Results of Splenectomy Performed on a Group of 91 Children

I. Meekes1, F. van der Stank2, C. van Oostrom3

1 Doctor in Refugee Centre’s Hertogenbosch, 2 Paediatric Surgeon, Dept. of Paediatric Surgery, University Hospital Nijmegen, 3 Paediatrician, University Hospital Nijmegen, The Netherlands

Summary

In the period 1971–1990 91 children underwent splenectomy in the University Hospital of Nijmegen. The most important indications are hereditary spherocytosis, Hodgkin’s disease and very severe immune thrombocytopenic purpura (ITP). Splenectomy after a traumatic rupture of the spleen has become less frequent: from 20% in 1971–1980 to 4% in 1981–1990. Short-term complications included thrombocytosis (84%), fever without an obvious cause (46%), which is quite regularly seen in patients suffering from Hodgkin’s disease (48%), and infections of the respiratory tract in 10% of the patients. The platelet count shows a steady increase in the first 9 post-operative days. No thromboembolic complications were seen. Based upon the literature there seems to be no reason at this moment for anti-platelet aggregation therapy when platelet counts are below 1000 x 10^9/l. More information about long-term complications was obtained through a questionnaire completed by general practitioners. The morbidity through overwhelming post splenectomy infection (OPSI) is 3.8% (3/79), the mortality of OPSI is 2.5% (2/79). Underlying diseases, especially those which involve the immunological system as auto immune haemolytic anemia (AIHA), seem to play an important role in the possible development of OPSI (morbidity 2/11, 18%).

Key words

Splenectomy, indications, complications - OPSI - Thrombocytosis

Résumé

Une splénectomie a été pratiquée chez 91 enfants entre 1971–1990. Les diagnostics les plus fréquents ont été la sphérocytose, la maladie de Hodgkin et le purpura thrombo- cytopénique. Pendant le même temps, le pourcentage de splénectomie traumatique est descendu de 20% entre 1971–1980, à 4% dans la période 1981–1990. Les complications précoces ont comporté une augmentation des thrombocytes (84%), de la température sans cause précise (46%) et une infection des voies respiratoires supérieures chez 10% des patients. Une température de cause imprécise fut observée particulièrement fréquemment chez les patients atteint de maladie de Hodgkin. Le nombre des thrombocytes est élevé dans les premiers neuf jours post-opératoires; il n'y a toutefois eu aucune complication thrombo-embolique. De ce fait, il apparait qu'il n'est pas nécessaire d'envisager de traitement thrombocytopenique lorsque le compte des thrombocytes est en dessous de 1000 x 10^9/l. Evidemment les complications à longue échéance restent une question pendante. Dans le relevé, on constate une fréquence de sepsis post-splénectomie de 3,8% (3/79) et une mortalité de 2,5% (2/79). En conséquence, les maladies de base qui intéressent le système immunologique comme l’anémie auto-immunohémolytique jouent un rôle important au regard d’une possible OPSI (morbidity 2/11, 18%).

Mots-clés

Splenectomie, indications, complications - OPSI - Thrombocytose

Zusammenfassung

Hinsichtlich Langzeitkomplikationen wurde ein Fragebogen versickert. Bei der Auswertung ergab sich eine Postsple­ nektomie-Sepsis-Häufigkeit von 3,8% (3/79) und eine Mortalität von 2,5% (2/79). Dabei schien die praoperativen Indikationen, die das immunologi­sche System beeinträchtigen wie die autoimmun-hämolytische Anämie, eine besondere Rolle hinsichtlich einer möglichen OPSI zu spielen (Morbidity 2/11, 18%).

