Transverse momentum and process dependent azimuthal anisotropies in $\sqrt{s_{NN}} = 8.16$ TeV $p+Pb$ collisions with the ATLAS detector

ATLAS Collaboration

CERN, 1211 Geneva 23, Switzerland

Received: 31 October 2019 / Accepted: 7 January 2020
© CERN for the benefit of the ATLAS collaboration 2020

Abstract The azimuthal anisotropy of charged particles produced in $\sqrt{s_{NN}} = 8.16$ TeV $p+Pb$ collisions is measured with the ATLAS detector at the LHC. The data correspond to an integrated luminosity of 165 nb$^{-1}$ that was collected in 2016. Azimuthal anisotropy coefficients, elliptic v_2 and triangular v_3, extracted using two-particle correlations with a non-flow template fit procedure, are presented as a function of particle transverse momentum (p_T) between 0.5 and 50 GeV. The v_2 results are also reported as a function of centrality in three different particle p_T intervals. The results are reported from minimum-bias events and jet-triggered events, where two jet p_T thresholds are used. The anisotropies for particles with p_T less than about 2 GeV are consistent with hydrodynamic flow expectations, while the significant non-zero anisotropies for p_T in the range 9–50 GeV are not explained within current theoretical frameworks. In the p_T range 2–9 GeV, the anisotropies are larger in minimum-bias than in jet-triggered events. Possible origins of these effects, such as the changing admixture of particles from hard scattering and the underlying event, are discussed.

1 Introduction

The collisions of heavy nuclei at relativistic speeds generate hot and dense droplets of matter composed of deconfined quarks and gluons known as the quark–gluon plasma (QGP) [1,2]. Studies of the QGP at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) have yielded a wealth of surprising results that reveal a complex set of QGP-related phenomena. Bulk hadron production, occurring mainly at low transverse momentum ($p_T \lesssim 3$ GeV), exhibits significant azimuthal anisotropies that are well described in terms of nearly inviscid hydrodynamic flow of the QGP [1]. The final hadron momentum anisotropies arise from inhomogeneities in the initial spatial distribution of the QGP translated to momentum space via strong differential pressure gradients. These anisotropies are characterised in terms of a Fourier decomposition:

$$Y(\phi) = G \left[1 + 2 \sum_{n=1}^{\infty} v_n \cos(n(\phi - \Psi_n)) \right],$$

where v_n are the anisotropy coefficients, Ψ_n is the nth-order orientation of the anisotropy, and the normalization, G, is set by the integral of the distribution. In particular, v_2 and v_3 are referred to as the elliptic and triangular coefficients, respectively.

In addition, the production of high transverse momentum hadrons ($p_T \gtrsim 10$ GeV) is highly suppressed relative to the yields expected from nuclear thickness scaling of proton–proton collision yields [3]. This suppression is understood to result from high momentum transfer parton–parton interactions followed by the outgoing partons losing energy via radiative and collisional processes in the QGP – processes referred to as jet quenching [4–6]. These high-p_T hadrons and associated jets are also observed to have a non-zero azimuthal anisotropy [7–9], despite being well outside the nominal domain where the anisotropies are interpreted in terms of hydrodynamic flow. Instead, these anisotropies are understood to also arise from inhomogeneities in the initial spatial distribution of the QGP, but in this case, where the jet quenching effect is stronger for partons traversing longer paths through the QGP and weaker for partons traversing shorter paths [10]. In this way, low- and high-p_T hadrons have a common orientation of their azimuthal anisotropy in a given event, because both are correlated with the orientation of the initial geometry of the colliding nucleons. It is notable that, for more than a decade, an outstanding and challenging theoretical puzzle has been how to quantitatively describe both high-p_T hadron suppression and azimuthal anisotropy in Pb+Pb collisions [11]. There are a number of proposed explanations for resolving this puzzle in heavy-ion collisions – see Refs. [12–17] for examples.
Measurements in smaller collision systems, \(pp \) and \(p+Pb \) collisions at the LHC [18–23] and \(p+Au \), \(d+Au \), and \(^3He+Au \) at RHIC [24], indicate significant azimuthal anisotropies for low-\(p_T \) hadrons with patterns quite similar to those observed in the larger heavy-ion collision systems. For a recent review see Ref. [25]. These observations have raised the question of whether smaller and shorter-lived droplets of QGP are formed in these smaller collision systems. Indeed, models employing nearly inviscid hydrodynamics for the QGP provide a quantitative description of this large body of data at low \(p_T \) [26].

In contrast, measurements aimed at observing signatures of jet quenching in small collision systems have found no such effect. Measurements of hadron and jet \(p_T \) spectra at high \(p_T \) indicate production yields consistent with those in \(pp \) collisions scaled up by the expected nuclear thickness in \(p+Pb \) [27–29] and \(d+Au \) collisions [30], and that the \(p_T \)-balance between dijets or hadron–jet pairs is unmodified in \(p+Pb \) collisions within uncertainties [31,32]. The ATLAS experiment has also published results for the hadron azimuthal anisotropy up to \(p_T \approx 12 \text{ GeV} \) that hint at a non-zero anisotropy extending into the region beyond the usual hydrodynamic interpretation and into the regime of jet quenching [33]. However, it is unlikely that there can be differential jet quenching as a function of orientation relative to the QGP geometry if there is no jet quenching in \(p+Pb \) collisions as observed in the spectra. Thus, there are two related outstanding puzzles, one being the lack of jet quenching observed in the spectra, if indeed small droplets of QGP are formed, and the other being what mechanism can lead to high-\(p_T \) hadron anisotropies other than differential jet quenching.

This paper presents a measurement of the azimuthal anisotropy of unidentified hadrons as a function of \(p_T \) and centrality in \(\sqrt{s_{NN}} = 8.16 \text{ TeV} \) \(p+Pb \) collisions with the ATLAS detector. The measurement is made using two-particle correlations, measured separately for minimum-bias triggered (MBT) events and events requiring a jet with \(p_T \) greater than either 75 GeV or 100 GeV. There are contributions to the azimuthal correlations from particle decays, jets, dijets, and global momentum conservation, which have traditionally been referred to as ‘non-flow’ [34]. Using this nomenclature, a standard template fitting procedure is applied to subtract non-flow contributions [19,20]. To decrease the residual influence of the non-flow correlation in the jet events, a novel procedure is used to restrict the acceptance of particles according to the location of jets in the event. Assuming that the two-particle anisotropy coefficients are the products of the corresponding single-particle coefficients (factorisation), the elliptic and triangular anisotropy coefficients, \(v_2 \) and \(v_3 \), are reported as a function of \(p_T \). Additionally, \(v_2 \) results are presented as a function of centrality in three different \(p_T \) ranges. Finally, the fractional contribution to the correlation functions from jet particles is determined as a function of \(p_T \).

2 ATLAS detector

The ATLAS experiment [35] at the LHC is a multipurpose particle detector with a forward–backward symmetric cylindrical geometry and nearly 4\(\pi \) coverage.\(^1\) This analysis relies on the inner detector, the calorimeter, and the data acquisition and trigger system.

