P2802

ASTHMA IN A FOUR GENERATION CHINESE FAMILY

N. Zamel, P.A. McClean, S. Zhang, K. Gan, J. Zhang, Y. Zhou, A.S. Slutsky and The University of Toronto Genetics of Asthma Research Group. Department of Medicine, University of Toronto, Toronto, Canada.

A Chinese family, comprising 118 members spanning 4 generations, were studied to document a reported high asthma prevalence for the purpose of genetic linkage analysis (GLA). Assessment included medical history (n=118), atopy, bronchial hyperresponsiveness (BHR) by methacholine challenge (MCH, n=93) or bronchodilator response (BDR, n=9) to 400 μg salbutamol, and venous blood samples for total IgE (n=49) and Ga (n=95). Ages ranged from 5-68 years. Of those with complete data (n=102), 31% reported a history of asthma (Hx+), 37% demonstrated increased responsiveness (AR+); PC20 <8 mg/ml (n=38), or BDR 215% (n=2), and 26% were atopic. Definitive asthma (Hx+ combined with AR+) was present in 17% and partial evidence of asthma (Hx+ or AR+) in 31%. Spouses (n=26) were also tested as controls, age range 23-66 years. 12% reported a Hx+, 31% AR+, and 16% were atopic. Only 1 control subject was asthmatic as defined. Proportions of Hx+, AR+ and atopy in family members were not significantly different from controls. However, 54% of control subjects were smokers vs 25% of the family members (p<0.05; p<0.005). When smokers were removed from the analysis, family members were more responsive than the controls, AR+ 39% vs 8% (p<0.05). Atopy was equally prevalent in all groups, however, IgE levels in the asthmatics (619±455 IU/ml; n=6) and those with partial evidence of asthma (613±444; n=11) were significantly higher than those with no evidence of asthma (377±306; n=25). IgE levels in family members with no evidence of asthma were not significantly different from controls (283±288; n=12). As with the Tristan da Cunha population we reported previously (AJRCCM 1994; 149:A1051), the high prevalence of asthma in this family markedly improves the chances of successfully isolating the genes predisposing to this disease. Supported by a grant from the National Institutes of Health.

P2803

IMPORTANCE OF LOCI ON CHROMOSOME 5q IN ALLERGY AND ASTHMA

C.L.M. Pannu1,2, D.A. Meyers3, R.C. Levi2, P.J. Aneja2, K.J. Holroyd, G.H. Koller, D.S. Postma2, E.R. Bleeker*. -University Hospital, Groningen, The Netherlands, *Univ. of Maryland School of Medicine, Baltimore, MD, USA.

Genetic susceptibility and environmental exposures are important in the pathogenesis of asthma. Allergic status and bronchial hyperresponsiveness (BHR) are related to its development and progression. 92 families (536 individuals) were ascertained through an asthmatic proband, were characterized clinically, and DNA was obtained for linkage studies. There was a close relationship between serum IgE and BHR (PC20 FEV1 ≤32 mg histamine) with 57% of 58 offspring with IgE ≥315 IU showing hyperresponsiveness. IgE (Genomics 1994; 23(2): 464-470) and BHR were linked to this same chromosomal region for asthma (LOD Score 3.64). Thus, IgE, D5S 393, D5S 436, D5S 658, Sib-pair Sib-pair / Sib-pair

<table>
<thead>
<tr>
<th>Serum Total IgE</th>
<th>LOD Score</th>
<th>BHR</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOD Score</td>
<td>BHR</td>
<td></td>
</tr>
<tr>
<td>0.58</td>
<td>0.05</td>
<td>0.14</td>
</tr>
<tr>
<td>1.34</td>
<td>0.11</td>
<td>0.04</td>
</tr>
<tr>
<td>1.05</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>3.63</td>
<td>0.0008</td>
<td>0.009</td>
</tr>
<tr>
<td>0.76</td>
<td>0.02</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Using an algorithm based on BHR, asthma symptoms, smoking status, airway obstruction and reversibility to diagnose asthma, we found linkage to this same chromosomal region for asthma (LOD Score 3.64). Thus, IgE, BHR and asthma appear to be related genetically to 5q, a chromosome with a number of important candidate loci (IL-3, IL-4, IL-5, IL-9, IL-12, IL-15, GMCSF and the beta-adrenergic receptor). Fine mapping of this area will provide important information about the pathogenesis of asthma and allergy.

