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ABSTRACT
Background The development of deep neural networks is facilitating more advanced digital analysis
of histopathologic images. We trained a convolutional neural network for multiclass segmentation of
digitized kidney tissue sections stained with periodic acid–Schiff (PAS).

Methods We trained the network using multiclass annotations from 40 whole-slide images of stained
kidney transplant biopsies and applied it to four independent data sets. We assessed multiclass segmen-
tation performance by calculating Dice coefficients for ten tissue classes on ten transplant biopsies from
theRadboudUniversityMedical Center inNijmegen, TheNetherlands, andon ten transplant biopsies from
an external center for validation. We also fully segmented 15 nephrectomy samples and calculated the
network’s glomerular detection rates and compared network-based measures with visually scored histo-
logic components (Banff classification) in 82 kidney transplant biopsies.

Results The weighted mean Dice coefficients of all classes were 0.80 and 0.84 in ten kidney transplant
biopsies from the Radboud center and the external center, respectively. The best segmented class
was “glomeruli” in both data sets (Dice coefficients, 0.95 and 0.94, respectively), followed by “tubuli
combined” and “interstitium.” The network detected 92.7% of all glomeruli in nephrectomy samples, with
10.4% false positives. In whole transplant biopsies, the mean intraclass correlation coefficient for glomer-
ular counting performed by pathologists versus the network was 0.94. We found significant correlations
between visually scored histologic components and network-based measures.

Conclusions This study presents the first convolutional neural network for multiclass segmentation of
PAS-stained nephrectomy samples and transplant biopsies. Our network may have utility for quantitative
studies involving kidney histopathology across centers and provide opportunities for deep learning
applications in routine diagnostics.

JASN 30: 1968–1979, 2019. doi: https://doi.org/10.1681/ASN.2019020144

Quantification and classification of tissue features
are important elements of the histopathologic as-
sessment of renal tissue. In routine diagnostics for
example, biopsy quality is assessed by glomerular
counting, and kidney transplant biopsies are scored
extensively with the Banff classification system.
Likewise, chronic damage is usually assessed by vi-
sual estimation of the extent of interstitial fibrosis
and the fraction of atrophic tubuli.1,2 Visual esti-
mation of tissue features can be strengthened by
application of digital image analysis techniques.
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Computer algorithms can increase reproducibility, which
is less optimal for human observers, and may increase discrim-
inative power to detect subtle yet relevant pathologic changes.
Automated assessment can also overcome the tedious nature
of visual assessment, which can be a limiting factor in large
studies.

Digital image analysis has been studied widely to enable
high-throughput, accurate, and reproducible assessment of
digitized microscopic images of kidney tissue sections. Most
research in this area has been performed with “traditional”
image-processing techniques.3–9 Although these traditional
techniques are valuable for studies that are limited in scope
and size, the generalization to larger-scale applications and
to multicenter data sets with inherently more variation
in terms of tissue quality, staining and digitization is problem-
atic because these techniques are insufficiently robust to these
variations and therefore require manual intervention (e.g.,
thresholding).10

Advances in machine learning (mainly the emergence of
deep neural networks, collectively called “deep learning”) com-
bined with the possibility to digitize entire tissue sections at
microscopic resolution within minutes (whole-slide images
[WSIs]) have paved the way for more advanced digital analysis
of histopathologic images.11–13 Deep learning techniques
allow autonomous learning of increasingly complex structures
during the transformation from input (WSI) to desired output
(e.g., structure detection). The most widely applied deep learn-
ing models for analysis of images are so-called convolutional
neural networks (CNNs). CNNs have only recently been
introduced in kidney histopathology and focus merely on
the detection of glomeruli, leaving other relevant structures
unaddressed.14,15

The aim of this study was to develop and validate a CNN for
histologic analysis in renal tissue stained with periodic acid–
Schiff (PAS). To achieve this goal, we addressed four major
objectives (Figure 1). First, the CNN should be able to accu-
rately segment cortical regions of both healthy and pathologic
renal tissue biopsies intomultiple tissue classes, e.g., (sclerotic)
glomeruli, (proximal, distal, and atrophic) tubuli, and
interstitium (Figure 1B). Second, digital pathology facilitates
large-scale, multicentric studies and intercollegial consulta-
tions by telepathology.16 Therefore, the CNN should have
comparable multiclass segmentation performance on tissue
that is processed, stained, and scanned at an external center
(Figure 1C). Third, although the networkwas trained on biopsy
material, the application of the CNN should not be limited to
biopsies only. Therefore, we aimed to fully segment tumor
nephrectomy samples containing both cortex and medulla.
As a proof of concept, we report the detection rate and segmen-
tation performance for (sclerotic) glomeruli by the CNNon these
larger tissue sections (Figure 1D). Finally, we assessed the appli-
cability of deep learning in kidney transplant pathology by com-
paring quantifications of our CNN to manually scored elements
of the Banff classification system by multiple renal patholo-
gists (Figure 1E).

METHODS

Tissue Samples
Transplant Biopsies from Radboudumc
Weused Bouin-fixed, paraffin-embedded needle-core biopsies
that were obtained on indication from 101 patients who
underwent a kidney transplantation between 2008 and 2012
in the Radboud University Medical Center, Nijmegen, The
Netherlands (Radboudumc). PAS-stained slides (n=132)
were collected from the Radboudumc pathology archives.
The majority of the slides were stained between 2008 and
2012, whereas for 15 cases 3-mm-thick slides were newly cut
and stained because the original PAS-stained slides
were not available. Slide digitization was performed using a
Pannoramic 250 Flash II digital slide scanner (3DHistech,
Budapest, Hungary) with a 203 objective at a resolution of
0.24 mm/pixel. A total of 40 WSIs were used for training and
validation of the CNN (Figure 1A), and tenWSIs for testing the
multiclass segmentation performance (Figure 1B). Validation
with elements of the Banff classification system, manually
scored bymultiple experienced renal pathologists, was conduc-
ted on 82 glass slides and their correspondingWSIs (Figure 1E).
The need for approval for use of any of the Radboudumc tissues
used in this study was waived by the local Institutional Review
Board (IRB; #2016-2269).

Transplant Biopsies from External Center
Needle-core biopsies were taken at the time of transplantation
from living donor kidneys at theMayoClinic (Rochester,MN).
Biopsy specimens were formalin fixed, paraffin embedded,
cut in to 3-mm sections, and stained using PAS reagent. Dig-
ital images were created using Aperio’s ScanScope XT Sys-
tem scanner (Leica Biosystems, Wetzlar, Germany) with a
203 objective at a resolution of 0.49 mm/pixel as part of one of
the studies on renal aging by Denic et al.17 Ten WSIs from
ten biopsies obtained between 2002 and 2008 were used for
validation of the CNN trained at Radboudumc (Figure 1C).
Biopsy slides were scannedwith IRB approval (#17-002391 and
10-004644). Furthermore, external file transfer after all slides
were de-identified was approved under IRB #18-005592.

Significance Statement

Histopathologic assessment of kidney tissue currently relies on
manual scoring or traditional image-processing techniques to
quantify and classify tissue features, time-consuming approaches
that have limited reproducibility. The authors present an alternative
approach, featuring a convolutional neural network for multiclass
segmentation of kidney tissue in sections stained by periodic acid–
Schiff. Their findings demonstrate applicability of convolutional
neural networks for tissue from multiple centers, for biopsies and
nephrectomy samples, and for the analysis of both healthy and
pathologic tissues. In addition, they validated the network’s results
with components from the Banff classification system. Their con-
volutional neural network may have utility for quantitative studies
involving kidney histopathology across centers and potential for
application in routine diagnostics.
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Nephrectomy Specimens
Macroscopically normal kidney tissuewas obtained from sur-
gically removed kidneys of nine patients with renal cell car-
cinoma. We selected 15 formalin-fixed, paraffin-embedded
tissue blocks that were sectioned at 3 mm and stained using
PAS reagent. Absence of malignant lesions was confirmed
by microscopic assessment. Glass slides were digitized as de-
scribed above (see Transplant Biopsies from Radboudumc).

CNN Development and Design
Ground Truth Training and Test Sets
In50WSIs (Radboudumc) and tenWSIs (MayoClinic) of PAS-
stained transplant biopsies, a human observer randomly se-
lected one or two rectangular regions of approximately
7203960 mm2 (300034000 pixels). These regions were sub-
sequently exhaustively annotated, using an automated slide
analysis platform software (ASAP; version 1.8, available as
open-source software from https://github.com/computatio-
nalpathologygroup/ASAP). The following predefined clas-
ses were applied: “glomeruli,” “sclerotic glomeruli,” “empty
Bowman’s capsules,” “proximal tubuli,” “distal tubuli,” “atrophic
tubuli,” “undefined tubuli,” “capsule,” “arteries,” and “interstitium.”
Globally sclerosed glomeruli were labeled as sclerotic glomer-
uli. All nonglobally sclerotic glomeruli, thus healthy and seg-
mentally sclerotic glomeruli, were labeled as glomeruli. The
undefined-tubuli class was used for tubuli that could not be
classified. Thin ascending limbs of Henle, convoluted distal
tubuli, and cortical collecting ducts were collectively labeled
as distal tubuli. All remaining unannotated tissue, including
smaller vessels, was labeled as interstitium. To facilitate accu-
rate detection of individual objects, single structure delinea-
tion is needed. An additional class, representing the border of
all structures, was therefore included. The outer rim of every
annotated object (measuring on average 4 pixels) was auto-
matically determined and assigned to this additional “border”
class. All annotations were checked and corrected where nec-
essary by an experienced renal pathologist. The 50 annotated
WSIs from Radboudumc were divided into a set for training
and validation (n=40) and testing (n=10). The ten annotated
WSIs from the Mayo Clinic were used as an additional exter-
nal test set (Table 1).

CNN Design
ForourCNNdesign,wechoseaU-net architecturebecause this
has been proven to be specifically powerful for tissue segmen-
tation.18 To train the U-net architecture, we subdivided the
40WSIs in the training subset into five sets for crossvalidation,
each consisting of training (n=37) and validation (n=3) WSIs.
Crossvalidation is often applied in smaller data sets to account
for variations that naturally occur in the training data, pre-
venting over-fitting on a specific validation subset. On each of
the folds, a U-net was independently trained for 100 epochs, at
300 iterations per epoch with batch sizes of six patches
(4123412 pixels at a resolution of 0.96 mm/pixel). Spatial
(rotation, flipping, elastic deformation, zooming) and color
(brightness, contrast, saturation, hue shifting, Gaussian noise,
Gaussian blur) augmentation techniques were applied to im-
prove the algorithm’s robustness for variation in tissuemorphol-
ogy and staining.19 Adamwas used as learning rate optimization
algorithm20 and categorical cross entropy as loss function. The
five U-netmodels were applied as an ensemble for segmentation
of all image sets. The probability per pixel for all five U-nets was
averaged per class, and the class with the subsequent highest
probability was assigned as predicted label, defined as:

Training and Validation (A)

40 WSIs Radboudumc

U1 U2 U3 U4 U5

Uens

Test sets

Multi-class segmentation

Radboudumc (B)

17 regions 19 regions

Applications

Glomerular segmentation
& detection (D)

15 WSIs 82 biopsies

Correlation Banff
components (E)

Mayo Clinic (C)

71 fully annotated regions for
training + cross-validation of 5 U-nets

Figure 1. A summarizing overview of the image sets used and
their corresponding objectives. (A) Five U-nets were trained
using kidney biopsies from Radboudumc and applied as an
ensemble (Uens) on several data sets. The multiclass segmen-
tation performance was assessed on (B) ten kidney transplant
biopsies from Radboudumc, and (C) ten kidney transplant bi-
opsies from Mayo Clinic as an external data set. Data set D was
used to assess the network’s ability to segment and detect
glomeruli on WSI level in 15 large tissue specimens obtained
after nephrectomies. Data set E served to assess the CNN’s
routine examination of 82 kidney transplant biopsies using the
Banff classification.
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FðxÞ ¼ argmax
1

M
∑
M

j¼1

fj ðxÞ:

Postprocessing
The CNN provides a segmentation mask where individual
pixels are assigned to one of the predefined classes. To convert
labeled pixels into meaningful objects (e.g., a glomerulus), all
pixels within an area that was entirely surrounded by pixels
labeled as either border or intersitiumwere considered to form
one object. As a first postprocessing step, objects smaller than
300 pixels (the size of the smallest annotated tubuli) were as-
signed to the interstitium class. Second, if an object consisted
of multiple class labels, the most predominant class, the class
exceeding at least 35% of the area, was assigned to the entire
object.

Assessments of CNN Performance
Multiclass Segmentation Performance
The CNN’s multiclass segmentation performance in kid-
ney transplant biopsies was assessed using the Dice coef-
ficient (DC) on ten WSIs from Radboudumc and ten WSIs
from the Mayo Clinic. Ground truth annotations were
produced as reported above (see Ground Truth Training
and Test Sets). The DC measures the spatial overlap be-
tween ground truth (A) and segmentation result (B) and is
defined as DC(A, B)=2(|A|∩|B|)/(|A|+|B|), where ∩ is the
intersection. DC ranges from zero (no pixels in common
between ground truth and segmentation result) to one
(perfect agreement). DCs are presented per class and as
a weighted mean DC (correcting for unequal class repre-
sentation). We also report the DC for all tubuli classes
combined.