The inner detector (ID) comprises three major subsystems: the pixel detector and the silicon microstrip tracker, which extend up to |\(\eta \)| = 2.5, and the transition radiation tracker, which extends to |\(\eta \)| = 2.0. The inner detector covers the full azimuth and is immersed in a 2 T axial magnetic field. The pixel detector consists of four cylindrical layers in the barrel region and three discs in each endcap region. A new innermost layer, the insertable B-layer [36,37], has been operating as a part of the pixel detector since 2015. The silicon microstrip tracker comprises four cylindrical layers (nine discs) of silicon strip detectors in the barrel (endcap) region. The minimum-bias trigger scintillator detects charged particles over 2.07 < |\(\eta \)| < 3.86 using two hodoscopes of 12 counters positioned at |\(z \)| = 3.6 m.

The calorimeter is a large-acceptance, longitudinally segmented sampling detector covering |\(\eta \)| < 4.9 with electromagnetic (EM) and hadronic sections. The EM calorimeter is a lead/liquid-argon sampling calorimeter with an accordion-shaped geometry. It is divided into a barrel region, covering |\(\eta \)| < 1.475, and two endcap regions, covering 1.375 < |\(\eta \)| < 3.2. The hadronic calorimeter surrounds the EM calorimeter. It consists of a steel/scintillator-tile sampling calorimeter covering |\(\eta \)| < 1.7 and a liquid-argon calorimeter with copper absorber covering 1.5 < |\(\eta \)| < 3.2. The forward calorimeter (FCal) is a liquid-argon sampling calorimeter located on either side of the interaction point. It covers 3.1 < |\(\eta \)| < 4.9 and each half is composed of one EM and two hadronic sections, with copper and tungsten serving as the absorber material, respectively. The FCal is used to characterise the centrality of \(p+Pb \) collisions as described below.

In this analysis, a two-level trigger system was used to select events, with a first-level (L1) trigger implemented in hardware followed by a software-based high-level trig-

\(^1\) ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (\(r, \phi \)) are used in the transverse plane, \(\phi \) being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle \(\theta \) as \(\eta = -\ln \tan(\theta/2) \). Transverse momentum and transverse energy are defined as \(p_T = p \sin \theta \) and \(E_T = E \sin \theta \), respectively. Angular distance \(\Delta R \) is defined as \(\sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \).
ger (HLT) which reconstructs the event in a manner similar to the final offline reconstruction. Events used for the measurements presented in this paper were selected using several triggers. MBT events were selected by a trigger that requires a signal in at least one minimum-bias trigger scintillator counter at L1 [38] followed by the requirement of at least one reconstructed track at the HLT stage. Events with a high-\(p_T \) jet were acquired using a high-level jet trigger covering the central region (|\(\eta \)| < 3.2). These events were first required to have energy deposits at L1 that are compatible with the presence of a jet and then to pass various thresholds for the jet transverse energy at the HLT stage.

3 Data and event selection

During \(p+Pb \) data-taking in 2016, the LHC was configured with a beam composed of protons with an energy of 6.5 TeV and a beam of lead ions with an energy per nucleon of 2.51 TeV. This resulted in a collision system with proton–nucleon centre-of-mass energy \(\sqrt{s_{NN}} = 8.16 \) TeV and a rapidity shift of the centre of mass by +0.465 units in the proton-going direction relative to the laboratory frame. The data were taken over two running periods with different configurations of the LHC beam directions. In the first period of data-taking, comprising a total integrated luminosity of 57 \(nb^{-1} \), the lead ions circulated clockwise in beam 1, while the protons circulated counterclockwise in beam 2. For the second period of data-taking, which comprised 108 \(nb^{-1} \), the beam species were interchanged. The analysed data were provided by the minimum-bias trigger described above, which was prescaled and sampled 0.079 \(nb^{-1} \) of luminosity. In addition, data were selected by the high-level jet triggers with transverse energy thresholds of 75 GeV and 100 GeV, which sampled 26 \(nb^{-1} \) and the full 165 \(nb^{-1} \) of \(p+Pb \) luminosity, respectively.

Events selected by the triggers described above were reconstructed offline following procedures that were optimised for the Run-2 detector configuration [39]. Events are required to have at least one reconstructed vertex. To reduce the contribution from events with multiple in-time \(p+Pb \) interactions, events with more than one vertex are used only if the additional vertices have fewer than seven associated reconstructed tracks with \(p_T > 0.4 \) GeV. That is, events are only allowed to have one vertex with seven or more associated tracks. Two classes of jet events were defined by requiring an offline jet with \(p_T > 75 \) GeV or \(p_T > 100 \) GeV respectively, and were drawn from the jet-triggered event samples with the analogous online thresholds. The trigger efficiency, given this offline selection, was greater than 97% for both jet samples.

Events were further characterised by the sum of the transverse energy in the FCal module in the direction of the Pb beam, \(\Sigma E_{T}^{Pb} \). The event centrality is defined as the \(\Sigma E_{T}^{Pb} \) percentile of the events in minimum-bias collisions, after accounting for the inefficiency introduced by the trigger and event selection criteria, and was determined in a way similar to previous analyses of Run-1 \(p+Pb \) data at \(\sqrt{s_{NN}} = 5.02 \) TeV [27,40]. Events within the 0–90% centrality range were used in this analysis, with low (high) values corresponding to high-\(\Sigma E_{T}^{Pb} \) (low-\(\Sigma E_{T}^{Pb} \)) events with large (small) overall particle multiplicity. Since the acceptance of the FCal is separate from that of the ID, this centrality definition has the benefit of reducing event-selection-induced biases in the measured quantities [41].

4 Track and jet reconstruction

The reconstruction, selection, and calibration of charged-particle tracks and calorimetric jets, and their performance as determined using Monte Carlo (MC) simulations, are described below.

Charged-particle tracks and collision vertices are reconstructed in the ID using the algorithms described in Ref. [39]. Inner detector tracks with \(p_T > 0.4 \) GeV and |\(\eta \)| < 2.5 were required to satisfy a set of quality criteria similar to those described in Ref. [19]. The total number of reconstructed ID tracks satisfying these selection criteria in a given event is called the multiplicity or \(N_{\text{ch}} \). The reconstruction and selection efficiency for primary [42] charged hadrons to meet these criteria was determined using a sample of 3 million minimum-bias \(p+Pb \) events simulated by the Hijing generator [43]. Events were generated with both beam configurations. The ATLAS detector response to the generated events was determined through a full Geant4 simulation [44,45], and the simulated events were reconstructed in the same way as the data. Over the measured kinematic range, the efficiency varies from approximately 50% for the lowest-\(p_T \) hadrons at large pseudorapidity, to greater than 90% for hadrons with \(p_T > 3 \) GeV at mid-rapidity.

