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Varadhan’s theorem for capacities

Bart Gerritse

Abstract. Varadhan’s integration theorem, one of the corner stones of large-deviation
theory, is generalized to the context of capacities. The theorem appears valid for any
integral that obeys four linearity properties. We introduce a collection of integrals that
have these properties. Of one of them, known as the Choquet integral, some continuity
properties are established as well.

Keywords: capacities, large deviations, Choquet integral, Varadhan’s integration theo-
rem

Classification: 28A12, 28A25, 60F10

1. Introduction

A large-deviation principle for a sequence of probability measures gives the ex-
ponential rate at which the probability of various sets (or events) tends to 0.
A formal statement expresses convergence of vanishing powers of the measures
to a lower limit on open and an upper limit on closed sets, quite similar to weak
convergence of probability measures. This resemblance was elaborated upon by
O’Brien and Vervaat (1991). They noticed that the set C of capacities contains
the positive powers of tight probability measures, as well as their limits in large-
deviation principles. Here, capacities are monotone, inner and outer regular set
functions on a topological space. Capacities have been studied by Norberg (1986),
Vervaat (1988) and Norberg and Vervaat (1989) from the viewpoint of random
closed sets and extremal processes. Two topologies have been defined on C. The
narrow topology extends weak convergence of measures as in Billingsley (1968).
The vague topology extends vague convergence of Radon measures as in Berg,
Christensen and Ressel (1984). A large-deviation principle can be seen as an in-
stance of cαn

n → c in C, where αn ↓ 0. Thus the space of capacities is the natural
topological setting for large-deviation theory.
This view on large deviations has been developed further. In O’Brien and

Vervaat (1993) a topological proof is given for some well-known large-deviation
results. The new proofs show the advantages of a topological approach. In the
same vein we shall generalize Varadhan’s theorem in this article. The main ideas of
the capacity approach have strongly influenced researchers from fields as diverse
as mathematical physics (John Lewis and Charles Pfister) and statistics (Paul
Deheuvels).
Varadhan (1966) showed that from a large-deviation principle for probability

measures (µn) the exponential asymptotic behaviour of integral transforms of µn
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can be deduced. He proved that, under certain conditions, it follows from µαn
n → c

and fαn
n → f that

(1)

(
∫

·
fn dµn

)αn

→ sup
e∈ ·

f(e)c({e}),

where the conclusion may be interpreted as convergence of the indefinite integrals.
In this article Varadhan’s theorem is extended to the context of capacities. It is
presented as a combination of one-sided results, which we shall use in later work
to prove a general mixing theorem for large-deviation principles. In turn, this will
be used to prove large-deviation results for bootstrap quantities and to obtain a
generalization of the Freidlin-Wentzell theorem (cf. Gerritse (1995c)).
In order to prove Varadhan’s theorem for capacities we need a theory of integra-

tion with respect to capacities. However, Varadhan’s theorem is not demanding
as far as the type of integral is concerned. In the traditional case only four prop-
erties of the Lebesgue integral are needed, and these will also suffice for proving
the generalization. Therefore we shall prove Varadhan’s theorem assuming solely
these properties, without fixing a definition for the integral. This is done in Sec-
tion 4. In Section 3 possible definitions for the integral will be given, indexed by
p ∈ [1,∞]. The Choquet integral (p = 1) is the most natural because it extends
the Lebesgue integral and is commonly used in the theory of random closed sets
and in mathematical economics. Under mild conditions the indefinite Choquet
integral

∫

· f dc is again a capacity and jointly continuous in f and c. This will be
proved in Section 5.
Holwerda and Vervaat (1993) have shown that C is a complete lattice with

the natural set-wise ordering. In this context O’Brien (1994) observed that for
any sequence (cn) of capacities lim inf cn and lim sup cn are well-defined elements
of C. A large-deviation principle holds if and only if lim inf cαn

n and lim sup cαn
n are

equal. We say that a lower (upper) one-sided large-deviation principle holds for
(cn) with limit c if lim inf c

αn
n ≥ c (lim sup cαn

n ≤ c). The results in Section 4 will
be presented in a form that makes them applicable to one-sided large-deviation
principles. This approach ultimately yields the mixing theorem that we already
mentioned.
The results will be derived in the largest possible topological generality. The

reason for this is that we want them to be applicable to large-deviation principles
for random capacities, in which case the underlying space is a space of capacities.
In general the topological properties of C are not very tractable, which is why we
try to avoid a Hausdorff condition on the underlying space. We shall, however,
not be able to avoid this all the way. A first use of random capacities can be
found in Deheuvels (1994).

2. Preliminaries

As we showed in the introduction, it is natural to formulate large-deviation prin-
ciples in terms of capacities. Unfortunately, the type of capacity that is needed
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is not well known, and its basic properties are not easily accessible for reference.
In this section we state the properties that we shall need. Most of them can be
found in O’Brien and Vervaat (1991). For the others we do give another reference
or a proof.

Our desire to prove the main results with minimal topological conditions cre-
ates the need for some rather exotic, but weak, topological notions. These will be
introduced first, together with some notation concerning the underlying topolog-
ical space.
Let E be a topological space. Let G denote the collection of open subsets. We

shall write G(E) instead of G if it is not clear from the context what the underlying
space is. A set K ⊂ E is called compact if every open cover of K has a finite
subcover (also if E is not Hausdorff). We shall denote the collections of closed
and compact sets by F and K respectively. Generic open, closed and compact
sets will be denoted by G, F and K.
We call E locally compact if for any instance of K ⊂ G there areK ′ compact

and G′ open such that K ⊂ G′ ⊂ K ′ ⊂ G. If E is Hausdorff, this simplifies to the
usual definition (each point has a compact neighborhood). We call E Wilker if
for every occurrence ofK ⊂ G1∪G2 there areKi ⊂ Gi such thatK ⊂ K1∪K2 (cf.
Wilker (1970)), and inheritary Wilker if each subset A ⊂ E with the relative
topology is Wilker. We call E first countable for K if each compact set has a
countable neighborhood base (cf. O’Brien (1992)).
A function f : E → [0,∞] is called upper semicontinuous (usc) if for all

x ∈ (0,∞) the set {e ∈ E : f(e) < x} is open. If f is usc, then f attains
its supremum on compact sets. Similarly, f is lower semicontinuous (lsc) if
{e ∈ E : f(e) > x} is open for all x. If f is lsc, then f attains its infimum on
compact sets.

We proceed by giving the definition and elementary properties of capacities.
A capacity on E is a [0,∞]-valued function c on the subsets of E such that:

c(∅) = 0,(2a)

c(A) = sup{c(K) : K ⊂ A} for all A ⊂ E (“inner regularity”),(2b)

c(K) = inf{c(G) : G ⊃ K} for all K ∈ K (“outer regularity”).(2c)

Choquet (1954) introduced capacities with different regularity conditions. The
two notions are in general incomparable, but there is a one-one correspondence
between the subcollections of the strongly subadditive capacities (cf. Dellacherie
and Meyer (1978) and Norberg and Vervaat (1989)).
All capacities have the following properties. These follow immediately from

the definition.

c(A) ≤ c(B) whenever A ⊂ B,(2d)

c(Gn) ↑ c(G) whenever Gn ↑ G,(2e)

c(K ∩ Fn) ↓ c(K ∩ F ) whenever Fn ↓ F.(2f)
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A capacity c is subadditive if c(K1∪K2) ≤ c(K1)+c(K2) for all K1,K2 ∈ K.
It is additive if c(K1 ∪K2)+ c(K1 ∩K2) = c(K1)+ c(K2). It is a sup measure
if c(K1 ∪ K2) = c(K1) ∨ c(K2). A capacity c is Radon if c(K) < ∞ for all
K ∈ K. The set of all capacities on E is denoted by C or C(E). The spaces of all
subadditive capacities, all additive capacities and all sup measures are denoted by
SA, AD and SM respectively. These subspaces are of special interest. Therefore
we shall give some more information about them, mainly concerning the extension
of the defining relation to other than compact sets.
For a capacity c the function e 7→ c({e}) is usc by (2c, d). If c is a sup measure,

then c(A) = sup{c({e}) : e ∈ A} for all A ⊂ E. Conversely, any [0,∞]-valued usc
function f determines a sup measure c via c(A) = sup{f(e) : e ∈ A}. Thus there
is a one-one correspondence between the set US of all [0,∞]-valued usc functions
on E and SM. Closed sets F have usc indicator functions 1F , which embed F
into SM (cf. Vervaat (1988)).
Subadditivity extends to a much larger class of subsets than the compact sets.

