The Influence of Dietary Sugars and Starch on the Establishment of Streptococcus mutans and Actinomyces viscosus in Dental Plaque of Specific Pathogen Free Rats

Departments of *Microbiology and Immunology and ***Community and Preventive Dentistry,
Muhimbili University College of Health Sciences, Dar-es-Salaam, Tanzania;
**Department of Preventive Dentistry and Periodontology,
University of Nijmegen, Nijmegen, The Netherlands.

SUMMARY:

The establishment of *S. mutans* together with *A. viscosus* was investigated in dental plaque of Specific Pathogen Free (SPF) rats fed different carbohydrate diets. Two Tanzanian *S. mutans* strains MM3 and MM24 and one Tanzanian *A. viscosus* strain MM13 were used for this purpose.

The basic diet consisting of 32% skim-milk, 7% yeast extract and 1% soy bean oil was supplemented with either 10% lactose and 50% corn flour, or 10% glucose and 50% corn flour, or 60% amylum or 60% wheat flour. *S. mutans* and *A. viscosus* were enumerated twenty days after inoculation. *S. mutans* counts were high irrespective of the dietary regime.

A. viscosus counts in the glucose, lactose and amylum groups were of the same magnitude and significantly higher than those of the wheat flour group. The hypothesis that the establishment of *S. mutans* in sucrose free diets could be facilitated by the extracellular polysaccharides produced by *A. viscosus* was not supported by the present data.

The finding that *S. mutans* can establish

in high number in dental plaque of SPF rats in the absence of sucrose corroborates previous reports indicating high *S. mutans* counts in African populations with a low sucrose intake.

INTRODUCTION:

The oral establishment of mutans streptococci (MS) is known to be stimulated by sucrose through the synthesis of extracellular polysaccharides (Gibbons and Fitzgerald, 1969; van Houte, 1982; Hamada and Slade 1980). Apart from sucrose, there appears to be no evidence that other carbohydrates can act as substrates for the synthesis of extracellular polysaccharides by mutans streptococci (Hassid, 1970).

However, high numbers of mutans streptococci have been reported in Tanzanian infants who consumed breast milk as the main source of nutrition (Matee et al., 1992) and in children on starch rich diets (Matee et al., 1985). These findings suggest that other substrates may play a role in the establishment and multiplication of MS on tooth surfaces.

Studies on the role of lactose on implan-
tation and multiplication of MS has so far produced conflicting results. Guggenheim and co-workers (1966) found little or no implantation of MS in rats fed a lactose diet. On the other hand Schemmel et al. (1982) recovered substantial numbers of MS in dental plaque of rats, irrespective of whether lactose or sucrose was fed. When lactose is incorporated in diets at high concentrations rats tend to eat poorly, develop cataracts, and often die prematurely (Frostell et al., 1967). Probably for this reason, caries studies using lactose diets and mutans streptococci have produced conflicting results (Schemmel et al., 1982; Green and Hartles, 1969). To maintain reasonable health among animals, lactose concentrations have to remain low (Pearce and Sissons, 1987). This experiment was aimed at determining whether lactose at low concentrations could support the oral establishment of MS as observed in the breast fed children.

In the mouth, cooked starches are readily hydrolyzed by α-amylase to maltose, a disaccharide of glucose, as the predominant product (Birkhed and Skude, 1978). Glucose can be utilized by A. viscosus to synthesize heteropolysaccharides (van der Hoeven 1974), providing a plaque matrix which can entrap a number of other oral microorganisms, including MS. It is therefore tempting to speculate that the presence of MS in children on carbohydrates rich diets devoid of sucrose, is due in part, to the synthesis of heteropolysaccharides by A. viscosus.

This study investigated the colonization of S. mutans together with A. viscosus in dental plaque of rats, harbouring an indigenous microflora, using diets with different carbohydrate composition.

MATERIALS AND METHODS:

Micro-organisms, media and culture conditions:

Two S. mutans strains MM3 and MM24 and one A. viscosus strain MM13 were isolated from supragingival plaque of Tanzanian children (Matee et al., 1992). S. mutans strains were identified biochemically using API 20 Strep, while the A. viscosus was identified using API Rapid 132A identification system, according to the instructions of the manufacturer (Anaylab, Montalieu - Vercieu, France). The strains were stored in skim milk (Difco, Detroit, MI, USA) at -80°C. For inoculation of the rats, the micro-organisms were grown in TPY broth containing 20 g/L Trypticase peptone (BBL, Cockeysville, MD), 20 g/L yeast extract (Difco) and 5 g/L galactose (Merck, Darmstadt, Germany). The plaque samples from the animals were diluted in saline (0.85% NaCl) and plated on blood agar plates. Blood agar was composed of 25 g/L BHI (Difco), 10 g/L Bacto peptone (Difco), 1 g/L KNO₃, and 20 g/L Bacto agar (Difco). After sterilization and cooling to 56°C, a 100 mL quantity of sterile defibrinated sheep blood was added per litre.

All incubations were carried out at 37°C in an atmosphere of 90% N₂, 6% CO₂, and 4% H₂.

Experimental animals

One hundred weaning SPF Wistar rats, 21-22 days old, from different litters were randomly distributed among eight treatment groups on the basis of sex.

The animals were housed in triplets in macrolon cages with a mesh-wire bottom. From weaning, each group was fed one of the four powdered diets, the composition of which is given in Table 1. The skim milk contained 7% lactose, making the contribution of the disaccharide in the diets to be 2.2%. Diets and drinking water were available ad libitum.

Table 1

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Glucose</th>
<th>Lactose</th>
<th>Amylum*</th>
<th>Wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>glucose</td>
<td>10%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>lactose</td>
<td>-</td>
<td>10%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>amylum</td>
<td>-</td>
<td>-</td>
<td>60%</td>
<td>-</td>
</tr>
<tr>
<td>cornflour</td>
<td>50%</td>
<td>50%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>wheat flour</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>60%</td>
</tr>
<tr>
<td>skim milk</td>
<td>32%</td>
<td>32%</td>
<td>32%</td>
<td>32%</td>
</tr>
<tr>
<td>inactivated yeast</td>
<td>7%</td>
<td>7%</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>soy oil</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
</tbody>
</table>

* pure soluble starch
After five days on diet, rats were orally inoculated, by syringe, with 0.1 mL of culture from the late logarithmic phase (18h) containing about 10^8 cells/mL. Each rat was inoculated first with the *A. viscosus* strain and subsequently with one of the two *S. mutans* strains as outlined in Table 2. The same sequence of inoculations were repeated on the following day. The experimental design is shown in Fig 1.

Table 2

<table>
<thead>
<tr>
<th>Treatment No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diet</td>
<td>glucose</td>
<td>glucose</td>
<td>lactose</td>
<td>lactose</td>
<td>amyllum</td>
<td>amyllum</td>
<td>wheat</td>
<td>wheat</td>
</tr>
<tr>
<td>No. of rats</td>
<td>13</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Strains inoculated on day 5 and 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. viscosus MM13</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. mutans MM3</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>S. mutans MM24</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. 1: Design of the experiment

<table>
<thead>
<tr>
<th>Weaning</th>
<th>Inoculation</th>
<th>Sampling 1</th>
<th>Sampling 2 (activity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5 & 6</td>
<td>13</td>
<td>25 (experimental day)</td>
</tr>
</tbody>
</table>

Bacteriological Studies:

Samples were obtained from twenty six rats 8 days after inoculation and from seventy four rats 20 days after inoculation to investigate implantation and to enumerate bacteria respectively. The animals were killed by CO$_2$ gas, and the left mandibular molars were extracted aseptically. The molars were ground, using sterile mortars, in 1 mL of 0.85% NaCl solution. The suspension of plaque and adherent food material was dispersed ultrasonically as described by Beckers and van der Hoeven (1982). Suitable dilutions of the samples were plated onto blood agar on which the preeminent components of SPF microflora, *A. viscosus* and *S. mutans* could be differentiated and counted. Samples with either undetected *S. mutans* or *A. viscosus* were few and considered to have a species count corresponding to our detection limit (10^4).

Test of Bacteriocin Production:

S. mutans strains MM3 and MM24 were grown anaerobically in TPY broth containing 0.2% galactose for 18h. The resulting bacterial growth was tenfold diluted in saline and 0.1 mL of suitable dilutions were plated onto TPY agar, composed of 40 g/L Trypticase soy agar (BBL), 5 g/L bacto agar (Difco) and 10 g/L yeast extract (Difco).

After 24h of anaerobic incubation, the plates were overlaid by a mixture of 4.5 mL of warm TPY agar and 1.5 mL of TPY broth containing an 18h culture of *A. viscosus* MM13 and the overlaid plates were incubated anaerobically for 24h and bacteriocin activity was determined by the presence of inhibition zone around *S. mutans* colonies.

Statistical Analyses:

Analysis of variance (ANOVA) and the student’s t-test were used to assess the statistical significance of the observed results.