Jets are reconstructed using energy deposits in the calorimeter system, |\(\eta \)| < 4.9, in a range partially overlapping with both the ID and the FCal used to determine centrality. The reconstruction closely follows the procedure used in other measurements for Pb+Pb and \(pp \) collisions [46,47]. Jets are measured by applying the anti-\(k_T \) algorithm [48,49] with radius parameter \(R = 0.4 \) to energy deposits in the calorimeter. No jets with \(p_T < 15 \) GeV are considered. An iterative procedure is used to obtain an event-by-event estimate of the \(\eta \)-dependent underlying-event energy density, while excluding jets from that estimate. The jet kinematics are corrected for this background and for the detector response using an \(\eta \)- and \(p_T \)-dependent calibration derived from fully simulated and reconstructed PYTHIA 8 [50] hard-scattering events configured with the NNPDF23LO parton distribution func-
tion set [51] and the A14 set of tuned parameters [52] to model non-perturbative effects. An additional, small correction, based on in situ studies of jets recoiling against photons, Z bosons, and jets in other regions of the calorimeter, is applied [53,54]. Simulation studies show that for jets with \(p_T > 75 \) GeV, the average reconstructed jet \(p_T \) is within 1% of the generator level jet \(p_T \) and has a relative \(p_T \) resolution below 10% after the calibration procedure.

5 Analysis procedure

This analysis is based on previous ATLAS two-particle correlation studies [19,20]. To construct the two-particle correlation functions, the selected inner-detector tracks with \(p_T > 0.4 \) GeV are divided into two sets, referred to as A- and B-particles in this paper, although they are sometimes referred to as trigger and associated particles in the literature. To reduce the contribution of non-flow correlations from decays and jets, two restrictions are placed on A–B particle pairs drawn from the two sets. First, as was done in previous analyses [19,20], the particles are required to be separated in pseudorapidity with \(|\Delta \eta| = |\eta^A - \eta^B| > 2 \). This requirement removes the short-range decay and jet fragmentation structure, while emphasising global, early-time correlations. Due to the enhanced contribution from jet correlations in the jet-triggered events, an additional constraint was developed for this analysis. Namely, B-particles are required to be separated in pseudorapidity by one unit from all reconstructed jets with \(p_T^{\text{jet}} > 15 \) GeV, i.e. \(|\Delta \eta| = |\eta - \eta^A| > 1 \). This latter requirement is only applied to the jet-triggered events, and in this way, the jets act as a source of high-\(p_T \) A-particles but contribute few B-particles.

The correlation functions, \(S(\Delta \phi) \), are defined as the yields of particle pairs passing the above event and pair selection, binned in \(\Delta \phi = \phi^A - \phi^B \), and normalised by the total number of A-particles. Corrections for the imperfect trigger and tracking efficiencies are applied as weights to the entries of the correlation functions. A mixed-event correction, \(M(\Delta \phi) \), is generated by correlating A-particles from one event with B-particles from a different event with a vertex \(z \)-position differing by less than 10 mm and a number of reconstructed charged particles \(N_{\text{ch}}^{\text{rec}} \) differing by less than 10 for \(N_{\text{ch}}^{\text{rec}} < 100 \) and less than 20 for \(N_{\text{ch}}^{\text{rec}} > 100 \). Thus, the mixed events contain only trivial detector acceptance effects and no physical correlations. To reduce the statistical uncertainty introduced by the correction, each event is mixed with five others meeting the above vertex \(z \) and \(N_{\text{ch}}^{\text{rec}} \) conditions. The corrected correlation is, then, \(Y(\Delta \phi) = S(\Delta \phi)/M(\Delta \phi) \), where \(M(\Delta \phi) \) is normalised such that the ratio preserves the overall integral of \(S(\Delta \phi) \). Jet events are mixed with other jet events, and the \(|\Delta \eta| \) condition is applied with respect to the jets in the A-particle event only. Thus, the B-particle acceptance is consistent between the same- and mixed-event correlations.

To extract the anisotropy coefficients while accounting for residual non-flow, the ATLAS template fitting procedure, as used for previous results [19,20], is applied to \(Y(\Delta \phi) \). In this procedure, \(Y(\Delta \phi) \) is found for two different selections of event activity quantified by centrality: a central selection, \(Y^{\text{cent}}(\Delta \phi) \), and a peripheral selection, \(Y^{\text{peri}}(\Delta \phi) \). In this analysis, the peripheral selection corresponds to the 60–90% centrality interval. Assuming that the shape of the non-flow correlation is independent of centrality, \(Y^{\text{cent}}(\Delta \phi) \) is expressed as

\[
Y^{\text{cent}}(\Delta \phi) = F Y^{\text{peri}}(\Delta \phi) + G \left[1 + 2 \sum_{n=2}^{4} v_{n,n} \cos(n \Delta \phi) \right],
\]

where \(F \) and each \(v_{n,n} \) are parameters of a global \(\chi^2 \) fit, and \(G \) is fixed by the requirement that the integral of the fit model is that of \(Y^{\text{cent}} \). The parameter \(F \) allows for a linear scaling of the non-flow between the two centrality classes. The fit includes the fourth harmonic, \(v_{4,4} \), but it is not presented in the results because it is statistically insignificant. The fit \(\chi^2 \) function incorporates the statistical uncertainties from both \(Y^{\text{cent}} \) and the peripheral template, \(Y^{\text{peri}} \), although the examples shown in Figs. 1 and 2 do not show the uncertainties of \(Y^{\text{peri}} \) for readability. The statistical uncertainties of the extracted \(v_{n,n} \) parameters are returned from the MINUIT \(\chi^2 \) minimiser [55], accounting for correlations between parameters.

Figure 1 shows an example of two template fits using jet-triggered events with jet \(p_T > 100 \) GeV. The left plot shows the fit for correlations made without the B-particle jet rejection condition, and the right plot shows the same correlation, but with the condition \(|\Delta \eta| > 1 \) applied. In this figure, \(Y^{\text{ridge}} \) represents the \(N \)th-order harmonic component of the fit. The left plot has a dominant non-flow contribution, and a distortion in the resulting subtracted distribution is observed near \(\Delta \phi \approx \pi \). Removing much of the jet correlation in this way reduces the overall sensitivity to the template method assumption that the shape of the non-flow contribution is the same for the central and peripheral selections. However, violation of this assumption will introduce distortions that could potentially bias the harmonic coefficients. This is explicitly tested by varying the centrality selection of the peripheral template, as discussed further in Sect. 6. Two additional examples of template fits from the jet-triggered events with jet \(p_T > 100 \) GeV and with the B-particle jet rejection are plotted in Fig. 2. These show the behaviour of the template fits for high A-particle \(p_T \).

If the particle momentum correlations originate from a global field, as is the case for collective expansion, the $v_{n,n}$ will factorise such that $v_{n,n}(p_A^A, p_B^B) = v_n(p_A^A) \cdot v_n(p_B^B)$.

\[v_n(p_A^A) \]
By assuming this relation and making specific p_T selections on A- and B-particles, the single-particle $v_n(p_T)$ can be obtained from

$$v_n(p_T) = v_{n,A}(p_T, p_T^B)/\sqrt{v_{n,A}(p_T^A, p_T^B)},$$

where $v_{n,A}(p_T^A, p_T^B)$ is determined with A- and B-particles having p_T in range p_T^A and p_T^B, respectively, and $v_{n,A}(p_T^A, p_T^B)$ is determined with A- and B-particles both having p_T in range p_T^B. In this analysis, this range is nominally $p_T^B > 0.4$ GeV, although the dependence of the extracted anisotropy on this choice is explored in Sect. 7.

