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Abstract

In this paper, we show the first results on the estimation of
breathing signal from conversational speech using deep learn-
ing algorithms. Respiratory diseases such as COPD, asthma,
and respiratory infections are common in the elderly popula-
tion and patients in health care monitoring and medical alert
services in general. In this work, we compare algorithms for
the estimation of a known respiratory target signal, measured
by respiratory belt transducers positioned across the rib cage
and abdomen, from conversational speech. We demonstrate the
estimation of the respiratory signal from speech using convolu-
tional and recurrent neural networks. The estimated breathing
pattern gives respiratory rate, breathing capacity and thus might
provide indications of the pathological condition of the speaker.
Evaluation of our model on our database of breathing signal and
speech yielded a sensitivity of 91.2 % for breath event detection
and a mean absolute error of 1.01 breaths per minute for breath-
ing rate estimation.

Index Terms: breathing detection, pathological speech, speech
technology, deep neural networks, respiratory diseases.

1. Introduction

The use of speech analytics has been gaining attention within
the clinical and health-care domains in recent years. This
follows to the success of deep learning techniques in vari-
ous speech technology applications. Breathing activity dur-
ing speech is an important indicator of a person’s respiratory
and cognitive health condition. Automatic detection and exact
demarcation of breath sounds during speech is critical for de-
veloping health care services. Ruinskiy and Lavner proposed
an effective breath-event detection algorithm based on template
matching and the accurate detection of very short silence in-
tervals (called edges) before and after breathing sounds [1].
However, this is limited to high signal noise ratio(SNR) con-
ditions with pure speech. Breathing pattern during speech can
be visualized as a systematic step by step process of exhaus-
tion of air. This expiration can be modeled as a composition of
phonemes with varying exhaustion flows for vowel and conso-
nant phonemes [2]. Our hypothesis is that the inverse problem,
i.e., modeling the breathing pattern using the composition of
conversational speech is achievable using deep learning algo-
rithms. This is the main focus of the current paper.

Speech and respiration are closely related. Speech is pro-
duced by organs evolved for the respiratory function of the body
[3]. Breathing is a primary mechanism of voice generation
maintaining a suitable level of subglottal pressure required for
momentary production needs. Breathing is implicated in many
aspects of speech production, such as voice quality [4], voice
onset time [5] and loudness [6]. Vocalization mostly takes place
during exhaling while inhaling is done in pauses between utter-
ances. We perform continuously breathing planning during the
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speech so that we take in more air for a long continuous utter-
ance [7]. When this process is disturbed due to respiratory or
cognitive conditions, it influences our breathing planning and
may lead to a break in an utterance because of the need for air.
We can hear when a person has breathing difficulties but the
automatic detection of this is a complex task for computers be-
cause the breathing planning is based on linguistic and prosodic
factors [8].

The current research is related to the development of acous-
tic sensing technology for healthcare call centers. Speech
recordings can be used for monitoring a wide range of health
parameters ranging from respiratory diseases, heart conditions,
neurodegenerative diseases to mental conditions. In this paper,
the goal is to predict the breathing activity of a talker from the
speech signal. The ultimate goal is to measure breathing sig-
nal and breathing parameters during telephone conversations of
telehealth customers with call center respondents. Breathing
monitoring from the speech conversations of these customers
over multiple calls would give us the historical data of breathing
parameters and would help us compare and understand person’s
pathological condition, decline or improvement over a period of
time and also early detection of a condition.

In the experiments reported in this paper, we use data from
healthy volunteers wearing a respiration belt over the ribcage
and abdomen during the speech recordings. We compare differ-
ent representations of speech content and different deep neural
network models and discuss their differences in the task of pre-
dicting the respiratory belt signal which is here the breathing
signal.

2. Approach
2.1. Breathing signal estimation

Spectral features of speech of a fixed time window are mapped
with the respiratory sensor value at the endpoint of the time win-
dow. This is based on our hypothesis that the respiratory sensor
value (breathing state) at the end of a time window is dependent
on the composition of speech in that particular time window.
The spectral features of speech and known respiratory sensor
values are mapped to train deep neural network models. These
trained models are used to estimate the respiratory sensor values
from a target speech signal in real time to get the breathing sig-
nal as shown in Figure 1. For establishing a trained model, we
need a dataset of ground truth breathing signals during speech.
We designed the following experiment for creating this dataset.

2.2. Experiment and Dataset

Our speech database has been developed at Philips Research,
Eindhoven, with the approval of the Internal Committee
Biomedical Experiments, ICBE). The data was collected using
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Figure 1: Schematic diagram for estimating respiratory signal
using Deep Neural Network Model.

the following setup: two respiratory elastic transducer belts over
the ribcage and abdomen to measure the changes in the cross-
sectional area of ribcage and abdomen at the sample rate of
2 kHz; Earthworks microphone M23 for recording high-quality
speech at 48 kHz.