If E is a Wilker space, subadditivity holds for instance for arbitrary collections of
open sets (i.e., c(∪αGα) ≤

∑

α c(Gα)). O’Brien and Vervaat (1994) explore how
far subadditivity can be extended. The following proposition is a corollary of their
Lemma 4.3. However, O’Brien and Vervaat (1994) assume E to be Hausdorff. In
their Sections 3 and 4 this is needed only to prove the fact that a subadditive
capacity on A ∪ B is arbitrarily subadditive on G(A ∪ B). The Wilker property
of A ∪B guarantees this.

Proposition 1. If E is inheritary Wilker, c is a subadditive capacity and A and

B are subsets of E such that A is either open or closed in the relative topology

on A ∪B, then c(A ∪B) ≤ c(A) + c(B).

On Hausdorff E an additive capacity c is countably additive on the Borel sets
and is therefore an extension of a measure. A finite measure on a Hausdorff space
E that is first countable for K is extendable to a capacity iff it is tight (cf. O’Brien
(1992)).

We turn to the two topologies on C. The vague topology on C is the coarsest
topology that makes the evaluations c 7→ c(A) lsc for open A and usc for com-
pact A. This means that the collection of all sets of the form {c ∈ C : c(G) > x}
or {c ∈ C : c(K) < x} is a subbase (x ∈ (0,∞)), and that a sequence (cn) in C

converges vaguely to c (this will be denoted by cn
v
−→ c) iff

lim inf cn(G) ≥ c(G) for all G ∈ G,(3a)

lim sup cn(K) ≤ c(K) for all K ∈ K.(3b)

The subbase for the vague topology consists of two types of sets. Two smaller
topologies will be needed as well. If C is endowed with the topology generated
by the sets {c ∈ C : c(G) > x}, it is denoted C↑. In this topology convergence is
characterized by (3a). Dually, C↓ denotes C endowed with the topology generated
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by the sets {c ∈ C : c(K) < x}. Convergence is characterized by (3b). We shall
call convergence results in these two topologies one-sided, for obvious reasons.
With the vague topology, C is compact. If E is locally compact, then C is

Hausdorff and the subspaces SA, AD, SM and F are closed and compact. If E
is first countable for K, then sequences in C have at most one limit (we shall say
that C is sequentially Hausdorff) and the subspaces mentioned are sequentially
closed (cf. O’Brien (1992)).

Replacing ‘compact’ by ‘closed’ gives the narrow topology on C. It is the
coarsest topology that makes c 7→ c(A) lsc for open A and usc for closed A. A
subbase is given by all sets of the form {c ∈ C : c(G) > x} or {c ∈ C : c(F ) < x}.

A sequence (cn) converges narrowly to c (denoted by cn
n
−→ c) iff (3a) holds and

(3c) lim sup cn(F ) ≤ c(F ) for all F ∈ F .

When C is provided with the topology generated by the sets {c ∈ C : c(F ) < x},
it is denoted C⇓. If E is regular and Hausdorff, then C is narrowly Hausdorff and
its subspaces SA, AD, SM and F are narrowly closed.
A set Π of capacities is equitight if there is a net (Km) in K (a tightening

net) such that c(K ∩Km)→ c(K) as m→ ∞ uniformly for K ∈ K and c ∈ Π. A
capacity c is tight if {c} is equitight. Let Ct denote the set of all tight capacities
and let SAt (ADt, SMt,Ft) denote the intersection of Ct and SA (AD, SM,F).
If E is Hausdorff and c is a tight capacity, then (2b, c, f) hold with ‘K’ replaced
by ‘F ’. Prohorov’s theorem extends to capacities: an equitight set of capacities
is narrowly relatively compact and the converse holds if E is Polish.

A vague large-deviation principle (vldp) is any instance of cαn
n

v
−→ c where

cn ∈ SA, c ∈ SM and αn ∈ (0, 1) such that αn ↓ 0. The assumption on c
follows from the other assumptions if E is Hausdorff and first countable for K
(Theorem 2.8 in O’Brien (1992)). A narrow large-deviation principle (nldp)

is any instance of cαn
n

n
−→ c, where cn, c and αn are as above. The assumption on c

follows from the other assumptions if E is Hausdorff and regular. A vldp (nldp)
holds if inequalities (3a) and (3b) ((3c)) hold for (cαn

n ) rather than (cn). We say
that a one-sided large-deviation principle holds if one of these inequalities
holds (this is a bit less general than the definition from O’Brien (1995) cited in the
introduction, but sufficient for our purposes). We want to emphasize (again) that
for any sequence (cαn

n ) two one-sided ldps hold, possibly with different limits.

On C we define an order and an addition by setting c1 ≤ c2 iff c1(A) ≤ c2(A)
for all A ⊂ E, and (c1+ c2)(A) = c1(A)+ c2(A). With this order C is a complete
lattice, and many properties can be given a lattice-theoretical proof (cf. Holwerda
and Vervaat (1993)). The addition is continuous in both topologies.

We end this section with some notational conventions and an elementary propo-
sition. Let x, y be real numbers, f : E → R and A ⊂ E. By x ∧ y we denote the
minimum of x and y, by x∨y the maximum, by f∧(A) the infimum of f on A and
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by f∨(A) the supremum. In several proofs the following property of upper limits
of sequences of real numbers will be needed. It is proved by the observation that
xn ∨ yn ≤ xn + yn ≤ 2 (xn ∨ yn) and lim 2

αn = 1.

Proposition 2. Let (xn) and (yn) be sequences in [0,∞] and (αn) a sequence
in (0,∞) that tends to 0. Then

(4) lim sup
n→∞

(xn + yn)
αn = lim sup

n→∞
(xn)

αn ∨ lim sup
n→∞

(yn)
αn .

3. Integration with respect to capacities

In this section we present possible definitions for the integral
∫

f dc of a [0,∞]-
valued function f with respect to a capacity c. All integrals in this section will
have the following properties:

∫

A
xdc = xc(A) for all x ∈ [0,∞] and all A ⊂ E,(5a)

∫

f dc ≤

∫

g dc whenever f ≤ g,(5b)

∫

(f ∨ g) dc ≤

∫

f dc+

∫

g dc(5c)

for semicontinuous f , any g and c ∈ SA,
∫

f d (c1 + c2) ≤

∫

f dc1 +

∫

f dc2 for all f and all c1, c2.(5d)

(Here and in the sequel we use the notation
∫

A f dc :=
∫

f1A dc.) In Section 4
we shall prove Varadhan’s theorem without referring to a specific definition for
the integral; we only use properties (5a-d), where (5a) is actually needed only for
A ∈ K, F or G, depending on the context.