The relative yield of particle pairs entering the correlation functions is estimated assuming a simple, two-component model of particle production. Particles are assumed to be produced either by hard scattering (HS) processes, such as jet production, or by soft underlying event (UE) processes. With this assumption, the correlation functions are constructed from pairs pulled from a mixture of the two sources. Particle pairs can be formed in the following four A–B combinations: UE–UE, UE–HS, HS–UE, and HS–HS. The event-by-event yields of the UE and HS processes are estimated by classifying the charged particles according to their azimuthal orientation relative to the leading jet or, in the case of MBT events that contain no jets with $p_T > 15$ GeV and $|\eta| < 4.9$, relative to the leading hadron. The following regions are defined relative to this leading vector:

- towards: $(|\phi_B - \phi_{\text{jet}}| < \frac{\pi}{4}) \cup (|\phi_B - \phi_{\text{jet}}| > \frac{3\pi}{4})$
- transverse: $\frac{\pi}{4} < |\phi_B - \phi_{\text{jet}}| < \frac{3\pi}{4}$

Then, assuming that HS particles are completely contained in the towards region and the UE particles are distributed uniformly in azimuth, the following relations are inferred:

$$N_{\text{UE}} = 2N_{\text{trans}},$$
$$N_{\text{HS}} = N_{\text{toward}} - N_{\text{trans}},$$

where N_{UE} and N_{HS} are the single-particle yields from UE and HS processes, respectively, and N_{trans} and N_{toward} are the particle yields in the transverse and toward regions, respectively. The quantities N_{UE} and N_{HS} are statistically determined from the event averaged N_{trans} and N_{toward} and are, thus, insensitive to event-by-event fluctuations. However, it is not possible to classify individual particles. It should be noted that the assumptions used in this derivation are likely not perfect; for example, the UE is not uniformly distributed in ϕ, event by event, due to the presence of azimuthal anisotropy. The leading object may be more likely to be oriented with the
Fig. 2 Template fitting output for events with jet $p_T > 100$ GeV with 60–90% peripheral selection and 0–5% central selection. The left plot is made with $11 < p_A^T < 16$ GeV and the right plot with $16 < p_A^T < 100$ GeV. In the upper panels, the open circles show the scaled and shifted peripheral template with uncertainties omitted, the closed circles show the central data, and the red line shows the fit (template and harmonic functions). The blue dashed line shows the second-order harmonic component, Y^{ridge}_2, and the orange dotted line shows the third-order harmonic component, Y^{ridge}_3 (the $n=2$ and $n=3$ contributions to the sum in Eq. 1, respectively). The lower panels show the difference between the central data and the peripheral template along with the second and third harmonic functions. The resulting v_2, v_3, and global fit χ^2/NDF values are reported in the legends. In these fits, NDF = 35

anisotropy, in which case the UE yield would be underestimated and the HS yield overestimated. However, the analysis proceeds with the assumptions as given and includes no additional uncertainty for this potential effect.

The $\Delta\eta^{AB}$ and $\Delta\eta^{IB}$ rejections produce a geometric correlation between the yields of A- and B-particles and, thus, the number of pairs is not the simple product of the two individual yields. Accounting for the dependencies, the total yield of particle pairs can be expressed in the following way

$$Y_{X-Z} = \int_{-2.5}^{2.5} \frac{dN_{X-Z}(\eta^A)}{d\eta^A} \left[\int_2^5 d^2 N_{X-Z} (\eta^A, |\Delta\eta^{AB}|) \frac{dN_{X-Z}(\eta^A, |\Delta\eta^{AB}|)}{d\eta^A d|\Delta\eta^{AB}|} \right] d\eta^A,$$

where X–Z could be any pairwise combination of UE and HS. In the case of jet events, the $\Delta\eta^{IB}$ condition is enforced when filling the η^A and $\Delta\eta^{AB}$ distributions so its effects are taken into account.

6 Systematic uncertainties

The systematic uncertainties fall into two categories: those associated with both the MBT and jet events and those associated with only the jet events. The uncertainties are determined by assessing the difference between the nominal value of v_2 or v_3 and the value after a given variation. Unless otherwise stated, the uncertainties are defined as asymmetric one-standard-deviation errors. The final uncertainty is the quadrature sum of the uncertainty from each individual source. The relative downward and upward systematic uncertainties from different sources and all sources combined are shown for v_2 in Table 1 and for v_3 in Table 2. The rest of this section focuses primarily on the systematic uncertainties of v_2. While the absolute uncertainties in v_2 and v_3 are of similar magnitude, this represents larger relative uncertainties in the v_3 values since they are generally smaller than the v_2 values at any given p_T.

For both the MBT and jet events, the sensitivity to the trigger and tracking efficiency corrections was assessed by removing each. This variation (‘Track/trig Eff.’ in Table 1) yields a 0–2% (2–4%) difference for MBT (jet) events, depending on track p_T, and is subdominant. In the construction of the correlation functions, the uncertainty in the mixed-event correction was again found by removing it from the analysis. This variation results in an uncertainty that vanishes at low p_T but grows to 20% (10%) at high p_T for MBT (jet) events, but remains subdominant to statistical uncertainties over the whole p_T range. Regarding the template fitting procedure, the centrality range for the peripheral reference
Table 1
Systematic uncertainty summary for anisotropy coefficients v_2. The values are approximate, as they represent the average variation in each p_T range, and are reported relative to v_2. Negative and positive values indicate downward and upward uncertainties respectively. Commas separate the downward and upward uncertainty where applicable.

<table>
<thead>
<tr>
<th>Source</th>
<th>$p_T < 2$ GeV</th>
<th>$p_T = 2$–10 GeV</th>
<th>$p_T > 10$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MBT</td>
<td>Jet</td>
<td>MBT</td>
</tr>
<tr>
<td>Track/trig Eff.</td>
<td>$< +1%$</td>
<td>$+2%$</td>
<td>$< +1%$</td>
</tr>
<tr>
<td></td>
<td>$-2%$</td>
<td>$+2%$</td>
<td>$< +1%$</td>
</tr>
<tr>
<td>Mixed event</td>
<td>$< +1%$</td>
<td>$< +1%$</td>
<td>$-4%$</td>
</tr>
<tr>
<td></td>
<td>$+20%$</td>
<td>$+10%$</td>
<td>$-2%$</td>
</tr>
<tr>
<td>Peri. reference</td>
<td>$-1, +2%$</td>
<td>$-2, +2%$</td>
<td>$-2, +10%$</td>
</tr>
<tr>
<td></td>
<td>$-2, +10%$</td>
<td>$-10, +18%$</td>
<td>$-2, +10%$</td>
</tr>
<tr>
<td>Trig jet p_T</td>
<td>$-6, +6%$</td>
<td>$-2, +10%$</td>
<td>$-6, +6%$</td>
</tr>
<tr>
<td>Reject jet p_T</td>
<td>$-5, +5%$</td>
<td>$-5%$</td>
<td>$-5%$</td>
</tr>
<tr>
<td>Reject jet mult.</td>
<td>$-5%$</td>
<td>$-5%$</td>
<td>$-5%$</td>
</tr>
<tr>
<td>Disabled HEC sector</td>
<td>$< +1%$</td>
<td>$+10%$</td>
<td>$-15%$</td>
</tr>
<tr>
<td></td>
<td>$-5%$</td>
<td>$-5%$</td>
<td>$-25%$</td>
</tr>
<tr>
<td>Total</td>
<td>$-5, +4%$</td>
<td>$-5, +10%$</td>
<td>$-20, +20%$</td>
</tr>
</tbody>
</table>

Table 2
Systematic uncertainty summary for anisotropy coefficients v_3. The values are approximate, as they represent the average variation in each p_T range, and are reported relative to v_3. Negative and positive values indicate downward and upward uncertainties respectively. Commas separate the downward and upward uncertainty where applicable.