20 healthy subject’s data is collected under the following
sessions each for approximately 5 minutes:

1. General conversation for spontaneous speech;
2. Reading a phonetically balanced script;

3. Normal breathing for reference breathing rate;
4

. Prolonged vowel sound to estimate reference lung capac-
ity; and,
5. Reading the script after exercise to simulate respiratory
disease condition.

Respiratory belts are placed around the rib cage under the
armpits and around the abdomen at the level of the umbili-
cus. These belts work on the principle of respiratory induc-
tance plethysmography (RIP). They consist of a sinusoidal wire
coil insulated in elastic. Dynamic stretching of the belts creates
waveforms due to change in self-inductance and oscillatory fre-
quency of the electronic signal and the electronics convert this
change in frequency to a digital respiration waveform where the
amplitude of the waveform is proportional to the inspired breath
volume.

The chest can be considered as a system of two compart-
ments with only one degree of freedom each [9]. When a
known air volume is inhaled and measured with a spirometer,
a volume-motion relationship can be established as the sum of
the abdominal and rib cage displacements [9]. Thus the sum of
ribcage and abdomen expansions measured by the respiratory
belt transducers is considered as the measure for the respiratory
or breathing signal as shown in Figure 2.
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Figure 2: Respiratory belt signal during speech recording
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3. Method

Spectrogram and log Mel spectrograms are used as spectral fea-
tures for speech [10]. We investigate the following for the better
estimation of breathing signal.

1. Length of time windows: the window length for each
speech input, i.e., spectrograms, and log Mel spec-
trograms is crucial for estimating the breathing sen-
sor value. We found that the average duration of a
breath cycle during conversational speech is 7.5s from
our database with a minimum of 2s to a maximum of
10s. Hence we investigate speech inputs of fixed win-
dow length of 2s, 4s, 8s for better estimation.

2. Spectral features of speech: spectrogram and log Mel
spectrograms are considered as input spectral features of
speech signals.

3. Mapping point of respiratory sensor: speech signal of
a fixed time window is mapped with respiratory sensor
value at the endpoint of the time window to train the
models. We also investigated mapping with sensor value
at the beginning and mid point of the time window and
found no significant difference in the estimation.

4. Neural network models: convolutional Neural Network
and Long short-term memory (LSTM) Recurrent Neural
Network architecture are compared in this study.

3.1. Speech pre-processing for deep neural networks

Speech signals of the fixed time window length 2s, 4s and 8s
are processed by a pre-emphasis filter to spectrally flatten the
speech signals and boost higher frequencies. Spectral features
are extracted from these windows.

3.2. Input Audio representations

1. Spectrogram: the spectrogram as a time-frequency rep-
resentation of the speech signal of a time window is gen-
erated by a short-time Fourier transform (STFT) with
short frames size 25ms and stride of 10ms [11]. The
Hamming window is applied to each frame and Short-
time Fourier transform is computed to get the power
spectrum.

2. Log Mel Spectrogram: Mel filter banks (n=40) are ap-
plied to the power spectrum to get the Mel spectrum. Mel
filter banks use Mel-frequency scaling, which is a per-
ceptual scale to replicate human ear perception of sound
[12]. It corresponds to better resolution at low frequen-
cies and less at high frequencies.

m = 2595 log, o (1 + %) )
f =700(1073% — 1) )

where f is frequency in Hertz and m is Mel scale

Thus, we use the spectrogram and log Mel spectrogram to
represent the spectral features of the speech signals as inputs to
deep neural network.

Spectrogram and log Mel spectrogram of a speech signal of
a fixed time window is mapped with respiratory sensor value at
the endpoint of the time window with a stride of 10ms between
windows to train the CNN and RNN models. These models will
be used to estimate the respiratory sensor values of a speech
signal in real time to get the breathing pattern.



3.3. Deep Neural Network models

CNN Model
Input: log Mel spectrogram
or spectrogram
m: frames in time window
n : Mel filter banks

Matrix X;(1 x m x n)
1 x conv3-1;s1

RNN Model
Input: log Mel spectrogram
or spectrogram
m: frames in time window
n : Mel filter banks

Matrix X;(1 x m x n)

Maxpooling 3x3 LSTM model
1x conv5-1;s1
Maxpooling 3x3 Layers =2

Hidden size= 128
OUTPUT: sensor value |

3 Fully Connected layers
[ OUTPUT: sensor value ||

Figure 3: Deep neural network configurations for sensor value
prediction

In the current work the neural networks were implemented
using the pytorch software framework [13]. In the CNN model
[14], the data is fed into a network of two convolutional layers
with single channel and kernel size of 5 for filtering operation
to extract local feature maps. Max pooling is deployed to re-
duce the dimensionality of feature maps while retaining the im-
portant information and rectified linear unit activation function
is applied to introduce non-linearity into the feature extraction
process for each convolutional layer as shown in Figure 3.

