Screening for drugs to reduce zebrafish aggression identifies caffeine and sildenafil

Héctor Carreño Gutiérrez, Irene Vacca, Gido Schoenmacker, Madeleine Cleal, Anna Tochwin, Bethan O’Connor, Andrew M.J. Young, Alejandro Arias Vasquez, Matthew J. Winter, Matthew O. Parker, William H.J. Norton

Abstract

Although aggression is a common symptom of psychiatric disorders the drugs available to treat it are non-specific and can have unwanted side effects. In this study we have used a behavioural platform in a phenotypic screen to identify drugs that can reduce zebrafish aggression without affecting locomotion. In a three tier screen of ninety-four drugs we discovered that caffeine and sildenafil can selectively reduce aggression. Caffeine also decreased attention and increased impulsivity in the 5-choice serial reaction time task whereas sildenafil showed the opposite effect. Imaging studies revealed that both caffeine and sildenafil are active in the zebrafish brain, with prominent activation of the thalamus and cerebellum evident. They also interact with 5-HT neurotransmitter signalling. In summary, we have demonstrated that juvenile
zebrafish are a suitable model to screen for novel drugs to reduce aggression, with the potential to uncover the neural circuits and signalling pathways that mediate such behavioural effects.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Aggression is an adaptive behaviour that animals use to protect offspring, defend or obtain resources and establish social hierarchies (Nelson and Trainor, 2007). However, heightened aggression can cause injury or death meaning that expression of this behaviour must be tightly controlled. In humans, aggression can also be a non-specific symptom of several psychiatric disorders including attention-deficit/hyperactivity disorder (ADHD), bipolar disorder, conduct disorder, schizophrenia and substance abuse disorder (Nevels et al., 2010).

Human aggression can be managed by a combination of behavioural, cognitive and pharmacological therapies. Current drugs used to treat aggression include psychostimulants, mood stabilisers, anti-epilepsy drugs, selective 5-HT reuptake inhibitors and agonists of alpha-2 adrenergic receptors (Connors et al., 2006; Loy et al., 2012; Nevels et al., 2010; Tcheremissine and Lieving, 2006). However, these drugs are not specific and often target a small number of signalling pathways. Furthermore, these drugs do not work in all patients and can have unwanted side-effects making them unsuitable for long-term use (Nevels et al., 2010; Polzer et al., 2007; Scotto Rosato et al., 2012; Wernicke et al., 2003). The existence of two broad subtypes of aggression (impulsive/reactive and instrumental/proactive) with distinct genetic and neurochemical bases complicates treatment of this behaviour (Blair, 2010; Kempes et al., 2005; Montoya et al., 2012; Nevels et al., 2010; Scotto Rosato et al., 2012). Each subtype is associated with particular psychiatric disorders and may respond to different drugs (Pappadopulos et al., 2006). It is clear that there is an unmet clinical need for safer, more potent drugs to treat aggression (Nevels et al., 2010).

Traditionally, drug screens have focussed on finding compounds that interact with defined molecular targets. However, lack of knowledge of the molecular basis of complex behaviours such as aggression limits this approach. Recent research has shown that behaviour-based screens can be used to identify novel psychoactive compounds (MacRae and Peterson, 2015; Rihel and Schier, 2012). Compared to in vitro screens, whole organism paradigms maintain the complex architecture of the brain making them ideal to examine drugs that act at multiple receptors. The zebrafish is an excellent vertebrate model for in vivo drug discovery (Cunliffe, 2016) due to their short generation time, small size and the possibility to apply compounds by immersion. Numerous robust tests to measure both larval and adult zebrafish behaviour have already been established (Norton, 2013). Small molecules that can alter sleep, photomotor response, light/dark behaviour, locomotion, feeding, freezing and susceptibility to seizures have been identified demonstrating the feasibility of this approach (Baxendale et al., 2012; Copmans et al., 2016; Fraser et al., 2017; Jordi et al., 2018; Kokel et al., 2010; Renniekamp et al., 2016; Rihel et al., 2010; Vliet et al., 2017).

Previous research in our laboratory and others has used zebrafish to study the genetic and pharmacological basis of aggression (Carreno Gutierrez et al., 2018; Jones and Norton, 2015; Norton, 2019). Zebrafish display characteristic agonistic postures that include erection of the fins, thrashing the tail, biting, splashing and directing short bouts of swimming against an opponent (Gerlai et al., 2000; Laan et al., 2018). We have identified fibroblast growth factor receptor 1α as novel aggression-linked gene (Norton et al., 2011) and demonstrated that nitric oxide and 5-HT interact to control this behaviour (Carreno Gutierrez et al., 2017). We have also built a platform to measure mirror-induced aggression in juvenile zebrafish and validated software to automatically quantify our data (Carreno Gutierrez et al., 2018).

In this study we set out to identify novel drugs that can reduce zebrafish aggression. We selected ninety drugs from published research and recorded both aggression and locomotion. We used a three-tiered strategy that increased in stringency at each step to identify the most promising candidates. We identified caffeine and sildenafil as drugs that consistently decrease aggression with a lesser effect upon locomotion. Both drugs reduce aggression at different life stages but had an opposite effect upon cognitive impulsivity. By combining whole brain imaging and neurochemistry we determined the brain areas and neurotransmitter signalling pathways that mediate activity of these drugs. As well as determining novel compounds to treat aggression, this research further demonstrates the utility of zebrafish for phenotype-based drug screens.

2. Experimental procedures

2.1. Zebrafish strains, care and maintenance

Adult and juvenile zebrafish were maintained at the Universities of Leicester, Portsmouth and Exeter using standard protocols and in accordance with institutional guidelines for animal welfare. All experiments were carried out using AB wild-type zebrafish apart from the neural imaging (see below).

2.2. Screen design

The drug screen was performed as described in Carreno Gutierrez et al. (2018) and Norton (2019). Behaviour was measured in small plastic tanks (9 × 4.2 × 4 cm) with three white opaque walls and one clear wall. Each tank was filled with 100 ml water from the main aquarium facility. Groups of 20 juvenile ze-
brafish were habituated to these arenas overnight. Experiments were carried out between 11:00 and 15:00. On the experimental day fish were placed into individual tanks using a wide-tipped Pasteur pipette. Aggression and locomotion was measured in twelve juvenile (one month-old) zebrafish in parallel using a custom-built cubicule (Carreno Gutierrez et al., 2018). The ambient light (150 Lux) and temperature was controlled. Infrared lighting was provided using a light source that formed the floor of the apparatus.

In the first round of the screen we tested ninety drugs on up to twelve juvenile zebrafish. A description of the drugs used in this study is provided in Supplemental Tables 1 and 3. Drugs were selected by either searching PubMed with the keywords “aggression”, drug, pharmacology (round 1 of the screen), or by using the Chemmine website (http://chemmine.ucr.edu) as described below. The chemical and physical properties of the drugs were identified in the PubChem database (Supplemental Tables 1 and 3). Drug concentrations were selected according to previous studies and taking into account the small size of juvenile zebrafish (for references refer to Supplemental Table 1). Each drug was applied at three different concentrations. Fish were immersed in 100 ml of drug solution for 30 min before being placed into the cubicule and recording behaviour. Control fish received a mock treatment (immersion in aquarium water containing 0.01% DMSO as a vehicle control) and underwent the same handling procedure. The second round of screening used up to twenty-four juvenile zebrafish. We then chose to further analyse caffeine and sildenafil in a third round of testing using around fifty juvenile zebrafish.

Juvenile aggression was compared with- and without drug treatment. Behaviour was recorded using video cameras and ViewPoint aggression software automatically quantified aggression and locomotion (Carreno Gutierrez et al., 2018). Each experiment lasted 12 min. In the first 2 min juveniles were habituated to the tank following transfer. During the next five min locomotion was recorded without visual access to the mirror. Locomotion was quantified by videotracking. The divider was then removed and aggressive interaction with the mirror was recorded for another 5 min. Aggression was defined as the amount of time a fish spent with its body at an angle of 22.5° to the mirror and its nose touching the mirror. Aggression was expressed as “aggression units”, an arbitrary unit that corresponds to the total amount of time spent fighting the mirror image (Carreno Gutierrez et al., 2018). Locomotion was expressed as “locomotion units” based upon the total number of pixels moved during an experiment (Carreno Gutierrez et al., 2018).

2.3. Adult behaviour

Adult behavioural experiments were performed using AB wild-type zebrafish that were between three and five months old at the start of testing. Fish were recorded using FlyCapture2 2.5.2.3 software and a digital camera from Point Grey Research. The age, sex, and size of fish were carefully matched. Caffeine (25, 50, 100 and 200 μM) and sildenafil (1, 5, 10 and 50 μM) were applied by immersion for 30 min. A full description of adult behaviour methods is included in the Supplemental material.

2.4. High pressure liquid chromatography

The amine and metabolite content of homogenates of telencephalon, diencephalon, optic tectum and hindbrain was assessed by high performance liquid chromatography (HPLC) with electrochemical detection. Separation was achieved on a 150 × 1.0 mm C18 column (LUNA(2), Phenomenex, UK) and dopamine (DA), serotonin (5-HT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) were detected electrochemically (750 mV versus an Ag/AgCl reference electrode: ANTEC Intro, ANTEC Inc, Netherlands). Peak area for each compound was determined using a PC-based integrator (ChromPerfect, Justice Laboratories, USA), and results were expressed as fmol/mg of brain. A full description of HPLC methods is included in the Supplemental material.

2.5. Data analysis

Statistical analysis of aggression, locomotion and anxiety like behaviour was performed in GraphPad Prism 6 and MATLAB R2018a. The data set was assessed for normality using a Shapiro-Wilk’s test. A student’s t-test or Mann-Whitney U test was then used to compare control and drug-treated animals. When comparing more than two groups, a one-way ANOVA or Kruskal-Wallis test was used. If significant this was followed up with post hoc Mann-Whitney U-tests to determine which dosage groups were different from controls. Multiple testing correction for compounds was performed using false discovery rate (FDR) controlling correction (Benjamini and Hochberg, 1995). Post-hoc tests were not corrected. Data analysis for the 5-Choice serial reaction time task (5-CSRTT) and fear conditioning was carried out in SPSS. Data pertaining to correct responses on the 5-CSRTT and premature (impulsive) responses were assessed using general linear mixed effects models. In both models, fixed effects were ‘dose’, and random effects were ‘subject ID’. This allowed us to examine differences for each dose from control, taking each fishes’ repeated measures into account while controlling for non-independence of replicates. Data pertaining to fear conditioning were analysed using a 2-way mixed design analysis of variance (ANOVA), with drug treatment (5 levels [0, 50 μM caffeine, 100 μM caffeine, 5 μM sildenafil, 50 μM sildenafil]) as the between subjects factor and conditioning (2 levels [baseline, post-conditioning]) as the within-subjects factor. The dependent variable was preference for the conditioned stimulus. High pressure liquid chromatography data were subjected to 2-way ANOVA with significant main effects of drugs interrogated post hoc with Dunnett’s multiple comparison test. All data are presented as mean ±SEM. Type-1 error rate was set at alpha = 0.05 for all analyses. Asterisks in figures indicate significant differences: (*) p < 0.05, (**) p < 0.01 and (***) p < 0.001.

3. Results

3.1. First round screen of ninety drugs

Our laboratory has developed a protocol to automatically record and quantify juvenile zebrafish aggression and locomotion (Carreno Gutierrez et al., 2018). Using this setup we conducted a biased screen of ninety drugs that affect aggression or aggression-related signalling pathways in other species (Supplemental Table 3). We immersed one month-old wild-type juvenile zebrafish in three concentrations of each drug and recorded their behaviour thirty minutes later. We first measured locomotion followed by aggressive interaction with a mirror (Carreno Gutierrez et al., 2018; Gerlai et al., 2000). A positive hit was defined as a substance that would decrease aggression with little to no effect upon locomotion. To maximise the number of compounds tested we used between nine and twelve juvenile fish per drug treatment. Depending on the compounds and doses used we found both increases and decreases in aggression compared to the control fish (Supplemental Table 1) even though the p value did not reach significance due to the small number of animals analysed. The thirty compounds that were
most effective at reducing aggression were selected to be retested.

3.2. Second round screen of positive hits and validation of caffeine and sildenafil activity

We re-tested these thirty compounds in a second batch of experiments using up to thirty juvenile zebrafish. Despite using a larger number of animals we still generated relatively few significant results after correcting for the false discovery rate due to multiple comparisons (Supplemental Table 1). In some cases (e.g. tacrine) a reduction of aggression was also accompanied by a significant decrease in locomotion, making them unsuitable for further analysis. We therefore chose caffeine and sildenafil for further examination based upon their ability to reduce aggression, limited effect upon locomotion and known safety profile in humans. We tested caffeine and sildenafil rigorously using a large number of juvenile zebrafish (Fig. 1 and Supplemental Table 1). Caffeine decreased aggression at 100 μM without affecting locomotion (Fig. 1(a)) and sildenafil decreased aggression at 10 μM with only a trend effect upon locomotion (Fig. 1(b)).

3.3. Identification and characterisation of drugs structurally related to caffeine and sildenafil

We next identified chemical compounds that are structurally related to caffeine and sildenafil. We used the ChemMine website to search the Pubchem database for compounds with a similar molecular structure to caffeine and sildenafil (Supplemental Table 4). We clustered these drugs using multidimensional scaling and identified the caffeine derivatives paraxanthine, theobromine and theophylline and the sildenafil derivative vardenafil (Supplemental Fig. 2 and Supplemental Table 4). Paraxanthine significantly reduced juvenile zebrafish aggression at the two highest concentrations used (100 μM and 200 μM; Fig. 1(c)) whereas the other drugs did not (Fig. 1(d)–(f)). This demonstrates...
that paraxanthine may also represent a suitable compound to decrease zebrafish aggression.

3.4. Caffeine and sildenafil alter neural activity in the larval zebrafish brain

Caffeine and sildenafil can both cross the blood brain barrier and act centrally to modify behaviour (Kouvelas et al., 2009; Watson et al., 2002). We used transgenic elav3:GCaMP6s-expressing zebrafish to image activity in response to caffeine or sildenafil in the brain of four day-old larvae (Winter et al., 2017) (Supplemental Fig. 3). Although four day-old zebrafish cannot perform complex behaviours such as aggression, this approach allowed us to identify a signature of neural activity triggered by these drugs. Application of 100 μM caffeine caused a trend to a non-significant increase in sharp pulses of neural activity (peak intensity; Fig. 2(a) and Supplemental Table 2) in nearly all brain areas examined. The increase in peak intensity reached significance in the diencephalon and anterior commissure as well as the eminentia granularis and the caudal lobe of the cerebellum (Supplemental Table 2). Area under the curve (AUC) analysis also revealed a trend decrease of activity in the inferior raphe, interpeduncular nucleus and tectum stratum periventriculare (Fig. 2(b) and film 1,2 (film 1: water treated; film 2: caffeine treated). Immersion in sildenafil led to trend decreases in peak intensity in the olfactory bulb and eyes, habenulae, eminentia granularis, tangential vestibular neurons and vagal ganglia (Fig. 2(c) and Supplemental Table 2). Trend increases in peak intensity were seen in the anterior commissure, diencephalon, tegmentum, rhombencephalon and noradrenergic neurons of the interfascicular and vagal areas. Application of 10 μM sildenafil significantly increased AUC fluorescence in the eminentia thalami and caused a trend increase in many other diencephalic areas (Fig. 2(d), Supplemental Table 2 and film 1,3 (film 1: water treated; film 3: sildenafil treated). Together, these results show that different regions of the brain respond to caffeine or sildenafil application.

3.5. Caffeine and sildenafil reduce adult zebrafish aggression

We have previously shown that juvenile and adult zebrafish express similar aggression levels across the lifespan (Carreno Gutierrez et al., 2018). We assessed the ability of caffeine and sildenafil to reduce adult zebrafish mirror-induced aggression. Both caffeine (Fig. 3(a)) and sildenafil reduced (Fig. 3(d)) adult aggression and had a less pronounced effect on locomotion (Fig. 3(c) and (f)) in agreement with our juvenile zebrafish data. The time spent in the mirror zone was only altered by the highest concentration of caffeine (Fig. 3(b)) suggesting that the reduction of aggression was selective. We also measured anxiety-like behaviour in the novel tank test (NTT). Immersion in caffeine or sildenafil did not alter the time spent in the top (Fig. 3(g) and (k)) of the novel tank, the time spent freezing, angular velocity (Fig. 3(i) and (m)) or total distance swum (apart from 100 μM caffeine; Fig. 3(j) and (n)). This suggests that neither caffeine nor sildenafil are anxiogenic at the concentrations that we tested.

3.6. Caffeine and sildenafil alter attention and impulsivity but not learning

In mammals, aggression can be divided into impulsive/reactive and instrumental/proactive subtypes (Blair, 2010). We investigated whether caffeine and sildenafil might modify zebrafish aggression by altering their levels of attention, impulsivity or learning (Supplemental Fig. 1). We trained ten adult wild-type zebrafish to associate a light with a food reward in the 5-choice serial reaction time task (5-CSRTT). We then introduced a 10 s variable pre-stimulus interval and tested fish for seven days. Fish were treated with either sildenafil (5 μM/50 μM), caffeine (50 μM/100 μM) or no drug (alternating between drug and no-drug) each day. Caffeine decreased the number of correct responses in the 5-CSRTT and increased premature (impulsive) responses (Fig. 4(a) and (b)). Conversely, sildenafil showed an opposite phenotype, with an increase in the number of correct responses and a decrease in premature (impulsive) responses that did not reach significance (Fig. 4(c) and (d)). We examined whether acute exposure to caffeine or sildenafil affected learning by measuring change in preference for a conditioned stimulus following pairing with a brief, mild electric shock. Neither caffeine nor sildenafil altered behaviour in this test compared to control zebrafish, suggesting that aversive learning is not affected by these drugs (Fig. 4(e)).

3.7. Acute caffeine and sildenafil application heightens 5-HT levels in the brain

The behavioural profile of caffeine and sildenafil prompted us to investigate the neurotransmitter signalling pathways that they modulate. We immersed adult wild-type zebrafish in 100 μM caffeine or 10 μM sildenafil and used HPLC to measure the basal levels of 5-HT, DA and their metabolites. Application of either drug increased the concentration of 5-HT in the telencephalon, diencephalon, optic tectum and rhombencephalon, and 5-HIAA in the telencephalon, diencephalon and optic tectum compared to control treated zebrafish (Fig. 5(a)-(d)). The levels of dopamine, DOPAC and HVA were unaffected by drug application. Caffeine application decreased the utilisation ratio of 5-HIAA/5-HT in the diencephalon and rhombencephalon (Fig. 5(f) and (h)), whereas sildenafil decreased the utilisation ratio of both 5-HIAA/5-HT and HVA/DA in the rhombencephalon (Fig. 5(h)). This demonstrates that both caffeine and sildenafil act centrally to modify monoaminergic neurotransmission.

4. Discussion

In this study we have used a biased screen to identify drugs that reduce zebrafish aggression but not locomotion. We applied three concentrations of each drug to maximise the number of positive hits identified. Our screen had a hit rate of 3.1% (two out of 94 drugs) that is similar to other screens
for drugs that alter sleep (8.2%) (Rihel and Schier, 2012) and seizure liability (2.3%) (Baxendale et al., 2012) in zebrafish. Caffeine and sildenafil significantly reduced both juvenile and adult aggression with a smaller effect on locomotion (Figs. 1 and 3). These drugs also had opposite effects upon attention and impulsivity (Fig. 4(a)-(d)) but did not alter anxiety-like behaviour (Fig. 3(g)-(n)) or learning (Fig. 4(e)). A small-scale screen of drugs with a similar molecular structure as caffeine and sildenafil demonstrated that paraxanthine can also reduce aggression (Fig. 1(c)). Although we have not characterised paraxanthine in detail, this approach shows the feasibility of using zebrafish to screen for derivatives of drugs with potentially more favourable toxicological and behavioural profiles.
Fig. 3 Effect of caffeine and sildenafil on adult zebrafish behaviour. (a–c) Mirror-induced aggression upon caffeine treatment. (a) Time spent fighting the mirror in the aggression test (ANOVA: F = 5.809, p = 0.0007; control vs. 25 μM: p = 0.0445, control vs. 50 μM: p = 0.0034, control vs. 100 μM: p = 0.0008, control vs. 200 μM: p = 0.0009; n = 9–11 each). (b) Time spent near the mirror (ANOVA: F (4, 47) = 1.68, p = 0.1708); n = 9–11 each. (c) Total distance swum (ANOVA: F (4, 47) = 4.568, p = 0.0034; control vs. 25 μM: p = 0.0383, control vs. 50 μM: p = 0.0101, control vs. 100 μM: p = 0.0726, control vs. 200 μM: p = 0.9998); n = 9–11 each. (d–g) Novel tank diving upon caffeine treatment. (d) Time spent at the top (Kruskal-Wallis H(2) = 1.315, p = 0.5182; n = 13–14 each). (e) Time spent freezing (ANOVA: F (2, 38) = 2.437, p = 0.1010); n = 13–14 each. (f) Angular velocity (ANOVA: F (2, 38) = 2.175, p = 0.1275); n = 13–14 each. (g) Total distance swum (Kruskal-Wallis H(2) = 6.038, p = 0.0488; control vs. 50 μM: p > 0.999, control vs. 100 μM: p = 0.0408); n = 13–14 each. (h–j) Mirror-induced aggression upon sildenafil treatment. (h) Time spent fighting the mirror in the aggression test (Kruskal-Wallis: H(4) = 13.27, p = 0.0100; control vs. 1 μM: p = 0.0046, control vs. 5 μM: p = 0.0366, control vs. 10 μM: p = 0.0274, control vs. 50 μM: p = 0.5010; n = 10–12 each). (i) Time spent near the mirror (ANOVA: F (4, 48) = 1.865, p = 0.1319); n = 10–12 each. (j) Total distance swum (ANOVA: F (4, 48) = 1.664, p = 0.1739); n = 10–12 each. (K–N) Novel tank diving upon sildenafil treatment. (k) Time spent at the top (Kruskal-Wallis: H(2) = 0.0179, p = 0.9910); n = 10–12 each. (l) Time spent freezing (Kruskal-Wallis: H(2) = 1.381, p = 0.5014); n = 10–12 each. (m) Angular velocity (Kruskal-Wallis: H(2) = 1.776, p = 0.4114); n = 10–12 each. (n) Total distance swum (ANOVA: F (2, 33) = 0.0565, p = 0.9451); n = 10–12 each. One-way ANOVA followed by Dunnett’s post hoc or Kruskal Wallis test followed by Dunn’s post hoc. * p < 0.05, ** p < 0.01, *** p < 0.001.
4.1. Caffeine