Glomerular Segmentation and Detection on Nephrectomy
Specimens
All healthy, segmentally and globally sclerotic glomeruli in
15WSIs of PAS-stained nephrectomy sections were annotated
by a human observer using ASAP. In addition to segmentation
performance (expressed in the DC), we assessed the network’s

ability to detect the glomeruli inside of these large specimens.
All annotated glomeruli with overlap with the CNN’s segmen-
tation were considered to be detected objects. Segmentations
located entirely outside an annotated glomerulus were noted
as false positive detections.

CNN for Scoring Components of the Banff Classification
System
The CNNwas validated for diagnostic application by compar-
ing the network’s output with histologic components visually
scored by multiple pathologists. In 82 WSIs of PAS-stained
transplant biopsies, one cortical biopsy specimen was selected
and analyzed using our CNN. For this part of the study, we
derived quantitative and morphometric data from the seg-
mentation mask of several classes. The sum of the objects
labeled as glomeruli and sclerotic glomeruli was used as glo-
merular count. The number of pixels labeled as interstitium
was divided by the total number of segmented pixels to calcu-
late the area percentage of interstitium. The number of objects
labeled as atrophic tubuli was divided by the sum of objects
labeled as one of the four tubuli classes, to determine the pro-
portion of atrophic tubuli. The identical biopsy specimen
was marked on each of the 82 corresponding glass slides
and visually scored by multiple pathologists. Glomeruli
were counted (E.J.S., J.K., and J.T.H.R.) and the intertubular
area percentage was estimated in steps of ten percent (J.K.
and J.T.H.R.). Also, the extent of interstitial fibrosis
(ci score), total inflammation (ti score), and tubular atrophy
(ct score) was scored (E.J.S., J.K., and S.F.). Interstitial fibro-
sis and tubular atrophy (IFTA) grades were derived from the
pathologists’ ci and ct scores, following the Banff reference
guide 2018.21

Forglomerular counting, the intraclass correlation coefficients
(ICCs) among the pathologists and the CNN were calculated.
For each case, the pathologists’ average intertubular area per-
centage, ci score, ti score, ct score, and IFTA grading were com-
pared with the percentage for interstitium and atrophic tubuli,
calculated by the CNN, respectively. This correlation was as-
sessed by calculating the Spearman correlation coefficient and
the coefficient of determination (R2).

Table 1. Number of annotations per class used in the training, validation, and test sets of the CNN

Class Training Validation 1 Validation 2 Validation 3 Validation 4 Validation 5
Test

Radboudumc
Test Mayo

Clinic

Glomeruli 84 12 10 12 19 6 39 37
Sclerotic glomeruli 7 1 1 1 1 2 5 1
Empty Bowman’s capsules 5 2 1 1 3 1 5 3
Proximal tubuli 1941 433 253 139 346 145 636 1060
Distal tubuli 1321 274 224 141 248 156 374 579
Atrophic tubuli 1160 88 124 198 180 232 328 12
Undefined tubuli 883 186 42 174 222 73 495 69
Arteries 43 4 1 5 1 1 11 14
Interstitium 44 6 5 6 5 5 17 19
Capsule 4 2 1 1 1 1 4 —

a

aThe Mayo Clinic WSIs did not contain any capsular structures.
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Interobserver agreement between pathologists was assessed
by calculating linear weighted k values for ci, ti, and ct scores
and by calculating the ICCs for intertubular area percentage.
We will report the average k values and ICCs. No k values were
calculated for IFTA grading as these were derived from the
pathologists’ ci and ct score, and not given by the pathologists
themselves.

RESULTS

Multiclass Segmentation Performance in the
Radboudumc Test Set
A representative example of a ground truth and segmentation
mask as used in the test set is depicted in Figure 2. The CNN’s
multiclass segmentation performance was assessed on ten

Border
Interstitium
Glomeruli
Sclerotic glomeruli
Empty Bowman’s capsule
Proximal tubuli
Distal tubuli
Atrophic tubuli

Arteries

Undefined tubuli
Capsule

A B

C D

Figure 2. Region of PAS-stained slide with ground truth, segmentation by the CNN, and immunohistochemical staining
(Aquaporin-1). (A) Represents regions that were used for testing of the CNN (PAS, Radboudumc). (B) The mask of the manually
produced annotations (ground truth). (C) The CNN’s result. (D) For illustrative purposes, the PAS slide was restained using anti-
Aquaporin-1 antibody, highlighting proximal tubuli. Red arrowhead highlights inconsistency between CNN and ground truth;
yellow arrowhead highlights inconsistency with the anti-Aquaporin-1 staining; white arrowhead highlights annotation error. The
ground truth and the output of the network overlap largely with the immunohistochemical staining, illustrating the high quality
of both.