<table>
<thead>
<tr>
<th>Source</th>
<th>$p_T < 2$ GeV</th>
<th>$p_T = 2$–10 GeV</th>
<th>$p_T > 10$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MBT</td>
<td>Jet</td>
<td>MBT</td>
</tr>
<tr>
<td>Track/trig Eff.</td>
<td>$+1%$</td>
<td>$+4%$</td>
<td>$+6%$</td>
</tr>
<tr>
<td>Mixed event</td>
<td>$< +1%$</td>
<td>$-4%$</td>
<td>$-20%$</td>
</tr>
<tr>
<td></td>
<td>$-200%$</td>
<td>$+20%$</td>
<td>$-150, +100%$</td>
</tr>
<tr>
<td>Peri. reference</td>
<td>$-2, +10%$</td>
<td>$-7, +10%$</td>
<td>$-8, +8%$</td>
</tr>
<tr>
<td></td>
<td>$-20, +10%$</td>
<td>$-20, +10%$</td>
<td>$-200, +100%$</td>
</tr>
<tr>
<td>Trig jet p_T</td>
<td>$< +1%$</td>
<td>$-2, +10%$</td>
<td>$< +1%$</td>
</tr>
<tr>
<td>Reject jet p_T</td>
<td>$-5%$</td>
<td>$-5%$</td>
<td>$-5%$</td>
</tr>
<tr>
<td>Reject jet mult.</td>
<td>$-10%$</td>
<td>$-15%$</td>
<td>$-15%$</td>
</tr>
<tr>
<td>Disabled HEC sector</td>
<td>$-5%$</td>
<td>$-5%$</td>
<td>$-10%$</td>
</tr>
<tr>
<td>Total</td>
<td>$-10, +10%$</td>
<td>$-20, +10%$</td>
<td>$-30, +20%$</td>
</tr>
<tr>
<td></td>
<td>$-50, +50%$</td>
<td>$-50, +50%$</td>
<td>$-50, +50%$</td>
</tr>
</tbody>
</table>

Fig. 3
Distribution of v_2 (left) and v_3 (right) plotted as a function of the A-particle p_T. Values from MBT events are plotted as black squares, and those from events with jet $p_T > 75$ GeV and events with jet $p_T > 100$ GeV are plotted as blue circles and orange diamonds respectively. Statistical uncertainties are shown as narrow vertical lines on each point, and systematic uncertainties are presented as coloured boxes behind the points.
Fig. 4 Measured v_2 values plotted as a function of the A-particle p_T for MBT events (top), events with jet $p_T > 75$ GeV (bottom left), and events with jet $p_T > 100$ GeV (bottom right). The nominal values (closed black circles) are overlaid with points generated by making different B-particle p_T selections: $0.4 < p_B^T < 1$ GeV (blue open circles), $1 < p_B^T < 2$ GeV (open violet squares), and $2 < p_B^T < 3$ GeV (open red triangles). The points with different B-particle p_T selections are offset slightly from the nominal horizontal-axis positions to make the uncertainties visible. For clarity, systematic uncertainties are omitted from the three sets of restricted B-particle p_T ranges; they are, however, consistent with those from the inclusive results and are highly correlated between the selections.

selection was varied from the nominal 60–90% to 50–70% and 70–90%. This variation (‘Peri. reference’) results in an uncertainty of about 2% at low p_T and increasing to about 10% or 18% in the mid p_T range between 2 and 10 GeV depending on the event trigger. This last uncertainty is dominant in this category for most of the p_T range probed in the measurement. At high p_T, the sensitivity of the measurements in MBT events to the mixed event correction and reference selection is significantly higher than in jet events; this is particularly noticeable for the v_2 values, where the relative uncertainties in the MBT events for $p_T > 10$ GeV are 5–10 times larger than in the jet-triggered events.

The following set of uncertainties is associated with jet events only. To assess the sensitivity to the uncertainty in the jet energy scale and the impact of imperfect trigger efficiency, the jet p_T thresholds used to select events were varied from 75 GeV and 100 GeV to 80 GeV and 105 GeV, respectively. This variation (‘Trig jet p_T’) results in a symmetric uncertainty that is smaller than 1% at low particle p_T and that increases to about 10% with increasing p_T. It is subdominant to other sources in this category. The jets used in the B-particle jet rejection were varied to include only jets with $p_T > 20$ GeV instead of the nominal 15 GeV (‘Reject jet p_T’). The 2% and 10% differences at low and high p_T are incorporated as a symmetric uncertainty that is subdominant to other sources in this category. The $\Delta \eta^{1B}$ rejection allows jets to be composed of only a single particle that may originate in the tail of the UE particle p_T spectrum. Thus, the jets used in this rejection were varied to require at least three tracks in a $\Delta R = 0.4$ cone around the jet axis (‘Reject jet mult.’). The uncertainty associated with this variation is about 5% and subdominant to the others in this category. An additional uncertainty is used to cover the impact of a sector of the hadronic endcap calorimeter (HEC) being disabled for the running period. The disabled sector was in the range $1.5 < \eta < 3.2$ and $-\pi < \phi < -\pi/2$. This uncer-
Fig. 5 Distribution of v_2 plotted as a function of centrality for MBT events (black squares), events with jet $p_T > 75$ GeV (blue circles), and events with jet $p_T > 100$ GeV (orange diamonds). The results are obtained in three different selections of the A-particle p_T: $0.5 < p_T < 2$ GeV (top left), $2 < p_T < 9$ GeV (top right), and $9 < p_T < 100$ GeV (bottom). Statistical uncertainties are shown as narrow vertical lines on each point, and systematic uncertainties are presented as coloured boxes behind the points.
Fig. 6 Coefficients v_2 and v_3 (left panel) and R_{PbPb} (right panel) plotted as a function of particle p_T for $p+\text{Pb}$ collisions. The left panel is for central 0–5% events from the jet $p_T > 100$ GeV event sample. Statistical uncertainties are shown as narrow vertical lines on each point, and systematic uncertainties are presented as coloured boxes behind the points. The left panel has two sets of curves showing theoretical predictions from a jet quenching framework with two different initial geometries in 0–4% central collisions [14]; the upper two (red/orange) are v_2 for ’size a’ (dotted) and ’size b’ (dash-dotted) configurations, and the lower two (blue) are v_3 where the ’size a’ (dash-dotted) and ’size b’ (dashed) curves are nearly indistinguishable from each other. The right panel shows R_{PbPb} data from ATLAS [57] and Q_{PbPb} data from ALICE [41]. Theoretical calculations (red/orange lines) from Ref. [14] are also shown in this panel; the dotted line gives the results of the ’size a’ configuration and the dash-dotted line gives the results of the ’size b’ configuration.

7 Results

Figure 3 shows the extracted second- (v_2) and third-order (v_3) anisotropy coefficients for the MBT events compared to those from both selections of jet events plotted as a function of A-particle p_T in the range $0.5 < p_T < 100$ GeV. Each set of values is from events with the same 0–5% centrality selection. Points are located on the horizontal axis at the mean p_T of tracks within any given bin. The v_2 and v_3 coefficients increase as a function of p_T in the low p_T region ($p_T < 2–3$ GeV), then decrease ($2–3 < p_T < 9$ GeV), and finally plateau for high p_T ($p_T > 9$ GeV). The v_2 coefficients are consistent with being independent of p_T for $p_T > 9$ GeV, while the larger uncertainties in the values of v_3 preclude any strong conclusion.

The v_2 results show agreement within uncertainties between the MBT and jet events for the low p_T ($p_T \lesssim 2$ GeV) and high p_T ($p_T \gtrsim 9$ GeV) regions. For the intermediate p_T region, the MBT events yield a higher v_2 value than jet events, although the trends are qualitatively similar. Similarly to v_2, the v_3 results show agreement between the MBT and jet events for $p_T < 2$ GeV, and higher values from MBT events for $p_T > 2$ GeV.

As mentioned in Sect. 5, if the measured anisotropy originates from a global momentum field, the v_2 and v_3 values...
Fig. 8 Predictions of azimuthal anisotropy from PYTHIA 8 using the same two-particle formalism used for the data results. The events combine minimum-bias \(p + Pb \) underlying events generated in the Angantyr framework with hard \(pp \) events that require the presence of a jet with \(p_T > 100 \) GeV. The two top plots show example correlation functions, with template fits, from a low particle-\(p_T \) selection (top left) and a high particle-\(p_T \) selection (top right). In the upper panels of the two top plots, the open circles show the scaled and shifted peripheral template with uncertainties omitted, the closed circles show the central data, and the red histogram shows the fit (template and harmonic functions). The blue dashed line shows the second-order harmonic component, \(Y_{ridge}^2 \), and the orange dashed line shows the third-order harmonic component, \(Y_{ridge}^3 \) (the \(n = 2 \) and \(n = 3 \) contributions to the sum in Eq. 1, respectively). The lower panels show the difference between the central data and the peripheral template along with the second and third harmonic functions. The resulting \(v_2 \), \(v_3 \), and global fit \(\chi^2/NDF \) values are reported in the legends, where \(NDF = 35 \). The bottom plot shows the extracted \(v_{2,2} \) values as a function of \(A \)-particle \(p_T \) extracted for a given \(p_T^A \) range, will be independent of \(B \)-particle selection. This assumption of factorisation is explicitly tested by carrying out the analysis for different selections of \(p_T^B \). Figure 4 shows the \(v_2 \) values, from each event trigger, for the nominal results using \(p_T^B > 0.4 \) GeV overlaid with results using \(0.4 < p_T^B < 1 \) GeV, \(1 < p_T^B < 2 \) GeV, and \(2 < p_T^B < 3 \) GeV. The test shows factorisation breaking at the level of 5% for \(p_T^A < 5 \) GeV in MBT events. However, at higher \(p_T^A \), the differences grow with \(p_T^A \) to be 10–100% from the nominal values. For jet events, factorisation holds within about 10–20% for all values of \(p_T^A \), except for \(4 < p_T^A < 9 \) GeV in \(p_T^{jet} > 100 \) GeV events, where it is within about 30–40%. Although the large uncertainties prevent strong conclusions from being drawn, there is a hint of a difference in behaviour at high \(p_T^A \) where the factorisation breaking is greater for MBT events than for jet events. This result could be due to the \(B \)-particle jet rejection scheme used for the jet events. Correlations resulting from hard-process,
e.g. from back-to-back jets, specifically violate the factorisation assumption, and the B-particle jet rejection dramatically limits the contribution from these processes from entering the correlation functions in jet events. However, the correlations from MBT events have no such rejection, and could, therefore, be more susceptible to hard-process correlations at high p_T^Δ.

Figure 5 shows v_2 plotted as a function of centrality for MBT events and both classes of jet events. The results are divided into three regions in A-particle p_T: $0.5 < p_T < 2$ GeV, $2 < p_T < 9$ GeV, and $9 < p_T < 100$ GeV. The v_2 results show agreement, within uncertainties, between the MBT and jet events for p_T selections $0.5 < p_T < 2$ GeV and $p_T > 9$ GeV for all centralities and are found to be nearly independent of centrality. For $2 < p_T < 9$ GeV, the MBT events give a higher v_2 value than the jet events, and all three sets show a trend to lower values of v_2 as the collisions become more peripheral.

Focusing on the overall p_T dependence of the anisotropies, Fig. 6 (left panel) shows v_2 and v_3 coefficients from events with jet $p_T > 100$ GeV compared with theoretical calculations from Ref. [14]. This theoretical calculation, within the jet quenching paradigm, invokes a stronger parton coupling to the QGP near the transition temperature, which helps to reduce the tension in simultaneously matching the nucleus–nucleus high-p_T hadron spectrum suppression and the azimuthal anisotropy v_2. The calculation tests two different initial $p+Pb$ geometries referred to as ‘size a’ and ‘size b’, where the latter has a smaller initial QGP volume. The predictions are slightly lower than the data for both v_2 and v_3, and the ‘size a’ curve is within two standard deviations of all points. However, in the right panel of Fig. 6, the same calculation predicts a substantial suppression of high-p_T hadrons, as expressed by the quantity $R_{p_Pb} = d^2N_{p_Pb}/d p_T d y$ where T_{p_Pb} represents the nuclear thickness of the Pb nucleus, as determined via a Monte Carlo Glauber calculation [56]. Shown in comparison are published experimental results from ATLAS and ALICE for R_{p_Pb} in central events that are consistent with no nuclear suppression, i.e. $R_{p_Pb} = 1$ [41,57]. The ALICE experiment uses the notation Q_{p_Pb} for the same quantity to describe a bias that may exist due to the centrality categorisation. There are uncertainties in the experimental measurements related to the centrality or multiplicity selection in $p+Pb$ collisions, particularly in determining the nuclear thickness value T_{p_Pb}. However, there is no indication of the large R_{p_Pb} suppression predicted by the jet quenching calculation. Thus, the jet quenching calculation is disfavoured as it cannot simultaneously describe the non-zero high-p_T azimuthal anisotropy and the lack of yield suppression.