RESULTS:

Plaque samples collected eight days after inoculation.
inoculation showed that both *S. mutans* and *A. viscosus* established well in all the dietary groups. Samples taken twenty days after inoculation showed that *S. mutans* established well in the four dietary groups (Table 3). There were no significant differences in *S. mutans* counts between the strains or the diets. Both strains of *S. mutans* produced bacteriocin activity against *A. viscosus* in vitro.

Table 3

S. mutans and *A. viscosus* counts in dental plaque of SPF rats according to diet, 20 days after inoculation

<table>
<thead>
<tr>
<th>Diet</th>
<th>S. mutans strain</th>
<th>No. of rats</th>
<th>S. mutans counts*</th>
<th>A. viscosus counts**</th>
<th>Total Count***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Log₁₀ (X ± SD)*</td>
<td>Log₁₀ (X ± SD)*</td>
<td>Log₁₀ (X ± SD)*</td>
</tr>
<tr>
<td>Lactose</td>
<td>MM 3</td>
<td>9</td>
<td>7.5 ± 0.3</td>
<td>7.6 ± 0.3</td>
<td>8.1 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>MM 24</td>
<td>9</td>
<td>6.5 ± 1.1</td>
<td>7.1 ± 0.4</td>
<td>7.6 ± 0.2</td>
</tr>
<tr>
<td>Glucose</td>
<td>MM 3</td>
<td>10</td>
<td>6.9 ± 1.1</td>
<td>7.7 ± 0.2</td>
<td>7.9 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>MM 24</td>
<td>9</td>
<td>6.8 ± 0.4</td>
<td>7.9 ± 0.3</td>
<td>8.1 ± 0.2</td>
</tr>
<tr>
<td>Amylum</td>
<td>MM 3</td>
<td>9</td>
<td>6.9 ± 0.4</td>
<td>7.2 ± 0.5</td>
<td>7.6 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>MM 24</td>
<td>9</td>
<td>6.3 ± 1.1</td>
<td>7.5 ± 0.3</td>
<td>7.8 ± 0.2</td>
</tr>
<tr>
<td>Wheat</td>
<td>MM 3</td>
<td>9</td>
<td>7.1 ± 0.3</td>
<td>5.7 ± 0.9</td>
<td>7.4 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>MM 24</td>
<td>9</td>
<td>7.1 ± 0.3</td>
<td>5.1 ± 0.3</td>
<td>7.5 ± 0.2</td>
</tr>
</tbody>
</table>

* mean and standard deviations of log₁₀ counts **Differences in *A. viscosus* counts: F = 3.48 df (3,69) P < 0.001. Differences in *S. mutans* counts: F = 2.63 df (3,69) n.s. ***Differences in total bacterial count F = 2.37 df (3,69) n.s.

DISCUSSION

S. mutans established well in all dietary groups without significant quantitative differences. The addition of readily fermentable sugars like lactose and glucose did not give an advantage over the amylum and flour diets for the establishment of *S. mutans*. In contrast the establishment of *A. viscosus* was significantly reduced in the wheat flour group.

The proposed mechanism of establishment of *S. mutans* in sucrose free diets involving the entrapment of *S. mutans* cells in extracellular polysaccharides produced by *A. viscosus* is not reflected in our data. According to that proposal, the counts of the two organisms were expected to be highest in the glucose diet, because glucose would stimulate the synthesis of heteropolysaccharide plaque matrix by *A. viscosus* (Van der Hoeven, 1974).

It can be argued that the inclusion of skim milk in diet might have influenced the establishment of *S. mutans* in the non-lactose groups. However, lactose from skim milk accounted for only 2% of the total diet, an amount which might be too low to contribute significantly towards the observed *S. mutans* counts. The non-sucrose dependent establishment of *S. mutans* observed in this study is compatible with observation in breast fed infants in Tanzania ([Matee et al., 1992b) and in populations in Sudan ([El Tayeb et al., 1985], Kenya ([Beighton et al., 1989], Mozambique ([Carlsson et al., 1985: 1987) and Tanzania ([Matee et al., 1985]) where sucrose consumption is low, but starch consumption is high. In these countries low sucrose consumption may be responsible for the low level of dental caries but this does not affect the prevalence and level of mutans streptococci.
ACKNOWLEDGEMENTS:
The authors would like to acknowledge the critical remarks of Professor J. S. Van der Hoeven and skilled technical assistance of J. A. M. Lukassen, C. W. A. Van den Kieboom, P. J. M. Camp, and the staff of the Central Animal Laboratory of the University of Nijmegen, The Netherlands.

REFERENCES:

Correspondence:
Dr. M. I. N. MATEE
Muhimbili University College,
Department of Microbiology & Immunology,
P. O. Box 65014,
Dar-es-Salaam, Tanzania.