on parameters of simplified electroweak supersymmetry models in scenarios of stau-pair production. Stau masses from 120 GeV to 390 GeV are excluded for a massless lightest neutralino in the scenario of direct production of stau pairs, with each stau decaying into the lightest neutralino and one τ-lepton. These limits extend significantly beyond previous results by the ATLAS and CMS experiments in the high $\tilde{\tau}$ mass region.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESPB, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; INFN, Italy; BMBF, DFG and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, CRC and Compute Canada, Canada; COST, ERC, ERDF, Horizon 2020, and Marie Skłodowska-Curie Actions, European Union; Investissements d’ Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [104]. Unfortunately, our colleague Jihyun Jeong passed away shortly before the completion of this work.

[27] CMS Collaboration, Search for direct pair production of supersymmetric partners to the τ lepton in proton-proton collisions at $\sqrt{s} = 13$ TeV, arXiv:1907.13179.

SEARCH FOR DIRECT STAU PRODUCTION IN EVENTS WITH ...

PHYS. REV. D 101, 032009 (2020)

[58] P. Bärnreuther, M. Czakon, and A. Mitov, Percent-Level-Precision Physics at the Tevatron: Next-to-Next-to-Leading Order QCD Corrections to $q\bar{q}\rightarrow n\bar{n}+X$, Phys. Rev. Lett. 109, 132001 (2012).

SEARCH FOR DIRECT STAU PRODUCTION IN EVENTS WITH...

PHYS. REV. D 101, 032009 (2020)
38 LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France
39 Nevis Laboratory, Columbia University, Irvington, New York, USA
40 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
41 Dipartimento di Fisica, Università della Calabria, Rende, Italy
41b INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
42 Physics Department, Southern Methodist University, Dallas, Texas, USA
43 Physics Department, University of Texas at Dallas, Richardson, Texas, USA
44 National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece
45a Department of Physics, Stockholm University, Stockholm, Sweden
45b Oskar Klein Centre, Stockholm, Sweden
46 Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany
47 Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
48 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
49 SUPA—School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
50 INFN e Laboratori Nazionali di Frascati, Frascati, Italy
51 Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
52 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
53a Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland
53b Dipartimento di Fisica, Università di Genova, Genova, Italy
54 INFN Sezione di Genova, Genova, Italy
55a II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
55b Laboratoire pour Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
56 Department of Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, China
57 Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao, China
58 School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai, China
59 Tsung-Dao Lee Institute, Shanghai, China
60 Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
61 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
62 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
63 Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
64 Department of Physics, University of Hong Kong, Hong Kong, China
65 Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
66a Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
66b Department of Physics, Indiana University, Bloomington, Indiana, USA
66c INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
67 ICTP, Trieste, Italy
68 Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine, Italy
69 INFN Sezione di Lecce, Italy
70 Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
70a INFN Sezione di Napoli, Napoli, Italy
71 Dipartimento di Fisica, Università di Napoli, Napoli, Italy
71a INFN Sezione di Pavia, Pavia, Italy
72 Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
72a INFN Sezione di Pisa, Pisa, Italy
73 Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
74 INFN Sezione di Roma Tor Vergata, Roma, Italy
75 Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
76 INFN Sezione di Roma Tre, Roma, Italy
77 Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
SEARCH FOR DIRECT STAUPRODUCTION IN EVENTS WITH … PHYS. REV. D 101, 032009 (2020)

166Tomsk State University, Tomsk, Russia
167Department of Physics, University of Toronto, Toronto, Ontario, Canada
168aTRIUMF, Vancouver, British Columbia, Canada
168bDepartment of Physics and Astronomy, York University, Toronto, Ontario, Canada
169Division of Physics and Tomonaga Center for the History of the Universe,
Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
170Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA
171Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
172Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
173Department of Physics, University of Illinois, Urbana, Illinois, USA
174Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia—CSIC, Valencia, Spain
175Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
176Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
177Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
178Department of Physics, University of Warwick, Coventry, United Kingdom
179Waseda University, Tokyo, Japan
180Department of Particle Physics, Weizmann Institute of Science, Rehovot, Israel
181Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
182Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik,
Bergische Universität Wuppertal, Wuppertal, Germany
183Department of Physics, Yale University, New Haven, Connecticut, USA
184Yerevan Physics Institute, Yerevan, Armenia

aDeceased.
bAlso at Department of Physics, King’s College London, London, United Kingdom.
cAlso at Istanbul University, Dept. of Physics, Istanbul, Turkey.
dAlso at Instituto de Física Teórica, IFT-UAM/CSIC, Madrid, Spain.
eAlso at TRIUMF, Vancouver BC, Canada.
fAlso at Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky, USA.
gAlso at Physics Department, An-Najah National University, Nablus, Palestine.
hAlso at Department of Physics, California State University, Fresno, USA.
iAlso at Department of Physics, University of Fribourg, Fribourg, Switzerland.
jAlso at Physics Dept, University of South Africa, Pretoria, South Africa.
kAlso at Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain.
lAlso at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
mAlso at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China.
nAlso at Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel.
oAlso at Departamento de Fisica, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
pAlso at Universita di Napoli Parthenope, Napoli, Italy.
qAlso at Institute of Particle Physics (IPP), Vancouver, Canada.
rAlso at Department of Physics, University of Adelaide, Adelaide, Australia.
sAlso at Dipartimento di Matematica, Informatica e Fisica, Università di Udine, Udine, Italy.
tAlso at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
uAlso at Borough of Manhattan Community College, City University of New York, New York, New York, USA.
vAlso at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
wAlso at Department of Physics, California State University, East Bay, USA.
xAlso at Institutio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
yAlso at Department of Physics, University of Michigan, Ann Arbor, Michigan, USA.
zAlso at LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France.
a Also at Graduate School of Science, Osaka University, Osaka, Japan.
b Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
c Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
d Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.
e Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
f Also at CERN, Geneva, Switzerland.
g Also at Department of Physics, Stanford University, Stanford, California, USA.
h Also at Manhattan College, New York, New York, USA.
i Also at Joint Institute for Nuclear Research, Dubna, Russia.
j Also at Hellenic Open University, Patras, Greece.
Also at The City College of New York, New York, New York, USA.

Also at Department of Physics, California State University, Sacramento, USA.

Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.

Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland.

Also at Louisiana Tech University, Ruston, Louisiana, USA.

Also at School of Physics, Sun Yat-sen University, Guangzhou, China.

Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.

Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.

Also at Department of Applied Physics and Astronomy, University of Sharjah, Sharjah, United Arab Emirates.

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.

Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France.

Also at National Research Nuclear University MEPhI, Moscow, Russia.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

Also at Giresun University, Faculty of Engineering, Giresun, Turkey.

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Paris, France.

Also at Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA.