Variant of Odontoonychodermal Dysplasia?

W.P. Arnold, M.A.W. Merkx, and P.M. Steijlen
Departments of Dermatology (W.P.A., P.M.S.), and Oral and Maxillofacial Surgery (M.A.W.M.),
University Hospital Nijmegen, Nijmegen, The Netherlands

In this case report we describe a patient with all the manifestations seen in the odontoonychodermal dysplasia syndrome, except for the shape of teeth and mild mental deficiency.
© 1995 Wiley-Liss, Inc.

KEY WORDS: hydrotic ectodermal dysplasia, palmoplantar hyperkeratosis, odontoonychodermal dysplasia syndrome

INTRODUCTION

Fadhil et al. [1983] presented in this journal 7 individuals from a total of 24 belonging to 3 inbred Lebanese sibships affected with hyperhidrotic, transgradient palmar and plantar hyperkeratosis, deciduous teeth persisting during adulthood, dry and sparse hair, dystrophic nails, and a mild erythema over the cheeks and nose. They called the condition “odontoonychodermal dysplasia.” The pedigree was consistent with autosomal-recessive transmission. To the best of our knowledge, no other patients affected with this condition have been reported.

Here we describe an individual born to nonconsanguineous parents, who had findings very similar to those described above, as well as mild mental deficiency.

CLINICAL REPORT

A 31-year-old man had had skin problems since early childhood. He complained of progressive thickening of palmar skin, with painful chapping and increased sweating in these areas. These symptoms inhibited his great passion: playing the accordion. He lived in a so-called “Family Replacing Home” due to mild mental retardation. His general health status was good, but he was treated with carbamazepine, prescribed after a single epileptic episode he had suffered 15 years ago. His Dutch parents were nonconsanguineous, and his parents, the parents of his father, and his two brothers and one sister as well, appeared to have normal intelligence, without abnormalities of skin and dentition. No data were available regarding the parents of his mother.

Examination showed mild palmoplantar erythematous plaques with a relatively sharp boundary, extending to the dorsal aspects (Figs. 1, 2), with severely dystrophic nails. The palms were severely chapped, and both palms and soles were very clammy.

Fig. 1. Palm erythematous plaques with a relatively sharp boundary.

Fig. 2. Erythematous plaques extending to the dorsal aspects, with severely dystrophic nails.
Fig. 4. Photograph of the permanent dentition: the deciduous teeth are still present. Note: any healing problems present (Fig. 4); no other physical abnormalities were observed. Interorbital calcifications were absent. C-erb A, POU5F1, H63.6. Toothed radicular calculus around submandibular glands (Fig. 6). Pathological examination of the skin showed normal skin. Socket of the dentition surrounded by dense connective tissue. The cervical region of the neck showed no scars or alterations. Skin of the nose and cheeks was normal, except for a few scattered, non-inflammatory papules. The brown pustular papules were scattered over the face and hands. Ulcerative duodenal dysphasia.}

Fig. 6. Pathosis films of the jaws.
normal. Hair shaft light microscopy showed thin hair with relatively varying diameter.

DISCUSSION

Three forms of hydrotic ectodermal dysplasia with palmoplantar hyperkeratosis and dystrophic nails have been described: "genuine" hydrotic ectodermal dysplasia (Clouston syndrome) [Clouston, 1939], hydrotic ectodermal dysplasia with calcification of basal ganglia (Copeland syndrome) [Copeland et al., 1977], and odontoonychodermal dysplasia syndrome (Fadhil syndrome) [Fadhil et al., 1983]. Clouston syndrome is characterized by an autosomal-dominant mode of inheritance, and the face and teeth are usually normal. Copeland syndrome is characterized by alopecia and intracranial calcifications. Fadhil syndrome, finally, includes most of the manifestations seen in our patient, except for the shape of teeth and mild mental deficiency. The description of Fadhil et al. [1983] of the two peg-shaped permanent maxillary central incisors could not be confirmed because of the absence of these permanent teeth. The deciduous teeth were wide-spaced and had a marked erosion of their occlusal surfaces and incisal edges as described by Fadhil et al. [1983], with hypodontia of the permanent dentition (small 16 and 26, and peg-shaped 34 and 44; Fig. 5). All data are summarized in Table I.

To our knowledge, no additional report has yet appeared in the English language medical literature to confirm odontoonychodermal dysplasia syndrome as a new entity. Pinheiro et al. [1985] described a similar odontoonychodysplasia syndrome, which, however, is characterized by a nonhydrotic ectodermal dysplasia with partial syndactyly, alopecia totalis, and completely developed permanent teeth. We think that our patient is a variant of the condition described by Fadhil et al. [1983], or a new entity, with a possible autosomal-recessive pattern of inheritance. We hope that the present report will increase awareness of the existence of odontoonychodermal dysplasia with variable clinical presentations.

REFERENCES

TABLE I. Clinical Signs of Hydrotic Ectodermal Dysplasia Syndromes With Palmoplantar Hyperkeratosis

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Mental deficiency</th>
<th>Inheritance</th>
<th>Teeth</th>
<th>Hair</th>
<th>Nails</th>
<th>Other features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clouston</td>
<td>+/-</td>
<td>AD</td>
<td>Usually normal</td>
<td>Dry, sparse, and thin</td>
<td>Dystrophic</td>
<td>Intracranial calcification</td>
</tr>
<tr>
<td>Copeland</td>
<td>+</td>
<td>AR?</td>
<td>Hypodontia</td>
<td>Alopecia</td>
<td>Dystrophic</td>
<td>"Solar clinostasis" and dry skin</td>
</tr>
<tr>
<td>Fadhil</td>
<td>?</td>
<td>AR</td>
<td>Hypodontia, deciduous</td>
<td>Dry and normal to sparse</td>
<td>Dystrophic</td>
<td>Ulerythema phryogenes</td>
</tr>
<tr>
<td>Present case</td>
<td>+/-</td>
<td>AR?</td>
<td>As above</td>
<td>Dry, sparse, and thin</td>
<td>Dystrophic</td>
<td></td>
</tr>
</tbody>
</table>