Figure 7 shows the MBT v_2 and v_3 coefficients compared with theoretical calculations from Ref. [26]. The calculations are derived from two opposite limits of kinetic theory. The low momentum bands represent zeroth-order hydrodynamic calculations for high-multiplicity $p+Pb$ events that give quantitative agreement with v_2 up to $p_T = 2$ GeV while predicting values of v_3 that are too high. Above some high p_T threshold, hadrons are expected to result, not from hydrodynamics, but instead from jets where the resulting partons have the opposite limit than in hydrodynamics, i.e. a large mean free path. To model this region, a non-hydrodynamic ‘eremitic’ expansion calculation (see Ref. [26] for the detailed calculation), shown as the bands at high p_T, indicates slowly declining v_2 and v_3 coefficients. The dashed lines are a simple Padé-type fit connecting the two regimes [26]. The trends are qualitatively similar to those in the data, although there is not quantitative agreement. In particular, the calculation predicts values of v_2 and v_3 substantially below the experimental results for $p_T = 4$–15 GeV. It should be noted that calculations presented in Ref. [26] are performed, consistently between the hydrodynamic and eremitic components, only for massless partons and with an ideal equation of state. Thus, one does not expect quantitative agreement and is looking for rather qualitative trends. More sophisticated treatments in the hydrodynamic regime result in better quantitative agreement with the anisotropy coefficients at low p_T [58,59]. It is worth highlighting that traditional parton energy-loss calculations connect the high-p_T v_2 with a suppression in the overall yield of high-p_T particles. The same is true with this eremitic calculation, and thus, it should also be in contradistinction to $p+Pb$ high-p_T experimental data indicating almost no suppression, i.e. jet quenching.

Fig. 9 Scaled $p+Pb$ v_2 values plotted as a function of the A-particle p_T overlaid with v_2 from 20–30% central Pb+Pb data at $\sqrt{s_{NN}} = 5.02$ TeV [62]. Results from MBT and jet $p_T > 100$ GeV $p+Pb$ events are plotted as black squares and orange diamonds, respectively, and those from Pb+Pb are plotted as green circles. Statistical uncertainties are shown as narrow vertical lines on each point, and systematic uncertainties are presented as coloured boxes behind the points.
Fig. 10 Particle pair yield composition fractions for MBT events (top), events with jet $p_T > 75$ GeV (bottom left), and events with jet $p_T > 100$ GeV (bottom right) plotted as a function of the A-particle p_T. Green and blue open circles represent HS–HS and UE–HS pairs, respectively, and red and violet closed circles represent UE–UE and HS–UE pairs, respectively. Statistical uncertainties are shown as narrow vertical lines on each point, and systematic uncertainties are presented as coloured boxes behind the points.

Another possible source of the high-p_T anisotropies could lie in an initial-state effect, potentially encoded in a model such as Pythia 8. Shown in Fig. 8 is a Pythia 8 calculation with hard pp events overlaid on minimum-bias p+Pb events generated in the default Angantyr framework [60]. It is emphasised that this version of Pythia does not include the recently developed string–string, or so-called string shoving, implementation [61]. The generator-level charged particles are then processed with the entire analysis procedure, including the non-flow template fit. The result is a negative $v_{2,2}$ for all momenta, in contradistinction to the experimental data. Further investigation reveals that Pythia 8 run in ’hard’ scattering mode has correlations with large pseudorapidity separation between particle pairs as a result of the specific implementation of initial-state radiation. This correlation is reduced in high-multiplicity events because of the large number of uncorrelated UE particles, and thus results in a negative $v_{2,2}$ after subtracting the non-flow contribution.

Figure 9 shows the published Pb+Pb results for v_2 as a function of p_T in the 20–30% centrality selection [62] compared to the v_2 from both the MBT p+Pb data and p+Pb containing a jet with $p_T > 100$ GeV. This Pb+Pb centrality range is selected because the spatial elliptic eccentricity is approximately the same as in 0–5% centrality p+Pb collisions [63], despite having a much larger total particle multiplicity. The overall trends for Pb+Pb v_2 as a function of p_T are qualitatively similar to those presented here for p+Pb from MBT events and the jet events with jet $p_T > 100$ GeV. Both sets of the p+Pb values are scaled by a single multiplicative factor (1.5) to match the Pb+Pb rise at low p_T. After scaling, the MBT p+Pb results quantitatively agree with those from the Pb+Pb system for $0.5 < p_T < 8$ GeV, except for a slight difference in the peak value near $p_T \approx 3$ GeV. For p_T above about 8 GeV, the Pb+Pb results indicate a slow decline of v_2 values with increasing p_T, while the p+Pb results exhibit

2 The term ‘hard’ refers to Pythia 8 run with the following settings: HardQCD:all=on, PartonLevel:MPI=off, and containing a jet with $p_T > 100$ GeV.
more of a plateau. Strikingly, the overall behaviour of the v_2 values are quite similar.

As described above, the physics interpretations of the Pb+Pb elliptic anisotropies are hydrodynamic flow at low p_T, differential jet quenching at high p_T, and a transition between the two in the intermediate region of approximately $2 < p_T < 10$ GeV. Since these effects all relate to the initial QGP geometric inhomogeneities, a common shape with a single scaling factor for $p+$Pb could indicate a common physics interpretation. This scaling factor of 1.5, as empirically determined, may be the result of slightly different initial spatial deformations, or from the much larger Pb+Pb overall multiplicity, which enables a stronger translation of spatial deformations into momentum space. For the high p_T region, this presents a conundrum in that it is difficult for differential jet quenching to cause the v_2 anisotropy in $p+$Pb collisions when there is no evidence for jet quenching overall. These measurements showing non-zero high p_T v_2 in $p+$Pb collisions in the absence the jet quenching observed in Pb+Pb collisions suggest there might be additional contributions to v_2 at high p_T in Pb+Pb collisions.

Returning to the issue of the difference in the intermediate p_T region between the $p+$Pb MBT and jet event results, the source of hadrons in this region should be considered. As detailed previously, in a highly simplified picture one can classify hadrons as originating from hard scatterings (HS) or from the underlying event (UE). Thus, pairs of particles of A and B types can come from the combinations HS–HS, HS–UE, UE–HS, and UE–UE. Figure 10 presents the measured pair fractions for both MBT and jet, 0–5% central events plotted as a function of the A-particle p_T. UE–UE pairs dominate the correlation functions at low p_T in each case, and HS–UE combinations dominate at high p_T. Combinations with HS B-particles are sub-dominant, because there are fewer jet particles than UE particles in central events; for the jet selected events, these combinations are further suppressed by the B-particle jet rejection condition. Figure 11 shows the dominant contributions from the MBT and jet events overlaid. Although the same qualitative behaviour is found in each case, the point at which the HS–UE pairs become dominant over the other combinations is at a lower p_T for jet events than for MBT events.

This behaviour can also be seen in Fig. 12, in which the pair fractions are plotted as a function of centrality, and again, the values for MBT and jet events are overlaid. The centrality-dependent results are plotted for low, medium, and high A-particle p_T ranges in the same way as in Fig. 5. At low p_T, pair fractions from MBT and jet events agree, and in the mid-p_T transition region, MBT events have a larger UE–UE contribution and smaller HS–UE contribution compared to jet events. At high p_T, central events show a difference between UE–UE and HS–UE that is reduced in more-peripheral events and absent for more peripheral than 25% centrality. The overall trend of the pair fractions with centrality is quite similar to that of v_2 shown in Fig. 5; little centrality dependence for low and high p_T, and significant centrality dependence in addition to MBT-jet event ordering in the mid-p_T transition region.