In the RNN-LSTM model [15], the data is fed into a net-
work of two LSTM layers with 128 hidden units and a learning
rate of 0.001. Adam optimiser is used as an optimization algo-
rithm to update network weights iterative based on training data
[16]. Mean squared error is used as the regression loss func-
tion. These hyperparameters for the network are best chosen
for estimation after repeated experimentation. Both CNN and
RNN-LSTM networks are trained with the data of 15 specific
subjects and tested on 5 other specific subjects.

4. Results
4.1. Mean squared error and Correlation

Spectrogram and log mel spectrograms are considered for com-
parison as input spectral features of speech for estimation of
breathing pattern. Both CNN and RNN networks result in lesser
mean squared error and higher correlation for actual and esti-
mated breathing signals with log mel spectrogram compared to
spectrograms for a fixed time window of 4s as shown in Tablel.

Models | Log Mel-Spectrogram | Spectrogram
RNN (MSE) 0.0017 0.0058
RNN (Correlation) 0.47 0.21
CNN (MSE) 0.00229 0.016
CNN (Correlation) 0.41 0.27

Table 1: comparison of spectrogram vs log Mel spectrogram
with MSE and correlation for time window length of 4s.

Hence log mel spectrograms are used as input representa-
tions in our study for estimating breathing parameters. We com-
pare deep neural networks performance and breathing parame-
ters for 2s, 4s and 8s time window lengths for estimating breath-
ing signal and results are formulated in Figures 4-7. For com-
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paring each subject’s breathing rate estimation, we performed
a leave one group (subject) out cross validation for 20 subjects
using RNN-LSTM model with time window length 4s and the
results are formulated in Figure 9.
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Figure 4: Mean Squared Error for CNN and RNN-LSTM for
time windows 2s, 4s, 8s of speech (log mel-spectrogram repre-
sentation).
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Figure 5: Correlation for CNN and RNN-LSTM for time win-
dows 2s, 4s, 8s of speech (log mel-spectrogram representation,).

4.2. Breathing parameters

Breathing signal is analyzed to get breathing rate and tidal vol-
ume which are the important respiratory parameters to detect
the pathological condition of a person. These parameters are
compared for the actual and estimated sensor data to determine
the accuracy of estimation.

1. Breathing rate is average number of breaths per minute
and is computed by using peak detection algorithm [17].

2. Tidal volume is a measure of the amount of air a per-
son inhales during a normal breath. It gives informa-
tion about the lung capacity of a person [9]. We nor-
malise the average area under the curve per breath and
use it to describe tidal volume. This normalised tidal
volume equivalent is used for comparison for actual and
estimated breathing signal.
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Figure 6: Error percentage in Breathing rate estimation for
CNN and RNN-LSTM for time windows 2s, 4s, 8s (log mel-
spectrogram representation,).
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Figure 7: Error percentage in Tidal Volume estimation for

CNN and RNN-LSTM for time windows 2s, 4s, 8s (log mel-
spectrogram representation,).
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Figure 8: Comparison of 3 subject’s resting breathing rates with
actual and estimated conversational breathing rate.
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Figure 9: Comparison of distribution of resting breathing rate,
actual and estimated conversational breathing rate for all sub-
Jjects using RNN-LSTM model.

4.3. Summary

Our findings are summarised as follows:

1. Log Mel spectrogram representation gives better breath-
ing signal estimation as input to the neural network than
the spectrogram representation.

From Figures 4-7, 4s window of speech is optimum with
lesser loss and higher correlation for estimating breath-
ing signal parameters with 4.3 % error for breathing rate
and 1.8% error for Tidal volume.

3. RNN-LSTM model performs better with a correlation of
0.47 and MSE loss of 0.0017 compared to CNN model
with a correlation of 0.41 and MSE loss of 0.00229 for a
4s time window.

From Figures 8-9, we show that the breathing rate during
conversational speech is nearly half the normal breathing
rate. We got a sensitivity of 91.2 % for breath event de-
tection and an mean absolute error of 1.018 breaths per
minute for breathing rate estimation using our model.

5. Conclusions

In this paper, we propose a method to estimate breathing pattern
during speech using deep learning models. We expect our pro-
posed method can be used for estimating the breathing pattern
of a customer during a call to the telehealth call center. This
work can be extended by implementing different deep learn-
ing architectures like attention based models, multi-task learn-
ing with breathing rate as an auxiliary training parameter for
better estimation. Breathing pattern would give us information
about the respiration rate, breathing capacity and thus enable
us to understand the pathological condition of a person using
speech during conversations. This would help early and remote
diagnosis for various health conditions.
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