Choquet (1954) has defined the integral of a non-negative function with respect
to Choquet capacities. His definition can be copied for capacities in our sense.
For c ∈ C and f : E → [0,∞] the function t 7→ c({e ∈ E : f(e) > t}) on (0,∞) is
non-increasing, hence measurable with at most countably many discontinuities.
Only at these points the function t 7→ c({e ∈ E : f(e) ≥ t}) may be different.
The Choquet integral of f with respect to c is

(6)

∫ 1

f dc =

∫ ∞

0
c({e ∈ E : f(e) ≥ t}) dt =

∫ ∞

0
c({e ∈ E : f(e) > t}) dt

(the ‘1’ on top labels the type of integral; it is not a boundary of integration
whatsoever). If c, restricted to the Borel sets, is a σ-finite measure and f is
measurable, then the Choquet integral of f with respect to c is equal to the
Lebesgue integral, as can be seen easily from Fubini’s theorem. Therefore the
Choquet integral is a natural candidate for an integral with respect to capacities.
In Section 5 it is studied more closely. For now we restrict our attention to the
properties above.
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Theorem 1. If E is inheritary Wilker, then the Choquet integral has properties

(5a-d).

Proof: As {e ∈ E : x1A(e) > t} equals A for t < x and ∅ for t ≥ x, equation
(6) gives (5a). If f ≤ g we have {e ∈ E : f(e) ≥ t} ⊂ {e ∈ E : g(e) ≥ t} for every
t and (5b) follows by (2d). For all functions f and g and all t

(7) {e ∈ E : (f ∨ g)(e) ≥ t} = {e ∈ E : f(e) ≥ t} ∪ {e ∈ E : g(e) ≥ t}.

If f is usc the first set in the right-hand side (rhs) is closed, so (5c) follows by
subadditivity of c and Proposition 1. If f is lsc, we can replace ‘≥’ by ‘>’ and
‘closed’ by ‘open’ to arrive at the same conclusion. Finally, (5d) is trivial and
holds with equality. �

Our second definition is inspired by the rhs in (1), which can be seen as an
integral of a function with respect to a sup measure. For c ∈ C and f : E → [0,∞]
the sup integral of f with respect to c is

(8)

∫ ∞

f dc = sup
{

f∧(K) c(K) : K ∈ K
}

.

If c is a sup measure this reduces to the rhs in (1), but in general it will give
a larger and therefore better lower bound in Varadhan’s integration theorem, cf.
Remark 3. The following proposition shows that the sup integral can be seen as
the supremum equivalent of the Choquet integral, compare (6). Norberg (1986)
proves the special case c ∈ SM.

Proposition 3. For all f and all c

(9)

∫ ∞

f dc = sup
t>0

t c({e ∈ E : f(e) ≥ t}) = sup
t>0

t c({e ∈ E : f(e) > t}).

Proof: We have

(10)

sup
t>0

t c({e ∈ E : f(e) ≥ t})

= sup {t c(K) : t > 0,K ⊂ {e ∈ E : f(e) ≥ t}}

= sup {f∧(K) c(K) : K ∈ K},

where the first equality holds because c is inner regular and the second because
K ⊂ {e ∈ E : f(e) ≥ t} iff f∧(K) ≥ t. By (2d) we have

(11) sup
t>0

t c({e ∈ E : f(e) ≥ t}) ≥ sup
t>0

t c({e ∈ E : f(e) > t}).

In order to prove the reverse inequality take x > 0 strictly smaller than the first
supremum. There exist a t0 > 0 such that x < t0 c({e ∈ E : f(e) ≥ t0}) and a
t1 < t0 such that x < t1 c({e ∈ E : f(e) ≥ t0}). By (2d) we have

(12) x < t1 c({e ∈ E : f(e) > t1}) ≤ sup
t>0

t c({e ∈ E : f(e) > t}).

Take the supremum over all possible x. �
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Theorem 2. If E is inheritary Wilker, then the sup integral has properties

(5a-d).

Proof: As x1∧A(K) equals x if K ⊂ A and 0 otherwise, (5a) holds. When f ≤ g

we have f∧(K) ≤ g∧(K) for allK ∈ K, so (5b) holds. Now copy the corresponding
part of the proof of Theorem 1, and (9) gives (5c). For all capacities c1 and c2
we have

(13)

∫ ∞

f d (c1 + c2) = sup
K∈K

f∧(K)(c1(K) + c2(K))

≤ sup
K∈K

f∧(K)c1(K) + sup
K∈K

f∧(K)c2(K)

and (5d) follows. �

By adding superscripts ‘1’ and ‘∞’ to the integral symbols we already intro-
duced the two extreme elements of a collection of integrals. For p ∈ (1,∞) let the
p-integral of f with respect to c be

(14)

∫ p

f dc =

(
∫ 1

fp dcp
)1/p

.

Theorem 3. If E is inheritary Wilker, then the p-integral has properties (5a-d).

Proof: The properties of the Choquet integral imply (5a, b). If
∫ p
f ∨ g dc is

finite it is equal to the Lp-norm of ϕ : t 7→ c({e ∈ E : (f ∨ g)p(e) ≥ t}). For
f usc and c subadditive it follows, as in the proof of Theorem 1, that ϕ is less
than or equal to t 7→ c({e ∈ E : fp(e) ≥ t}) + c({e ∈ E : gp(e) ≥ t}). Now
(5c) follows by (5b) and the triangle inequality for the Lp-norm. For f lsc the
previous holds with all ‘≥’ replaced by ‘>’. Let c1 and c2 be capacities and define
ϕi(t) = ci({e ∈ E : fp(e) ≥ t}). If the rhs of (5d) is finite, then ϕ1 and ϕ2 are
both in Lp, so (5d) holds by the triangle inequality for the Lp-norm. �

Remark 1. The function p 7→
∫ p
f dc is continuous on [1,∞) if f and c are

sufficiently nice. This follows from Theorem 14. Varadhan’s theorem as presented
in Section 4 shows that

∫ p
f dc→

∫∞
f dc as p→ ∞, if c is a sup measure.

4. Varadhan’s integration theorem

Throughout this section, cn (n ∈ N) and c are subadditive capacities on E, fn
and f are functions E → [0,∞], and (αn) is a sequence in (0, 1) tending to 0.
Furthermore, we assume that integration of [0,∞]-valued functions with respect
to capacities is defined in such a way that (5a-d) hold.
We shall prove results of the form: if cαn

n and fαn
n converge, then

(∫

fn dcn
)αn

converges. These convergences will be interpreted in several ways, both one-sided
(e.g., cαn

n converges in C ↑) and two-sided (e.g., cαn
n converges narrowly in C).

The one-sided results will play important roles in future research.
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There are two situations in which results will be obtained. To allow a combined
proof we introduce a class B of subsets of E which is either K or F . The two
situations will be referred to as ‘the case B = K’ and ‘the case B = F ’. E is
assumed to be first countable for K in case B = K, and regular and Hausdorff in
case B = F .

The hypotheses on the convergence of the capacities and the functions in our
results will be taken from the following collection:

lim inf cαn

n (G) ≥ c(G) for all G ∈ G,(15a)

lim sup cαn

n (B) ≤ c(B) for all B ∈ B,(15b)

lim inf
(

f∧n (B)
)αn ≥ f∧(B) for all B ∈ B,(16a)

lim sup
(

f∨n (B)
)αn ≤ f∨(B) for all B ∈ B.(16b)

Thus (15a) and (15b) together state that a vldp (in case B = K) or an nldp (in
case B = F) holds. If f is continuous, then (16a) and (16b) together are equivalent
with uniform convergence of fαn

n to f on sets in B (cf. Gerritse (1995b)).

Splitting the convergences allows us to split Varadhan’s theorem accordingly.
The advantage is that these results apply to one-sided ldps, as announced in the
introduction. Theorem 4 applies to lower ldps, Theorems 5 and 7 to upper. The
first two theorems will each be preceded by a proposition that presents the partial
result for which the topological assumptions are needed. This is done in order
to allow easy adaptation to other contexts (e.g., (cn) being a net rather than a
sequence (cf. Remark 5)).

Proposition 4. Assume (15a). Let G ∈ G and x ∈ (0,∞) such that c(G) > x.

Then there is a B ∈ B such that B ⊂ G and lim inf cαn
n (B) > x.

Proof: By (2b) there is a compact K ⊂ G such that c(K) > x. In case B =
K Corollary 2.3 from O’Brien (1992) gives the desired result. In case B = F
there are an open set U and a closed set F such that K ⊂ U ⊂ F ⊂ G. Now
lim inf cαn

n (F ) ≥ lim inf c
αn
n (U) ≥ c(U) ≥ c(K) > x. �

Theorem 4. Assume (15a) and (16a), and that f is lsc. Then for all G ∈ G

(17) lim inf

(
∫

G
fn dcn

)αn

≥ sup
{

f∧(K) c(K) : K ∈ K,K ⊂ G
}

.

Proof: Let K be a compact subset of G and let x and y be real numbers such
that c(K) > x and f∧(K) > y. We need consider only the case x, y > 0. As f is
lsc there exists an open set U ⊃ K such that f∧(U) > y. Now c(G∩U) > x, and
by Proposition 4 there is a B ∈ B such that B ⊂ G ∩ U and lim inf cαn

n (B) > x.
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Hence:

(18)

lim inf

(
∫

G
fn dcn

)αn

≥ lim inf

(
∫

B
fn dcn

)αn

≥ lim inf
(

f∧n (B) cn(B)
)αn

≥ lim inf
(

f∧n (B)
)αn lim inf cαn

n (B)

> f∧(B)x > yx.

�

Remark 2. In case B = F , if f is continuous, the conclusion of Theorem 4 holds
without any assumption on E. This has a similar proof, using the fact that by
continuity of f (16a) extends to open sets.

Remark 3. The rhs in (17) is greater than or equal to sup{f(e) c({e}) : e ∈ G},
the rhs in (1). Inequality can occur only for one-sided ldps, since in case of a
full ldp the limit is a sup measure and then the two expressions are equal. The
following example shows that inequality can occur.

Example 1. This is a modification of an example by O’Brien (1995), which
exhibits a limit in a lower ldp that is not a sup measure. Let E = {−1, 0, 1}
with the discrete topology. Let (βn) be positive real numbers such that βn ↓ 0

and β
1/n
n → 1. Let cn be the probability measure on E with cn({0}) = 1 − βn,

cn({1}) = βn if n is even and cn({−1}) = βn if n is odd. Let c be the capacity that
is 0 on the sets ∅, {−1} and {1} and 1 on all other subsets of E. Let f = 1{−1,1}

and fn = f
n. Now all conditions of Theorem 4 are met (with c = lim inf c

1/n
n and

c 6∈ SM). In this case the rhs in (17) equals f∧({−1, 1}) c({−1, 1}) = 1 and the
rhs in (1) equals 0.

Proposition 5. Let d be a sup measure on E and let (dn) be a sequence of
set functions on E satisfying (2a, b) and such that lim sup dn(B) ≤ d(B) for all
B ∈ B. Then for each K ∈ K and x ∈ (0,∞) such that d(K) < x there is an open

set G ⊃ K such that lim sup dn(G) < x.

Proof: The proof of Lemma 2.2 from O’Brien (1992) does not use the outer reg-
ularity (2c) of capacities, so the case B = K is covered by O’Brien’s Corollary 2.4.
In case B = F there exists by outer regularity (2c) of d an open set U ⊃ K with
d(U) < x. By the topological regularity of E there exist an open set G and a
closed set F such that K ⊂ G ⊂ F ⊂ U . Now lim sup dn(G) ≤ lim sup dn(F ) ≤
d(F ) ≤ d(U) < x. �

Remark 4. Not requiring (2c) for dn makes this proposition applicable to
(f∨n ( · ))

αn .

Remark 5. The restriction to sequences is necessary for applying Corollaries
2.3 and 2.4 from O’Brien (1992). It is not needed in the case B = F . The
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stronger assumption that E be locally compact allows in the case B = K proofs
for Propositions 4 and 5 similar to the ones given for B = F and renders the
propositions, and also the Theorems 4, 5 and 7, valid for nets in general.

Before we can give the lim sup counterpart of Theorem 4 we introduce the
upper semicontinuous hull of the functions fn. It will be needed in Theorem 6
to avoid problems arising from the semicontinuity condition on f in (5c). Let
g : E → [0,∞] be an arbitrary function. The hypograph of g is the set

(19) hypo(g) = {(e, x) ∈ E × [0,∞] : g(e) ≥ x}.

The hypograph of g is closed in the product topology on E × [0,∞] iff g is usc.
The upper semicontinuous hull of g is the function ḡ : E → [0,∞] given by

(20) ḡ(e) = inf{h(e) : h ∈ US(E), h ≥ g}.

It is the smallest usc function that is greater than or equal to g. It is characterized
by hypo(ḡ) = hypo(g), the closure of hypo(g) in E × [0,∞].

Proposition 6. The upper semicontinuous hull has the following properties:

(i) if e ∈ G and ḡ(e) > x, then g∨(G) > x,

(ii) if α ∈ (0,∞), then ḡα = gα.

Proof: (i) Set y = ḡ(e), so that (e, y) ∈ hypo(g). There exists a net (en, yn)→
(e, y) with (en, yn) ∈ hypo(g). For large n we have en ∈ G and yn > x, and
therefore g∨(G) ≥ g(en) ≥ yn > x.

(ii) This easily follows from the fact that a function h is usc iff hα is usc. �

Corollary 1. ḡ∨(G) = g∨(G).

Proof: For all x < ḡ∨(G) there is an e ∈ G such that ḡ(e) > x, thus g∨(G) > x.
This proves g∨(G) ≥ ḡ∨(G). The reverse inequality follows from ḡ ≥ g. �

Theorem 5. Assume (15b) and (16b) and that f is usc. Then for all K ∈ K for
which f∨(K) <∞ and c(K) <∞

(21) lim sup

(
∫

K
fn dcn

)αn

≤ sup {f(e) c({e}) : e ∈ K} .

The same holds with f̄n replacing fn.

Proof: Let K be compact (so K ∈ B in either case) and such that f∨(K) <∞
and c(K) < ∞. Let x > sup{f(e) c({e}) : e ∈ K}. For each e ∈ K we can write
x = yeze where ye > f(e) and ze > c({e}), and find by Proposition 5 (applied
twice with K = {e}) an open set Ge ∋ e such that lim sup

(

f∨n (Ge)
)αn< ye and

lim sup cαn
n (Ge) < ze. Now K is covered by the collection {Ge : e ∈ K}, so there
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is a finite set I ⊂ K such that already K ⊂
⋃

e∈I Ge. By (5a, c) and Corollary 1
we have

(22)

∫

K
f̄n dcn ≤

∫

E
max{f̄n

∨
(Ge)1Ge

: e ∈ I} dcn

≤
∑

e∈I

f̄n
∨
(Ge) cn(Ge) =

∑

e∈I

f∨n (Ge) cn(Ge).

Consequently, by Proposition 2,

(23)
lim sup

(
∫

K
f̄n dcn

)αn

≤ max
e∈I
lim sup

(

f∨n (Ge) cn(Ge)
)αn

< max
e∈I

yeze = x.

Now (21) follows from the fact that fn ≤ f̄n and (5b). �

Remark 6. The conclusion of Theorem 5 trivially holds whenever the rhs in (21)
is infinite. If E is Wilker and the rhs is finite, then the conditions f∨(K) < ∞
and c(K) <∞ are equivalent to the seemingly weaker condition that for all e ∈ K

the pair (f(e), c({e})) does not equal (0,∞) or (∞, 0).

We shall improve on Theorem 5 in two directions. We shall prove its conclusion
for closed sets, and we shall weaken the finiteness assumption. The former can
be achieved by general capacity theory, using the fact that under weak conditions
the indefinite integrals are again capacities. The conclusions of Theorems 4 and 5
together state that these satisfy a vldp. In general, in Hausdorff spaces vague
convergence can be upgraded to narrow convergence by proving controlledness
(cf. O’Brien (1992)). We shall present a more direct method that makes no use
of the indefinite integrals being capacities.

Theorem 6. Let E be Hausdorff. Assume (15b) and (16b) and that f is usc.
Let F ∈ F . If there is a net (Km) of compact sets such that

(24) lim
m→∞

lim sup
n→∞

(

∫

FKc
m

f̄n dcn

)αn

= 0,

and if f∨(F ) <∞ and c(F ) <∞, then

(25) lim sup

(
∫

F
fn dcn

)αn

≤ sup {f(e) c({e}) : e ∈ F} .

The same holds with f̄n replacing fn.
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Proof: For each m

lim sup

(
∫

F
f̄n dcn

)αn

≤ lim sup

(
∫

f̄n1FKm
∨ f̄n1FKc

m
dcn

)αn

≤ lim sup

(

∫

FKm

f̄n dcn +

∫

FKc
m

f̄n dcn

)αn

(26)

≤ lim sup

(
∫

FKm

f̄n dcn

)αn

∨ lim sup

(

∫

FKc
m

f̄n dcn

)αn

.

The first term is less than or equal to sup {f(e) c({e}) : e ∈ F} by Theorem 5; the
second term tends to 0 as m→ ∞ by assumption. �

Remark 7. The Hausdorff condition is needed to ensure that f̄n1FKm
is usc

and consequently justify application of (5c) in the second inequality. In case the
integral is a p-integral (including p = 1 and p =∞), the Hausdorff condition can
be replaced by an extra subadditivity-like condition on cn (compare the proofs of
Theorems 1, 2 and 3). A sufficient condition is that all cn are measures.

Remark 8. In case B = F , condition (24) is satisfied whenever (cαn
n ) is equitight

(this corresponds with exponential tightness in the literature) and (16b) holds
with f̄n replacing fn. Let (Km) be a tightening net for (c

αn
n ) and note that

(27) lim sup

(

∫

FKc
m

f̄n dcn

)αn

≤ lim sup
(

f̄n
∨
(F )
)αn

lim sup cαn

n (K
c
m).

We need consider only F for which f∨(F ) < ∞, in which case the first upper
limit is bounded. The second upper limit vanishes by equitightness.

The finiteness conditions in Theorem 5 and 6 can be replaced by the weaker,

and global, conditions (28) and (29) below. For n ∈ N and L > 1 let c
(L)
n be the

truncation of cn given by c
(L)
n (A) = cn(A)∧L

1/αn and let c(L) be the truncation

of c given by c(L)(A) = c(A)∧L. It is easy to verify that c(L), c
(L)
n and cn − c

(L)
n

are capacities on E and that (15b) holds for ((c
(L)
n )

αn) with limit c(L), whenever
it holds for (cαn

n ) with limit c and also that (16b) holds for ((fn1[f̄n
αn<L])

αn)

with limit f ∧ L whenever it holds for (fαn
n ) with limit f (here [f̄n

αn < L] is an
abbreviation for {e ∈ E : f̄n

αn(e) < L}). Now sufficient conditions for (21), resp.
(25), to hold for all K, resp. F , are

lim
L→∞

lim sup
n→∞

(

∫

[f̄n
αn≥L]

f̄n dc
(L)
n

)αn

= 0,(28)

lim
L→∞

lim sup
n→∞

(
∫

E
f̄n d

(

cn − c
(L)
n

)

)αn

= 0.(29)
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Condition (29) is trivially satisfied if lim sup cn(E) <∞, in particular, if all cn are
probability measures. In this last case condition (28) reduces to condition (3.4)
in Varadhan (1966). In case fαn

n = f it reduces further to condition (2.1.9) in
Deuschel and Stroock (1989).

Theorem 7. Assume (15b) and (16b) and that f is usc. If (28) and (29) hold,
then (21) holds for all K ∈ K.

Proof: Let K ∈ K. For all L > 0
∫

K
f̄n dcn ≤

∫

K
f̄n dc

(L)
n +

∫

K
f̄n d(cn − c

(L)
n )

≤

∫

f̄n1K∩[f̄n
αn<L] ∨ f̄n1[f̄n

αn≥L] dc
(L)
n +

∫

E
f̄n d(cn − c

(L)
n )(30)

≤

∫

K
fn1[f̄n

αn<L] dc
(L)
n +

∫

[f̄n
αn≥L]

f̄n dc
(L)
n +

∫

E
f̄n d(cn − c

(L)
n ).

We can apply Theorem 5 to the first term for the sequences (fn1[f̄n
αn<L]), with

upper limit f ∧ L, and (c
(L)
n ), with upper limit c

(L). Combining Proposition 2
and the assumptions we get (21). �

Theorem 8. Let E be Hausdorff. Assume (15b) and (16b), that f is usc and
that there is a net (Km) of compact sets such that (24) holds for F = E and
consequently for all F ∈ F . If (28) and (29) hold, then (25) holds for all F ∈ F .

Proof: A simple adaption of the proof of Theorem 7. �

Continuity of f allowed us to drop the assumptions on E in Theorem 4 in case
B = F (cf. Remark 2). It has an even stronger effect in the case of Theorem 7.
The following theorem puts no assumptions on E, and the condition around (24)
is dropped as well. However, it is valid only in case B = F and all fn usc.
Furthermore condition (28) must be strengthened a bit: let (28∗) be (28) with
[f̄n

αn ≥ L] replaced by [f ≥ L]. The main idea in the proof comes from Varadhan
(1984).

Theorem 9. Assume (15b) and (16b) with B = F , that f is continuous and fn
is usc for all n, and that c ∈ SM. If (28∗) and (29) hold, then (25) holds for all
F ∈ F .

Proof: First we prove the case c(E) <∞. Let F ∈ F . Choose ε > 0. Let L > 0
be such that

(31) lim sup
n→∞

(

∫

[f≥L]
fn dcn

)αn

< ε.

Let M ∈ N be such that L
M ≤ ε. Define for k ∈ {1, . . . ,M} the closed set

Fk := F ∩ [(k − 1) L
M ≤ f ≤ k L

M ]. Now F ∩ [f ≤ L] = ∪M
k=1Fk, and therefore

(32)

∫

F
fn dcn ≤

M
∑

k=1

∫

Fk

fn dcn +

∫

[f≥L]
fn dcn.



Varadhan’s theorem for capacities 681

There is an N ∈ N such that for all n ≥ N and all k

(33) (f∨n (Fk))
αn ≤ f∨(Fk) + ε ≤ k L

M + ε.

For these n

(34)

∫

Fk

fn dcn ≤
(

k L
M + ε

)1/αn

cn(Fk)

and thus, from (32) and Proposition 2,

(35)
lim sup

(
∫

F
fn dcn

)αn

≤ max
k
lim sup

(

k L
M + ε

)

cαn

n (Fk) ∨ ε

≤ max
k

(

k L
M + ε

)

c(Fk) ∨ ε.

For all e ∈ Fk we have k
L
M + ε ≤ f(e) + 2ε, hence

(36) lim sup

(
∫

F
fn dcn

)αn

≤ sup
e∈F
(f(e) + 2ε) c({e}) ∨ ε.

This holds for all ε > 0, and (25) follows because c is bounded.
Now the case c(E) =∞. Let F ∈ F . Choose δ > 0. Let L > 0 be such that

(37) lim sup

(
∫

E
fn d

(

cn − c
(L)
n

)

)αn

< δ.

