PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/21432

Please be advised that this information was generated on 2019-08-20 and may be subject to change.
Behavioral and neurochemical observations of streptozotocin-treated rats: effects of chronic treatment with acetyl-L-carnitine

J. Prickaerts, A. Blokland, W. Honig, H.W.M. Steinbusch and J. Jolles
Department of Psychiatry and Neuropsychology, University of Limburg, P.O. Box 616, 6200 MD Maastricht, The Netherlands

Treatment of middle-aged rats with an i.c.v. injection of streptozotocin (STREP) may provide a relevant model of neurodegeneration that could be induced by a decrease in the central metabolism of glucose. Acetyl-L-carnitine (ALCAR) has been found to enhance the utilization of alternative energy sources, such as lipid substrates or ketone bodies. Via such a mechanism of action ALCAR could antagonize the effects of STREP treatment. This study was designed to evaluate the behavioral and biochemical effects of chronic treatment with ALCAR in the middle-aged STREP-treated rat. Spatial discrimination learning in the Morris task was affected after STREP treatment and this cognitive impairment was related to hippocampal choline acetyltransferase (ChAT) activity. ChAT activity in the frontal cortex, striatum and septum was not affected after STREP treatment. Chronic treatment with ALCAR attenuated the STREP-induced impairment in spatial bias during the probe trial and attenuated the STREP-induced decline in hippocampal ChAT activity. These findings suggest that, in this animal model, chronic treatment with ALCAR had a beneficial effect on the behavioral as well as on the biochemical level. Presently histological, neurochemical, and behavioral studies are in progress to elucidate the effect of STREP on the neurodegeneration of certain brain structures and transmitter systems.

A COMPARISON BETWEEN IN VITRO AND IN VIVO EFFECTS OF THIOPENTAL.

C.M. van Rijn1, R. Dirksen2 and T.B. Vree3.
1Psychology/NICI, 2Anesthesiology, Nijmegen University, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands.
Fax:+31.80.6160666.

The aim of this study was to gain insight into the molecular mechanism underlying the in vivo effects of thiopeental. We compared the dose-response curve of thiopeental on the withdrawal reflex to transcutaneous stimulation in rats [1] to the dose-response curve of thiopeental on the binding of [3H]TBBOB to the GABA_A receptor complex in rat brain homogenates [2]. The sigmoid E_max model was fitted to both datasets. In vivo thiopeental suppressed the withdrawal responses with an ED50 of 4.5 mg/kg corresponding to 9.2 μmoles/kg brain, and a slope factor of 1.60. In vitro thiopeental inhibited [3H]TBBOB binding with an IC50 of 28 μM and a slope factor of 1.65. The results of this study show a remarkable similarity between the in vivo curves and the in vitro curves, concerning both the effective concentrations and the shape of the curves. Based on this similarity we hypothesize that: 1) an interaction of thiopeental with the GABA_A receptor complex can account for the inhibition of the withdrawal effect; this relationship is linear. 2) two thiopeental molecules bind to the GABA_A receptor complex with a positive cooperative effect on the (negative) modulation of the [3H]TBBOB binding site. This can account for the high slope factors found.


Transplantation of the suprachiasmatic nucleus (SCN); first steps to increase functional response by ex vivo gene transfer methods.

K.E. van Esselstijn, W.T.J.M.C. Hermens, R.-Y. Liu, J. Verhaagen and G.J. Boer.
Graduate School Neurosciences, Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands.

The SCN of the hypothalamus is the major component of the biological clock in mammals. SCN-lesioned-and thus arhythmic-rats can recover their circadian drinking rhythm upon homotopic transplantation of a fetal SCN in only 40% of the cases. These studies suggested that although the recovery of drinking rhythms may occur when the outgrowth of vasopressin- and vasotocin-containing fibers from the transplanted SCN neurons reach the host brain. Stimulation of these sparse outgrowing fibers might therefore result in a higher percentage of recovered rats. One possibility to achieve this, is to place the transplanted SCN nearer to one of its target areas so that fibers can more easily make functional contacts. However, SCN transplantation near the paraventricular nucleus of the thalamus resulted in recovery of drinking rhythm in 33% of the rats. A second possibility to enhance fiber outgrowth is to provide the transplant with an additional gene encoding for either growth factors or growth-associated proteins. Preliminary results show that it is possible to introduce the marker gene encoding for β-galactosidase into fetal SCN tissue by means of infection with a replication-defective adenoviral vector. The foreign gene is expressed for at least 8 days after transplantation both in neural and non-neural cells.