Acute immersion in caffeine caused a decrease in the mean level of both juvenile (Fig. 1) and adult zebrafish aggression (Fig. 3). Low doses of caffeine can also reduce agonistic behaviour in humans and rats (Cherek et al., 1984; Wilson et al., 2000) indicating that the action of this drug may be conserved across species. Treatment of zebrafish with caffeine also decreased the number of correct responses and increased impulsivity (Fig. 4(a) and (b)) in the 5-choice serial reaction time task (5-CSRTT). Locomotion (Fig. 1(a)), anxiety-like behaviour (Fig. 3(g)-(j)) and fear-conditioning (Fig. 5(e)) were unaffected at most of the concentrations that we tested. This suggests that the decrease
Screening for drugs to reduce zebrafish aggression identifies caffeine and sildenafil

Fig. 5 Neurochemistry following caffeine or sildenafil application. (a–d) Basal level of monoamines. 5-HT levels are increased by caffeine or sildenafil application in the (a) telencephalon, (b) diencephalon, (c) optic tectum and (d) hindbrain. 5HIAA levels are increased by caffeine in the (a) telencephalon and (c) optic tectum. (e–h) Utilisation ratio of monoamines. (h) The utilisation ratio of dopamine to HVA is decreased by sildenafil in the hindbrain. The utilisation ratio of 5-HT to 5HIAA is decreased by (f) caffeine in the diencephalon and (h) both caffeine and sildenafil in the hindbrain. *p < 0.05; **p < 0.01, ***p < 0.001: significant difference from control (Dunnett’s multiple comparison test, based on significant main effects of drug in two-way ANOVA in telencephalon (F(2, 99) = 8.48, p < 0.001), optic tectum (F(2, 99) = 9.90, p < 0.001) and diencephalon (F(2, 99) = 3.81, p = 0.026). There was no significant main effect of drug in hindbrain (F(2, 99) = 1.10, p = 0.338); n = 8 control, n = 8 100 μM caffeine and n = 8 10 μM sildenafil.

in aggression relative to control treatment could be due to a reduction in attention towards the mirror stimulus.