Schlüsselwörter

Splenektomie, Komplikationen - OPSI - Thrombozytose

Introduction

Since 1952 (13) several articles concerning the complications of splenectomy at a young age have been pub­

lished. The spleen has an important role in resistance to infection, it produces specific antibodies which stimulate phagocytosis of no opsonized bacteria. The spleen is also the producer of tuftsin and properdin which are both stimulators of phagocytosis also. In bacteria with a capsule such as pneumococi, meningococi and haemophilus influenzae, polysaccharide antigens of the capsule can provoke a humoral immune response through B-cell activa­tion, without T-cells. This is only possible in the spleen, because
the B-cell compartment of the spleen has a marginal zone. After the immune response has been provoked, phagocytes of these bacteria can occur both in the spleen and the liver. The antibody production against these bacteria starts early during the course of infection and is important for the protection of the host against infections caused by bacteria with a capsule. The ability of synthesis of these antibodies is absent until 3–4 weeks after birth and will develop to an adult level at the age of about 5 years. There is a higher incidence of overwhelming post-splenectomy infection (OPSI), caused by bacteria with a capsule, after splenectomy performed in children (10, 13, 18). This has resulted in a management avoiding splenectomy at a young age as often as possible. Most of the information about complications of splenectomy is based on old publications. Recent information on results and complications is still missing. This retrospective study was undertaken to define the risks of a splenectomy at young age performed on 91 children from 1971–1990.

Patient population and methods

Patient population

From 1971 to 1990 91 children varying in age from 8 months to 16 years underwent splenectomy in the University Hospital of Nijmegen (UHN). In the period of 1971 to 1980, 48 from 1981 to 1990. The group mentioned first did not receive pneumococcal vaccine preoperatively. Both groups received the usual prophylaxis with antibiotics after the operation.

Methods

By means of a retrospective study of notes, the following has been registered from the patient population:
- age at time of the splenectomy
- indication
- short-term complications; all complications within a month after the operation, e.g. fever and infections. Fever is defined as a morning body temperature higher than 37.5°C after the 5th post-operative day
- course of the thrombocyte count till the tenth post-operative day, and the use of anti-coagulative therapy. Thrombocytosis means a thrombocyte count above 350 x 10⁹/l
- results of a splenectomy performed on children with immune thrombocytopenic purpura (ITP)
- mortality
- long-term complications from the hospital notes

This clinical information was completed with information from general practitioners (G.P.s). The G.P. of 73 patients filled in a questionnaire about prophylaxis with antibiotics and the incidence of infections after discharge from hospital.

Results

Indications related to age are shown in Table 1. Eleven children younger than 5 years of age underwent a splenectomy. The most frequent indication was hereditary spherocytosis (n = 24) and Hodgkin's disease (n = 23). Short-term complications are shown in Table 2. Respiratory tract infections are the most frequent post-operative complication (10%). Two patients had postoperative hemorrhages (2 times continued bleeding of operation wound, both ITP patients). Fever 5 days after operation was seen in 33 of 77 patients (46%) in whom this information was obtained. In 18 of these cases no obvious cause for this fever was found; 11 of these were patients suffering from Hodgkin's disease. If a cause was found (n = 15), it concerned respiratory tract infection (n = 9), pancreatitis (n = 3), or wound infection (n = 3).

Figure 1 shows the post-operative course of the platelet count. It reveals a clear rise in the first 9 postoperative days. The course of the thrombocyte count after a splenectomy for ITP did not differ from other indication groups.

Of the 13 patients who underwent splenectomy for severe ITP, one died of an intracranial hemorrhage on postoperative day 3. This patient was admitted in critical condition, whereupon a splenectomy was performed. He turned out to suffer from the syndrome of Wiskott Aldrich. In 6 of the 12 remaining patients splenectomy gave the desired result which meant a plateaued count above 100 x 10⁹/l. One of them had a relapse one year later, that responded well to corticosteroids. In another patient, who developed a relapse, an accessory spleen was found five years after operation. After extirpation of this accessory spleen the thrombocyte count became normal. The remaining 4 patients, whose plateaued count stayed low postoperative, had a spleen scan carried out, in order to trace any potential accessory spleens. These were not found.

Fourteen of the 91 patients died. Three patients suffered from OPSI, two of them died. The remaining 12 patients died of underlying diseases. The 2 patients who died of OPSI underwent a splenectomy.

Table 1: Indication for splenectomy in relation to age (n = 91).

<table>
<thead>
<tr>
<th>Indication</th>
<th>No.</th>
<th><2 yrs.</th>
<th>2-5 yrs.</th>
<th>>5 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hemolytic anemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) autoimmune</td>
<td>6</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>b) congenital</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- hereditary spherocytosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- pyruvate kinase deficiency</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- glycolyse enzyme deficiency</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- beta thalassemia</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Immune thrombocytopenic purpura</td>
<td>13</td>
<td>1</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3. Trauma</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4. Malignancy</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Hodgkin's disease</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- CML</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Non Hodgkin's lymphoma</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Splenorenal shunt</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Misc; abcess in spleen</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>91</td>
<td>10</td>
<td>10</td>
<td>80</td>
</tr>
</tbody>
</table>

Table 2: Short term complications after splenectomy.

<table>
<thead>
<tr>
<th>Indication</th>
<th>Mort.</th>
<th>Wldnf</th>
<th>RTI</th>
<th>Pncre</th>
<th>Hem</th>
<th>Misc*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autimmune hemolytic anemia</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Congenital hemolytic anemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Immune thrombocytopenic purpura</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Trauma</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malignancy</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Splenorenal shunt</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Misc; abcess In spleen</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

- Mort. mortality, their information is not used in the results; n = 87
- Wldnf: wound infection
- RTI: respiratory tract infection
- Pncre: pancreatitis
- Hem: hemorragical complications
- Misc: miscellaneous.

In group AIA a digitalls intoxication was found. In group congenital hemolytic anemia a patient developed a stomach retention and another got a gallstone attack. In group trauma a patient developed an osteomyelitis and another got osteomyelitis at the wound. In group malignancy a CML patient developed a pericarditis on day 24 postoperative.
Results of Splenectomy Performed on a Group of 91 Children

Table 3 Composition of the group of general practitioners who completed and returned the questionnaire.

<table>
<thead>
<tr>
<th>Total</th>
<th>Died, cause of death known</th>
<th>Emigrated</th>
<th>Recently operated</th>
<th>Notified</th>
</tr>
</thead>
<tbody>
<tr>
<td>91 G.P.'s of patients</td>
<td>14 patients</td>
<td>2 patients</td>
<td>2 patients</td>
<td>73 G.P.'s about patients</td>
</tr>
</tbody>
</table>

in the second period (1981–1990) because of chronic myeloid leukemia (CML) and auto immune hemolytic anemia (AIHA) with ITP respectively. The patient who recovered from OPSI underwent a splenectomy in the first period (1971–1980) because of an AIHA. He developed pneumococcal meningitis 7 years after operation.

After notifying 73 G.P.'s, information about 60 patients was obtained (Table 3), thus covering a post-operative one to 18-year period. After splenectomy severe infection was seen five times (once meningitis, 4 times pneumonia) in 5 patients, 10 patients suffered from a minor infection (tonsillitis, otitis). The patient with meningitis was treated in hospital, as was a patient with a severe otitis media with effusion. All the patients suffering from pneumonia were treated with antibiotics as amoxicillin (n = 2) and erythromycin (n = 1).

Discussion

Indications for splenectomy did not alter much during the observation period, only splenectomy for trauma showed a decrease. In the first period traumatic rupture of the spleen was the reason for a splenectomy in 8 patients (8/41, 20 %), in the second period only two patients underwent a splenectomy after traumatic rupture (2/49, 4 %). An explanation is the more conservative management of splenic rupture; only occasionally is splenectomy performed when a patient is not hemodynamically stable.

The most frequent short-term complication was respiratory tract infection which was found to occur in 9 out of 87 patients (10 %), whereas Ziemski (20) found an incidence 14.5 %. Hemorrhagic complications occurred in 2 %: Ziemski found postoperative hemorrhages in 15.1 % of his population. Fluctuations of postoperative body temperature was examined because splenectomy could give rise to fluctuations of body temperature without an obvious cause (20). This was found to occur more often after splenectomy for lympho- and myeloproliferative disorders. In our patient population fever without an obvious cause occurred most frequently in patients with Hodgkin’s disease (11/23, 48 %). It is not clear whether the underlying disease is more likely to be an explanation for this phenomenon, rather than the splenectomy itself. Excluding the patients suffering from Hodgkin’s disease, in 4 out of every 5 patients a reason for the fever could be found, either respiratory tract infection, pancreatitis, wound infection or fever caused by associated pathology.