P2804

TESTING FOR BRONCHIAL RESPONSIVENESS IN A GENERAL POPULATION: PROVOCATION OR ASSESS THE PEAK FLOW VARIABILITY?

J.J. den Otter, G. Reijnen, R.P. Akkermans, H.T.M. Folgering*, C.P. van Schayck, C. van Weel. Nijmegen University, Dept. of general practice and *pulmonology, Nijmegen, the Netherlands.

Introduction. Bronchial hyperresponsiveness (BHR) is one of the main features of asthma. To test the presence of BHR PC20 is normally assessed. In epidemiological studies BHR is frequently expressed as percentage of peak flow variation (∆PEF).

Methods. 384 Subjects, without a previous diagnosis of asthma/COPD from the general population performed 3 weeks home monitoring with a peak flow meter twice daily. Afterwards PC20 was assessed. Questionnaire based diagnosis was: 52 asthma, 146 COPD, 186 no diagnosis. ∆PEF was calculated as [max-min/max] ×100% and correlated (Spearman) with PC20.

Results. Correlation between ∆PEF and PC20 was low (r=0.23). For diagnosis asthma the strongest correlation (r=0.39) was found. Using PC20 as a gold standard a ∆PEF>15% has a positive predictive value of 54% only. 50 Subjects had a ∆PEF 215% for 21 day and PC20 of 32 mg/ml, 100 subjects had a PC20 ≤8 mg/ml and not once a ∆PEF>15%.

Conclusions. ∆PEF and PC20 are measuring different aspects of BHR. As a criterion for BHR a ∆PEF of 15% is not suitable.

Funding. This research is funded by the Dutch Asthma Foundation, Dutch Organisation for Scientific research & Glaxo Ltd.

P2805

NITRIC OXIDE-SYNTHASE INHIBITION CAUSES AIRWAY RESPONSIVENESS TO INHALED BRADYKININ IN NORMAL SUBJECTS

F.L.M. Riccardolo, P. Geppetti*, A. Mistsriet, J.A. Nadel*, M.A. Sapienta, S. Bellofietro, G.U. Di Maria. Inst. of Respiratory Disease, University of Catania, Italy. *Cardiovascular Research Institute, University of California San Francisco, CA, USA.

Inhaled bradykinin (BK) causes a dose-dependent bronchoconstriction in asthmatics but not in normal subjects (Fuller, R.W. et al. Am. Rev. Respir. Dis. 1997; 155: 176-180). We have recently shown that bronchoconstriction induced by BK is reduced by the release of nitric oxide (NO) in guinea pigs (Riccardolo, F.L.M. et al. Br. J. Pharmacol. 1994; 113: 1147-1152). To determine the role of endogenous NO on airway response to BK in humans, we examined the effect of the NO-synthase inhibitor Nω-monomethyl-L-arginine (L-NAME) or its inactive enantiomer D-NAME (placebo) on airway response to BK in 5 normal subjects (4 M/1 F, 18-35 yrs; FEV1 >85%) (preloaded). Subjects were studied on two study days according to a double-blind placebo-controlled cross-over design. Airway response was assessed by measuring FEV1 and airflow at 30 percent of vital capacity from volume standardized partial expiratory flow-volume curves (Vmax).

Results. After baseline measurements subjects inhaled an aerosol of either L-NAME or D-NAME (1 mg in 5 ml). After 5 min, saline and doubling concentrations (1.03±2.58 mmol/L) were inhaled until either FEV1 fell by at least 20% of the postsaline value or the highest BK concentration was reached. We also quantified the effect of L-NAME or D-NAME on the perception of retrosternal discomfort induced by BK by using a Visual Analogue Scale. L-NAME potentiated the airway response to BK. In all subjects a measurable PD40/30mg to BK was obtained only after L-NAME pretreatment. The maximal percent fall in V30 to the highest BK concentration was 26.1±17. (Mean±SEM) and 52.1±23.6 (p<0.01) after D-NAME and L-NAME, respectively. The maximal percent fall in FEV1 at the highest BK concentration was 8.0±1.7 and 17.2±3.8 (p<0.05) after D-NAME and L-NAME, respectively. The lowest BK concentration causing a detectable retrosternal discomfort decreased from 9.7 to 13.8 μmol/L (Geometric Mean, p<0.05) after L-NAME. These results provide indirect evidence that NO is released within the airway upon BK inhalation, and indicate that released NO modulates airway responsiveness to inhaled BK in normal subjects.

Supported by the National Research Council of Italy, Grant No.54.02288.CT04.