The foregoing applies to the sequence (c
(L)
n ) with limit c

(L). This gives

(38)
lim sup

(
∫

F
fn dcn

)αn

≤ lim sup

(
∫

F
fn dc

(L)
n

)αn

∨ δ

≤ sup
e∈F

f(e)c(L)({e}) ∨ δ ≤ sup
e∈F

f(e)c({e}) ∨ δ

and (25) follows. �

We have proved the following two versions of Varadhan’s theorem:

Theorem 10. Assume that E is first countable for K, cαn
n

v
−→ c and fαn

n → f

uniformly on compact sets and that f is continuous. If (28) and (29) hold, then
(17) holds for all G ∈ G and (21) holds for all K ∈ K.

Theorem 11. Assume that cαn
n

n
−→ c ∈ SM and (cαn

n ) is equitight. Assume also
that fαn

n → f uniformly and that f is continuous and fn is usc for all n. If (28
∗)

and (29) hold, then (17) holds for all G ∈ G and (21) holds for all F ∈ F .

Remark 9. The conclusions in these theorems amount to new ldps: if all in-
definite integrals are capacities (cf. Section 5) Theorem 10 gives a new vldp and
Theorem 11 gives a new nldp.
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5. The indefinite Choquet integral

For a function f : E → [0,∞] and a capacity c the indefinite Choquet integral
∫ 1
· f dc of f with respect to c is the map A 7→

∫ 1
A f dc =

∫∞
0 c({e ∈ A : f(e) ≥

t}) dt. In this section we try to determine under what conditions it is again a

capacity and when the map (f, c) 7→
∫ 1
· f dc is continuous.

To find an answer to the first question we have to verify inner and outer regu-
larity. Following Vervaat (1988) and Norberg and Vervaat (1989) we interpret this
as semicontinuity of the restrictions to G and K. We endow G with the topology
with as a base all sets {G ∈ G : K ⊂ G} with K ∈ K. Similarly, we endow K with
the topology generated by {K ∈ K : K ⊂ G} with G ∈ G. Now γ : G∪K → [0,∞]
can be extended to a capacity by (2b) iff the restriction γ : G → [0,∞] is lsc and
the restriction γ : K → [0,∞] is usc.
Assume for the moment that all indefinite integrals are capacities. To answer

the second question we have to verify semicontinuity of evaluations. The map

(f, c) 7→
∫ 1
· f dc is vaguely (narrowly) continuous iff (f, c) 7→

∫ 1
A f dc is lsc for all

A ∈ G and usc for all A ∈ K (A ∈ F).
These observations suggest that we study the joint semicontinuity of the maps

(f, c, A) 7→
∫ 1
A f dc for A ∈ G, A ∈ K and A ∈ F . For now we shall concentrate on

G and K. Both maps will be split into parts, that will be treated in five lemmas.
To be able to formulate these properly we have to establish some further notation.
Recall that C↑ and C↓ denote C with one-sided topologies. With US(E)↓ (or US↓)
we denote US = SM with the relative topology of C↓. Analogously, LS(E)↑ is the
collection LS(E) (or LS) of all lsc functions f : E → [0,∞], with the topology
generated by the sets of the form {f : f∧(K) > x} with K ∈ K and x ∈ (0,∞).
Thus, identifying sets with their indicator functions, G has the relative topology
of LS(E)↑. If E is Hausdorff, K has the relative topology of C(E)⇓.

Lemma 1. If E is Wilker, the map Π : LS(E)↑×LS(E)↑→ LS(E)↑ that maps
(f, g) 7→ fg is continuous.

Proof: Observe that for all x ∈ (0,∞)

(39) {e ∈ E : f(e)g(e) > x} =
⋃

y>0

{e ∈ E : f(e) > y, g(e) >
x

y
}

which guarantees fg ∈ LS.
Let Λ = {h ∈ LS : h∧(K) > x} be an open subbase element in LS(E)↑ and take

(f, g) ∈ Π−1(Λ). Now (fg)∧(K) > x and with each e ∈ K there are ye, ze > 0
such that f(e) > ye, g(e) > ze and yeze = x. By lower semicontinuity of f and g
there is an open Ge ∋ e such that f∧(Ge) > ye and g

∧(Ge) > ze. The collection
{Ge : e ∈ K} covers K. There is a finite set I ⊂ K such that K is already covered
by {Ge : e ∈ I}. Because E is Wilker there exist compact sets Ke ⊂ Ge, for e ∈ I,
such that K ⊂ ∪e∈IKe. Now

(40)
⋂

e∈I

{h ∈ LS : h∧(Ke) > ye} ×
⋂

e∈I

{h ∈ LS : h∧(Ke) > ze}
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is an open neighborhood of (f, g). For all its elements (h1, h2) we have

(40)

Π(h1, h2)
∧(K) = inf{h1(e)h2(e) : e ∈ K}

≥ min
e∈I

h∧1 (Ke)h
∧
2 (Ke)

> min
e∈I

yeze = x

hence Π−1(Λ) is open. �

Corollary 2. If E is Wilker, then the map LS(E)↑×G(E)→ LS(E)↑ that maps
(f,G) 7→ f1G is continuous.

Lemma 2. If E is locally compact, then the map Φ : LS(E) ↑ ×C(E) ↑→
LS((0,∞)) ↑ that maps (f, c) to the function ϕ : t 7→ c({e ∈ E : f(e) > t})
is continuous.

Proof: From (2d) it is clear that ϕ is decreasing. If tn ↓ t, then ϕ(tn) ↑ ϕ(t) by
(2e), hence ϕ is lsc and indeed Φ is a map into LS((0,∞)).
Let Λ = {ψ ∈ LS((0,∞)) : ψ∧(I) > x}, with I ⊂ (0,∞) compact and x ∈

(0,∞). Take an element (f, c) in the inverse image of Λ. Let ϕ be the image of
(f, c). Put t0 = sup I. Because ϕ is decreasing, ϕ ∈ Λ means that c({e ∈ E :
f(e) > t0}) > x. Hence by (2b) there is a compact set K ⊂ {e ∈ E : f(e) > t0}
such that c(K) > x. By local compactness of E there are open U and compact
L such that K ⊂ U ⊂ L ⊂ {e ∈ E : f(e) > t0}. Now {g ∈ LS : g∧(L) > t0} is
open in LS(E)↑ and contains f , and {d ∈ C : d(U) > x} is open in C(E)↑ and
contains c. For (g, d) in their product one has Φ(g, d)∧(I) = d({e ∈ E : g(e) >
t0}) ≥ d(L) ≥ d(U) > x, hence the image of (g, d) is in Λ. �

Lambda 3. The map from LS((0,∞))↑ to [0,∞] that maps ϕ to
∫∞
0 ϕ(t) dt is

lsc.

Proof: Fix x ∈ (0,∞) and choose ϕ ∈ LS((0,∞)) such that
∫∞
0 ϕ(t) dt > x.

There exists a simple function g < ϕ such that also
∫∞
0 g(t) dt > x. It can be

written as g =
∑n

i=1 ai1Ai
with Ai disjoint. Now

∫∞
0 g(t) dt =

∑n
i=1 ai λ(Ai),

where λ denotes the Lebesgue measure. There are compact Ii ⊂ Ai such that even
∑n

i=1 ai λ(Ii) > x. For t ∈ Ii we have ϕ(t) > g(t) = ai and therefore ϕ
∧(Ii) > ai.

Now define

(42) Λ =

n
⋂

i=1

{ψ ∈ LS((0,∞)) : ψ∧(Ii) > ai},

an open neighborhood of ϕ. For ψ ∈ Λ we have ψ >
∑n

i=1 ai1Ii
and therefore

∫∞
0 ψ(t) dt > x. �

Remark 10. Lemma 3 strongly resembles Fatou’s lemma. The stronger conver-
gence assumption (lim inf ϕ∧n(I) ≥ ϕ∧(I) for all compact I ⊂ (0,∞) instead of
lim inf ϕn(x) ≥ ϕ(x) for all x ∈ (0,∞)) is essential. One can easily construct an
example that shows that Fatou’s lemma does not hold for nets in general.
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Taking Corollary 2 and Lemmas 2 and 3 together we arrive at

Corollary 3. If E is locally compact, then the map (f, c,G) 7→
∫ 1
G f dc is lsc

on LS(E)↑×C(E)↑×G(E).