Thus, a potential explanation for the lower v_2 and v_3 in the intermediate p_T region is simply that, in that region, the HS particles have lower anisotropy coefficients than UE particles, and MBT events have a larger fraction of UE–UE pairs than jet-triggered events. In the low and high p_T regions, the same types of pairs dominate in both the MBT and jet-triggered events, namely UE–UE and HS–UE respectively, and hence the anisotropy coefficients agree between the event samples. If this explanation is correct, it also aids in understanding Fig. 9 in which there is a significant difference between the $p+$Pb jet event v_2 and the Pb+Pb v_2 in the intermediate p_T region, because the relative pair fractions are potentially significantly different.

This particle mixing picture is attractive in that it naturally explains the general shape of the $v_2(p_T)$ and $v_3(p_T)$ distributions as well as the ordering of the different event samples. However, it is noted that the correspondence between the differences in the flow coefficients and pair fractions is not quantitative; the differences in the flow coefficients are fractionally much larger than the differences in the pair fractions. Thus, there are either additional sources of correlation or our assumptions are violated in some way (e.g. the two assumed HS and UE sources are too simplistic or the measured pair fractions do not accurately represent the sources, as is discussed in Sect. 5). That said, for particle $p_T > 20$ GeV, where
Fig. 12 Underlying event–underlying event (UE–UE) (open circles) and hard scatter–underlying event (HS–UE) (open squares) particle-pair yield composition fractions for MBT events (black), events with jet $p_T > 75$ GeV (blue), and events with jet $p_T > 100$ GeV (orange) plotted as a function of event centrality. The results are obtained in three different selections of the A-particle p_T: $0.5 < p_T < 2$ GeV (top left), $2 < p_T < 9$ GeV (top right), and $9 < p_T < 100$ GeV (bottom). Statistical uncertainties are shown as narrow vertical lines on each point, and systematic uncertainties are presented as coloured boxes behind the points.

particle production in any model is thought to arise mainly from jet fragmentation, the non-zero v_2 demonstrates that a positive correlation exists between hard (high p_T) and soft (low p_T) particles, irrespective of the pair fractions.

8 Conclusion

This paper presents Fourier coefficients of the azimuthal distribution of unidentified charged particles from 165 nb$^{-1}$ of $\sqrt{s_{NN}} = 8.16$ TeV $p+Pb$ collisions at the LHC and measured with the ATLAS detector. Results are presented separately for minimum-bias and jet events, with jet p_T thresholds of 75 and 100 GeV, as a function of particle p_T and centrality. The results are extracted using two-particle azimuthal correlations combined with a non-flow template fit procedure. The charged particle p_T dependence of v_2 and v_3 is found assuming the factorisation of $v_{n,n}$. The v_2 results are presented for charged-particle transverse momentum $p_T = 0.5$–20 GeV for minimum-bias events and $p_T = 0.5$–50 GeV for jet-triggered events, and the v_3 results are for $p_T = 0.5$–20 GeV in both cases.

For charged particles with p_T between 0.5 and 2 GeV, the v_n results from each event selection are quantitatively consistent with each other, rising steadily with p_T, and the v_2 coefficients are roughly independent of centrality. The v_2 values at 0–5% centrality agree with those predicted by hydrodynamic calculations.

Between charged particle p_T of 2 and 9 GeV, the v_n values drop in each case, but are ordered with minimum-bias events yielding the highest v_n values and the jet events with jet $p_T > 100$ GeV the lowest. Charged particles in this p_T range exhibit a significant centrality-dependent v_2, monotonically decreasing from central to peripheral events. This behaviour can be qualitatively explained within a simplified two-component model of particle production, in which the magnitude of the correlation in this region is determined by the admixture of charged particles originating from soft and hard processes in the given event selection. The measured particle pair yields support this qualitative argument.
For charged particles with p_T above 9 GeV, the v_2 results are again consistent between MBT and jet events. Although the uncertainties in the v_2 values make any quantitative statement difficult, v_2 plateaus at a value of 0.025 up to a p_T of 50 GeV. This result cannot be explained in the theoretical context of jet quenching or energetic expansion calculations while simultaneously describing the observed lack of suppression of high-p_T hadron and jet yields in p+Pb collisions.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMHE, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNISW and NCN, Poland; FCT, Portugal; MEINFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, CRC and Compute Canada, Canada; COST, ERC, ERDF, Horizon 2020, and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [64].

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All ATLAS scientific output is published in journals, and preliminary results are made available in Conference Notes. All are openly available, without restriction on use by external parties beyond copyright law and the standard conditions agreed by CERN. Data associated with journal publications are also made available: tables and data from plots (e.g. cross section values, likelihood profiles, selection efficiencies, cross section limits, ...) are stored in appropriate repositories such as HEPDATA (http://hepdata.cedar.ac.uk/). ATLAS also strives to make additional material related to the paper available that allows a reinterpretation of the data in the context of new theoretical models. For example, an extended encapsulation of the analysis is often provided for measurements in the framework of RIVET (http://rivet.hepforge.org/). This information is taken from the ATLAS Data Access Policy, which is a public document that can be downloaded from http://opendata.cern.ch/rct/413 [opendata.cern.ch].]

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Funded by SCOAP3.

References

82 Graduate School of Science, Kobe University, Kobe, Japan

84 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

AGH University of Science and Technology of China, Hefei, China; (b) University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China;

Institute of Physics, Jagiellonian University, Krakow, Poland

Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland

Faculty of Science, Kyoto University, Kyoto, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, UK
LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Paris, France
Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
Konstantinov Nuclear Physics Institute of National Research Centre “Kurchatov Institute”, PNPI, St. Petersburg, Russia
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
(a) Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisbon, Portugal; (b) Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; (c) Departamento de Física, Universidade de Coimbra, Coimbra, Portugal; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal; (e) Departamento de Física, Universidad del Minho, Braga, Portugal; (f) Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada, Spain; (g) Departamento de Física and CEFITEC de Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal; (h) Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
Czech Technical University in Prague, Prague, Czech Republic
Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA
(a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; (b) Universidad Andres Bello, Departamento de Física, Santiago, Chile; (c) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
Department of Physics, University of Washington, Seattle, WA, USA
Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
Department of Physics, Shinshu University, Nagano, Japan
Department Physik, Universität Siegen, Siegen, Germany
Department of Physics, Simon Fraser University, Burnaby, BC, Canada
SLAC National Accelerator Laboratory, Stanford, CA, USA
Physics Department, Royal Institute of Technology, Stockholm, Sweden
Departments of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
Department of Physics and Astronomy, University of Sussex, Brighton, UK
School of Physics, University of Sydney, Sydney, Australia
Institute of Physics, Academia Sinica, Taipei, Taiwan
(a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan
Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Tomsk State University, Tomsk, Russia
Department of Physics, University of Toronto, Toronto, ON, Canada
(a) TRIUMF, Vancouver, BC, Canada; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, Tufts University, Medford, MA, USA
Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Department of Physics, University of Illinois, Urbana, IL, USA
Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver, BC, Canada
Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
ap Also at TRIUMF, Vancouver, BC, Canada
aq Also at Universita di Napoli Parthenope, Naples, Italy
*Deceased