At dietary levels caffeine acts as a competitive antagonist of adenosine A1 and A2A receptors (A1R and A2AR) with a similar affinity for both targets (Fredholm et al., 1999). At nonpharmacological doses caffeine can also inhibit monoamine oxidase and phosphodiesterases and mobilise calcium stores (Cappelletti et al., 2015; Fredholm et al.,
et
the
thine
4.2.
caffeine
bellum
tia
increase
iteration
haviour
both
ADENOSINE
(havioural
the
2009
and
crease
26
The
4
(activation
Chatterjee
inconsistency
In
connections
in
were
shown
of
these
in
neurons
(2).

and
shown
to
the
species
it
and
Previous
may
be
shown
in
with
caffeine's
between
within
(4).

between
may
be
increase
in
in
in

higher

across

higher

caffeine

caffeine

caffeine

caffeine

be-

be-
the increase in AUC fluorescence reached significance in the eminentia thalami, an ambiguous structure located above the preoptic area and ventral to the prethalamus (Mueller, 2012). The eminentia thalami disappears during mammalian development, whereas it is maintained as the ventral entopeduncular nucleus (vVENT) in adult fish and amphibians (Mueller, 2012; Mueller and Guo, 2009). The BNSM sends efferent projections to the habenula, optic tectum and pallial forebrain. Afferent projections have been mapped from the cerebellar Purkinje cells to the thalamus (Matsui et al., 2014). Although the function of the eminentia thalami/vVENT is not known, the connection between the cerebellum and eminentia thalami could form part of a cerebellar-thalamus-forebrain loop that controls emotional behaviour (e.g. Tsai et al., 2012). Further research, such as direct manipulation of the eminentia thalami using optogenetic tools, would be required to test this hypothesis.

4.4. Convergence of signalling pathways activated by caffeine and sildenafil

Although both caffeine and sildenafil reduced both juvenile and adult aggression, they had an opposite effect on impulsivity (Fig. 4(a) and (c)) and produced a different neural signature in the 4 day-old brain. This makes it difficult to know whether they decrease aggression via the same neural network or signalling pathway. A global reduction of 5-HT activity has been linked to control of aggression across species; and both caffeine and sildenafil increased the basal level of 5-HT throughout the adult brain (Fig. 5), as well as decreasing its utilisation ratio in the diencephalon. However, the mechanism by which these drugs can alter monoamine signalling is not yet clear. At high concentrations caffeine can inhibit monoamine oxidase (Fredholm et al., 1999) providing one possible explanation for the heightened levels of 5-HT observed in this study. Further research, such as measuring MAO activity using an enzymatic assay after caffeine application (Carreno Gutierrez et al., 2017) would be required to address this issue. Another potentially important signalling pathway is nitric oxide. Inhibition of Pde5 by sildenafil stabilises cGMP levels to enhance NO signalling; and adenosine signalling (a target of caffeine) can activate both Nos1 and Nos3 via the adenosine receptor 2b (Wen and Xia, 2012). However, caffeine and sildenafil activate different areas of the brain, with sildenafil having a broader profile than caffeine. Even though both drugs reduce aggression the neural substrate underlying this behaviour appears to be different. Future studies are required to investigate whether caffeine and sildenafil modify aggression via NO or 5-HT signalling.

In summary, we have used a biased approach to search for novel drugs that can reduce zebrafish aggression. We demonstrated that both caffeine and sildenafil can decrease aggression across the lifespan, although they have the opposite effect upon impulsivity. By combining a range of techniques we have identified some of the brain areas and neurotransmitter systems that may alter aggression. A major drawback of this approach is that because of technical limitations we compared neural activity at larval stages to neurochemistry in the adult brain and behaviour across the lifespan. Future work would benefit from identifying the mature neural circuits activated by these drugs. The next step for this research would be to further test these compounds in rodent models to investigate whether caffeine and sildenafil reduce aggression across vertebrate species (Norton, 2019).

Role of the funding source

The research leading to these results received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 602805. Hector Carreno is funded by the NC3Rs (NC/R001049/1).

Contributors

H.C.G. and I.V. performed the drug screen and analysed the data. G.D. and A.A.V. helped with statistical analysis of results. H.C.G. carried out all adult zebrafish experiments apart from fear conditioning/5-CSRTT and analysed the data. B.O.C. and A.M.J.Y performed the HPLC measurements and analysis. M.C. and M.O.P. performed the averse learning and 5-CSRTT and analysed the data. A.T. and M.J.W. imaged elavl3:GCaMP6s and analysed the data. W.H.J.N. analysed the data and wrote the first version of the manuscript. All authors improved the manuscript before submission.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

We are grateful to Carl Breaker and members of the preclinical research facility for zebrafish care, Ceinwen Tilley for technical support and all members of the Norton lab for discussions about this data.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.eurineuro.2019.10.005.

References