The maps f 7→
∫ 1
G f dc, c 7→

∫ 1
G f dc and G 7→

∫ 1
G f dc are lsc even without

the local compactness assumption. This can be seen by an easy adaptation of
the proofs above. Regarding the second question we don’t gain more than that.
However, later on we shall see that an ad-hoc proof does give a sharper answer
to the first question.

We now proceed with upper semicontinuous analogues to the lemmas above.

Lemma 4. If E is locally compact, the map Ψ from US(E)↓×C(E)↓×K(E) to
US((0,∞))↓ that maps (f, c,K) to the function ψ : t 7→ c({e ∈ K : f(e) ≥ t}) is
continuous.

Proof: From (2d) it is clear that ψ is decreasing. Take tn ↑ t0, and define
Fn := {e ∈ E : f(e) ≥ tn}. Then Fn ↓ F0 and by (2f) also c(KFn) ↓ c(KF0).
This is ψ(tn) ↓ ψ(t0), and it follows that indeed ψ is usc.
Let Λ = {ξ ∈ US((0,∞)) : ξ∨(I) < x} be a subbasic open set, and let

(f, c,K) ∈ Ψ−1(Λ). Set t0 = inf I. Then c({e ∈ K : f(e) ≥ t0}) < x and
by (2c) there exists an open G ⊃ {e ∈ K : f(e) ≥ t0} such that c(G) < x. There
exist an open U and a compact L such that {e ∈ K : f(e) ≥ t0} ⊂ U ⊂ L ⊂ G.
We have K ⊂ U ∪ {e ∈ E : f(e) < t0} and there exist an open V and a com-
pact C such that K ⊂ V ⊂ C ⊂ U ∪ {e ∈ E : f(e) < t0}. Now the sets
{g ∈ US : g∨(C \ U) < t0}, {d ∈ C : d(L) < x} and {M ∈ K : M ⊂ V } are
open neighborhoods of f , c and K respectively. For (g, d,M) in their product, it
follows that ξ := Ψ(g, d,M) ∈ Λ, since ξ∨(I) = d({e ∈ M : g(e) ≥ t0}) ≤ d({e ∈
C : g(e) ≥ t0}) ≤ d(U) ≤ d(L) < x. �

Lemma 5. If for a net χm → χ in US((0,∞))↓ there exists a ϕ ∈ LS((0,∞))
such that ϕ ≥ χm, χ and

∫∞
0 ϕ(t) dt <∞, then lim sup

∫∞
0 χm(t) dt ≤

∫∞
0 χ(t) dt.

Proof: Apply Lemma 3 to the net (ϕ − χm). The following propositions guar-
antee that ϕ− χm ∈ LS((0,∞)) and that ϕ− χm → ϕ− χ in LS((0,∞))↑.

�

Here ϕ− χ and ϕ− χm are defined pointwise with the convention ∞−∞ = 0.

Proposition 7. If ϕ ∈ LS(E) and χ ∈ US(E) are such that ϕ ≥ χ, then

ϕ− χ ∈ LS.

Proof: For each x ∈ (0,∞) the set

(43) {e ∈ E : ϕ(e)− χ(e) > x} =
⋃

y∈(x,∞)

{e ∈ E : ϕ(e) > y, χ(e) < y − x}

is open in E. �
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Proposition 8. Suppose that E is Wilker, that χm → χ in US(E)↓ and that
ϕ ∈ LS(E) is such that ϕ ≥ χm, χ. Then ϕ− χm → ϕ− χ in LS(E)↑.

Proof: Let K ∈ K and x ∈ (0,∞) be such that (ϕ−χ)∧(K) > x, corresponding
with a subbasic open neighborhood of ϕ−χ. With each e ∈ K there are ye, ze > 0
such that ye − ze = x and ϕ(e) > ye, χ(e) < ze, and there is an open Ge ∋ e such
that ϕ∧(Ge) > ye and χ

∨(Ge) < ze. The collection {Ge : e ∈ K} covers K, so
there is a finite I ⊂ K such that K ⊂ ∪i∈IGi. Because E is Wilker there exist
compact sets Ki ⊂ Gi such that K ⊂ ∪i∈IKi. With each i ∈ I there is an mi

with χ∨m(Ki) < zi for all m ≥ mi. Now if m ≥ mi for all i ∈ I we have

(44) (ϕ− χm)
∧(K) ≥ min

i∈I
inf

e∈Ki

(ϕ(e)− χm(e)) > min
i∈I
(yi − zi) = x.

�

The function ϕ is an integrable majorant for the functions χm. If for given
f and c we want to decide if the indefinite Choquet integral is a capacity, i.e.,
answer our first question, the functions to which we have to apply Lemma 5 are
of the form t 7→ c({e ∈ Km : f(e) ≥ t}) for nets Km → K in K. If c(K) < ∞
and f∨(K) < ∞, there is a G ⊃ K such that c(G) < ∞ and f∨(G) < ∞. Now
the lsc function c(G)1(0,f∨(G)+1) is an integrable majorant, since Km ⊂ G for

large m. Thus we arrive at the following result.

Theorem 12. If E is locally compact, c is Radon and f is continuous and finite

valued, then the indefinite Choquet integral is a capacity.

However, this result is not optimal. The following example shows that The-
orem 12 and the lemmas preceding it are not powerful enough in an essential
case.

Example 2. Let F be a closed subset of E and c a capacity on E. Then also
c(F ∩ ·) is a capacity. This capacity is the indefinite Choquet integral of 1F with
respect to c.

This suggests that if we do not insist on joint continuity in three variables in the
conclusion in Lemma 2, we can do without some of the hypotheses. Indeed, in
the same style one can prove that with c fixed the map (f,G) 7→ ϕ is continuous
even if E is not locally compact and that with f and c fixed the map G 7→ ϕ is
continuous even if f is not lsc. However, in this last case LS is no longer the
intermediate space, so Lemma 3 cannot be applied. By a direct proof we shall see

that any indefinite Choquet integral is inner regular, hence the map G 7→
∫ 1
G f dc

is always lsc.

Lemma 6. Let E be a topological space. Let f : E → [0,∞] and c ∈ C(E). Let

γ =
∫ 1
· f dc. Then

(45) γ(A) = sup{γ(K) : K ⊂ A}
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for all A ⊂ E.

Proof: Only the case γ(A) > 0 needs a proof. Let x < γ(A). As γ(A) is the
Lebesgue integral of the decreasing function t 7→ c({e ∈ A : f(e) ≥ t}) we can
approximate γ(A) from below by the integral of a simple function: there are n ∈ N

and real numbers 0 ≤ t0 < t1 < . . . < tn <∞ such that

(46) x <

n
∑

i=1

(ti − ti−1) c({e ∈ A : f(e) ≥ ti}) ≤ γ(A).

There exist xi < (ti − ti−1) c({e ∈ A : f(e) ≥ ti}) such that x = x1 + . . . + xn.
By (2b) there exist Ki ⊂ {e ∈ A : f(e) ≥ ti} such that xi < (ti − ti−1) c(Ki). Set
K := K1 ∪ . . . ∪Kn. Now K ∈ K and K ⊂ A and

(47)

γ(K) =

∫ ∞

0
c({e ∈ K : f(e) ≥ t}) dt

≥

n
∑

i=1

(ti − ti−1) c({e ∈ K : f(e) ≥ ti})

≥
n
∑

i=1

(ti − ti−1) c(Ki) >
n
∑

i=1

xi = x

where the second inequality holds because Ki ⊂ {e ∈ K : f(e) ≥ ti}. �

We have established inner regularity of
∫ 1
· f dc in the largest generality possible.