In this population thrombocytosis was found in 84 % (69/82) of the patients. In the first period 15 patients (38 %) used salicylates (n = 12) or cumarine derivates (n = 3) as a prophylaxis against thrombosis. In the second period 14 patients (28 %) used only salicylates as prophylaxis. In the University Hospital of Nijmegen low-dose salicylates are started if the platelet count is higher than 1000 x 10⁹/1 and stopped if this falls below 700 x 10⁹/1 (after approximately 1 to 3 months). No thrombo-embolic complications occurred (1, 11). It may well be questioned whether anti aggregation therapy for platelet counts just above 1000 x 10⁹/1 is necessary.

Splenectomy for ITP gave the desired result in 8 out of 12 patients (66.6 %) which means a thrombocyte count above 100 x 10⁹/1. Below the age of 10 this was found to occur in 62.5 % (5/8), in the group older than 10 years of age this occurred in 75 % (3/4). This is comparable with data from other publications: 65 % and 88 % (6). Splenectomy at a young age is only performed in case of emergency after failing of all other treatments and if the patient’s life is threatened by hemorrhages or by the risk of these occurring. In 4 children the thrombocyte count did not rise above 100 x 10⁹/1 after splenectomy. In 2 of these no rise at all was found, the platelet counts of the other 2 only showed a slight increase to 60–90 x 10⁹/1. But even a small increase of the platelet count can make a big difference for the patient because by decreasing the risk of hemorrhage.

Children under the age of 2 are at the highest risk of developing OPSI and children under the age of 5 have an increased risk (4, 5, 8). In the patient population 11 of the 91 children (12 %) were younger than 5 years of age at the time of splenectomy. None of them developed pneumococcal sepsis.

Morbidity of OPSI was found to be 3.8 % (3/79), which is low compared to the literature (7–12 %) (3, 7, 12, 15). One patient developed pneumococcal meningitis 7 years after splenectomy. He was not vaccinated against pneumococci as this was not available at that time. He recovered completely. Two other patients (2.5 %) died of OPSI. This is comparable with literature: 1.8 to 5 % (3, 12, 15). Both received the usual antibiottical prophylaxis and pneumococcal vaccination before the operation. This leads to the conclusion that OPSI can not be
prevented by vaccination combined with antibacterial prophylaxis (19). Eraklis (9) found that mortality of OPSI occurred mainly in patients with severe underlying diseases which undermine the immune system. This was also found to occur in our study. One of the children who died of OPSI suffered from CML, the other who died had AHA and he developed an ITP as well. Of the eleven patients with AHA two got OPSI, one of whom died. In this patient population AHA seems to predispose to OPSI (morbidity 2/11).

Eraklis (8) found a morbidity of OPSI of 5.4% in 1967, Ein et al (7) 3.2% in 1977 and Posey et al (15) 1.8% in 1983. The risk of death from OPSI seems to decrease. This may be due to better knowledge about the risks of OPSI in both patients and the medical staff and improved antibiotic therapy. Because of the risk of OPSI, vaccination against pneumococci is advised in the Netherlands (14). By preference the vaccination is given before splenectomy because of a higher level of antibodies that is reached (17). For patients suffering from Hodgkin’s disease the efficiency is thought to be higher if the vaccination is given before the start of chemotherapy (16). Vaccination does not make sense if after the splenectomy immunosuppressive therapy is started. Immunity acquired through vaccination is limited in children under the age of two, because their ability to produce antibodies has not yet fully developed. In the vaccine nowadays 23 types of capsides are represented, responsible for 85% of the infections caused by pneumococci. Furthermore OPSI is only caused in half of the cases by pneumococci, for the remaining 50% other bacteria with capsides are responsible, e.g. meningococci and haemophilus influenzae B. This is a reason antibiotic prophylaxis is advised next to the vaccination. Also the possibility exists to vaccinate against H. influenzae B and meningococci (2).

Apart from patients who developed OPSI the questionnaire completed by G.P’s showed that 4 patients suffered a major infection, and 10 suffered minor infections. It is not clear to what extent this is a late complication of the splenectomy or related to the underlying disease and if the incidence is significantly higher than in normal population.

References

2 Cartwright KAV: Vaccination against haemophilus influenzae b-disease; Should almost eradicate the disease if uptake is high. Br Med J 305 (1992) 165-168

6 Coen WW: Splenectomy for idiopathic thrombocytopenic purpura. SG & O 164 (1987) 225-229