We may not hope for a similar statement for outer regularity (2c), as the following
example shows. Just as in Theorem 5 (see the remark following it) the points e
where the pair (f(e), c({e})) equals (0,∞) or (∞, 0) cause trouble.

Example 3. Let E = R and f : x 7→ |x|−1 and let c be the Lebesgue measure.
Then γ({0}) = f(0)c({0}) =∞ · 0 = 0 and γ(G) =∞ for all open G ∋ 0.

However, by keeping two variables constant, combining Lemmas 4 and 5 and
immediately introducing the boundedness of f and c we find that we may drop
the local compactness.

Lemma 7. Let E be a topological space. Let f : E → [0,∞] be usc and let

c ∈ C(E). Define γ =
∫ 1
· f dc. Then

(48) γ(K) = inf{γ(G) : K ⊂ G}

for all K ∈ K(E) for which f∨(K) <∞ and c(K) <∞.

Proof: Let K ∈ K be such that f∨(K) < ∞ and c(K) < ∞. Obviously, γ(K)
is finite. Let x > γ(K). As γ(K) is the Lebesgue integral of the finite decreasing
function t 7→ c({e ∈ K : f(e) ≥ t}), which has support in [0, f∨(K)], we can
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approximate γ(K) from above by the integral of a simple function: there are
n ∈ N and real numbers 0 < t1 < . . . < tn < ∞ such that tn > f∨(K) and, with
t0 = 0,

(49) γ(K) ≤

n−1
∑

i=0

(ti+1 − ti) c({e ∈ K : f(e) ≥ ti}) < x.

There exist xi > (ti+1 − ti) c({e ∈ K : f(e) ≥ ti}) such that x = x0 + . . .+ xn−1.
By (2c), for i ∈ {0, . . . , n − 1} there exist Gi ⊃ {e ∈ K : f(e) ≥ ti} such that
(ti+1 − ti) c(Gi) < xi. Furthermore, let Gn ⊃ K be such that f∨(Gn) < tn. Set

(50) G =

n−1
⋂

i=0

(Gi ∪ {e ∈ E : f(e) < ti}) ∩Gn.

Now G is open, K ⊂ G and

(51)

γ(G) =

∫ ∞

0
c({e ∈ G : f(e) ≥ t}) dt

≤

n−1
∑

i=0

(ti+1 − ti) c({e ∈ G : f(e) ≥ ti})

≤

n−1
∑

i=0

(ti+1 − ti) c(Gi) <

n−1
∑

i=0

xi = x.

The first inequality holds because c({e ∈ G : f(e) ≥ t}) = 0 if t > tn and
c(G) ≤ c(G0) <∞, and the second because {e ∈ G : f(e) ≥ ti} ⊂ Gi. �

Lemmas 6 and 7 yield the following improvement of Theorem 12, which covers
the case described in Example 2.

Theorem 13. If c ∈ C is Radon and f : E → [0,∞] is usc and finite valued,
then the indefinite Choquet integral is a capacity.

Remark 11. The finiteness conditions in Theorem 13 can be relaxed. Let C be
the set of all points e where the pair (f(e), c({e})) equals (0,∞) or (∞, 0). It
can be proved that if c is subadditive, then γ is outer regular in all K for which
K ∩ C = ∅.

Remark 12. If c is subadditive and f is usc, then the indefinite Choquet integral
is subadditive. The same holds for additivity. Both statements follow by direct
verification. If c is subadditive and tight and f is bounded, then the indefinite

Choquet integral is tight, because
∫ 1
Kc f dc ≤

∫ 1
Kc f

∨(E) dc = f∨(E) c(Kc).

So far we have concentrated on answering the first question. We now formulate
an answer to the second question as it is given by Lemmas 1–5. Again we first
have to establish some notation. Let CF+(E) be the set of all continuous
[0,∞)-valued functions on E, provided with the topology of uniform conver-

gence on compact sets. Let Cr(E) be the set of all Radon capacities, with the
vague topology.
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Theorem 14. If E is locally compact, then the map

CF+(E) × Cr(E) ∋ (f, c) 7→

∫ 1

·
f dc ∈ Cr(E)

is vaguely continuous.

Inspecting the proof of Lemma 2 shows that even with G fixed we cannot abandon
the assumption of local compactness of E. So Theorem 14 is the best we can at
present.

If we want to give an analogue of Theorem 14 for the narrow topology, with
all capacities tight, we shall have to adapt Lemmas 1–4. Formulating a narrow
equivalent of Lemmas 1 and 2 requires a change of topology on LS and G. By
LS(E)⇑ we denote LS with the topology generated by the sets {f : f∧(F ) > x}.
By G(E)⇑ we denote G with the relative topology, with base {G : F ⊂ G}.

Lemma 8. If E is regular, then the map Φ : LS(E) ⇑×Ct(E) ↑ ×G(E) ⇑→
LS((0,∞))↑ that maps (f, c,G) to the function t 7→ c({e ∈ G : f(e) > t}) is
continuous.

Proof: Take Λ, I, and x as in the proof of Lemma 2. Let (f, c,G) ∈ Φ−1(Λ) and
set ϕ = Φ(f, c,G) and t0 = sup I. Then ϕ(t0) > x, and by lower semicontinuity
of ϕ there is an s > t0 such that ϕ(s) > x. There is a compact K ⊂ {e ∈ G :
f(e) > s} such that c(K) > x, and there are an open U and a closed L such that
K ⊂ U ⊂ L ⊂ {e ∈ G : f(e) > s}. Now as open neighborhoods for f , c and
G with product in the inverse image of Λ we can take {g ∈ LS : g∧(L) > t0},
{d ∈ Ct : d(U) > x} and {V ∈ G : L ⊂ V }. �

Let US(E)⇓ (resp. F(E)⇓) be US(E) (F(E)) with the relative topology from
C⇓, generated by the sets {f ∈ US(E) : f∨(F ) < x} ({F ∈ F(E) : F ⊂ G}).

Lemma 9. If E is normal, then the map Ψ : US(E) ⇓×Ct(E) ⇓×F(E) ⇓→
US((0,∞))↓ that maps (f, c, F ) to the function ψ : t 7→ c({e ∈ F : f(e) ≥ t}) is
continuous.

Proof: As in the proof of Lemma 4 it follows that ψ is usc. Let Λ = {ξ ∈
US((0,∞)) : ξ∨(I) < x} be a subbasic open set, and let (f, c, F ) ∈ Ψ−1(Λ). Set
ψ = Ψ(f, c, F ) and t0 = inf I. Then ψ(t0) < x, and by upper semicontinuity
of ψ there is an s < t0 such that ψ(s) < x. By tightness of c there is an open
G ⊃ {e ∈ F : f(e) ≥ s} such that c(G) < x. There are closed L and open U
such that {e ∈ F : f(e) ≥ s} ⊂ U ⊂ L ⊂ G. Now for each e ∈ F ∩ U c we have
f(e) < s, and there is an open Ge ∋ e such that f∨(Ge) < s. Taking the union
we get an open V ⊃ F ∩ U c for which f∨(V ) ≤ s < t. As F ⊂ V ∪ U , we can
find an open W and a closed M with F ⊂ W ⊂ M ⊂ V ∪ U . Now as open
neighborhoods for f , c and F with product in the inverse image of Λ we can take
{g ∈ US : g∨(M ∩ U c) < t}, {d ∈ C : d(L) < x} and {N ∈ F : N ⊂W}. �

Theorem 14 has the following narrow equivalent, where CF+(E) now has the
topology of uniform convergence and Cr,t(E) is the space of all tight elements of
Cr (cf. also Remark 12).
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Theorem 15. If E is normal, then the map

(53) CF+(E)× Cr,t(E) ∋ (f, c) 7→

∫ 1

·
f dc ∈ Cr(E)

is narrowly continuous.
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