Table 2. DCs per class and weighted mean DC on ten WSIs of kidney biopsies from Radboudumc and the Mayo Clinic

Feature

Radboudumc Mayo Clinic

DC Before
Postprocessing

DC After
Postprocessing

DC Before
Postprocessing

DC After
Postprocessing

Class
Glomeruli 0.95 0.95 0.94 0.94
Sclerotic glomeruli 0.63 0.62 0.00 0.00
Empty Bowman’s capsules 0.52 0.37 0.44 0.00
Proximal tubuli 0.86 0.87 0.91 0.92
Distal tubuli 0.82 0.81 0.72 0.71
Atrophic tubuli 0.48 0.49 0.10 0.11
Undefined tubuli 0.32 0.30 0.12 0.10
Tubuli combined 0.93 0.92 0.92 0.92
Arteries 0.69 0.70 0.47 0.55
Interstitium 0.88 0.88 0.76 0.76
Capsule 0.89 0.84 —

a
—

a

Weighted mean 0.80 0.80 0.84 0.84
Weighted mean with tubuli combined 0.88 0.88 0.87 0.88
aThe Mayo Clinic WSIs did not contain any capsular structures.
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WSIs from Radboudumc kidney transplant biopsies and cal-
culated using the DC. The highest DC was obtained for the
segmentation of healthy and segmentally sclerotic glomeruli, rep-
resented in the glomeruli class, followed by the interstitium, cap-
sule, and proximal tubuli classes (Table 2). Lower DCs were
observed for empty Bowman’s capsules, undefined tubuli, and
atrophic tubuli. The test set’s confusion matrix illustrates how
misclassified tubuli are often segmented as one of the other clas-
ses of tubuli (Figure 3).Whenmisclassification of tubuli subtypes
was disregarded, the tubuli were the second-best segmented
structures (tubuli combined, Table 2). The overall performance
of the CNN was assessed by calculating the weighted mean DC,
which remained unaltered after postprocessing (Table 2).

Multiclass Segmentation Performance in Mayo Clinic
Test Set
To study the CNN’s multiclass segmentation performance on
material that was processed, stained, and scanned at an exter-
nal center, we used ten WSIs from Mayo Clinic kidney trans-
plant biopsies (Table 2). The weighted mean DC was slightly

higher than that in the Radboudumc test set, but also here the
highest DCs were obtained for glomeruli, proximal tubuli, and
interstitium. In this test set of healthy donor kidney biopsies
only one globally sclerotic glomerulus and one empty Bowman’s
capsule were annotated. Both were not correctly segmented by
the network, leading to a DC of zero for these classes. The com-
bination of tubuli subtypes into one class resulted in a weighted
average DC of 0.88, equal to the performance of the CNNon the
data set originating from Radboudumc.

Glomerular Segmentation and Detection in
Nephrectomy Sections
To assess the utility of the CNN for the assessment of kidney
specimensother thanbiopsies,weapplied thenetworkonWSIs
of 15 tumor nephrectomy specimens. In total, 1747 healthy or
segmentally sclerotic glomeruli (glomeruli) and 72 globally
sclerotic glomeruli (sclerotic glomeruli) were labeled in the
WSIs. The CNN’s ability to fully segment the nephrectomy
specimens can be appreciated from Figure 4. The segmenta-
tion mask nicely depicts the distinct representation of the
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Figure 3. Confusion matrix for the U-net ensemble on the Radboudumc test set for multiclass segmentation performance in
kidney transplant biopsies. Confusion matrices provide insight on how predictions are distributed over the different classes. In
this figure, the ground truth labels are given vertically and the predicted labels by the CNN are written on the horizontal axis.
Here can be seen that, e.g., 98% of all pixels with ground truth label glomeruli, were classified as glomeruli by the CNN
ensemble.
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cortical and medullar compartment and in higher magnifica-
tion the accurate delineation of multiple tissue structures can
be seen. Because the glomerulus is one of the most extensively
studied components of the kidney, we focused our proof of
concept on the glomeruli and sclerotic glomeruli classes. For
these classes, we found an average DC of 0.90 (glomeruli) and
0.59 (sclerotic glomeruli), respectively, which did not change
after postprocessing. The CNN was able to detect 92.7% of
all 1819 annotated glomeruli in the nephrectomy samples.
Specifically, the network detected 93.4% of all objects labeled
as glomeruli (1632 out of 1747) and 76.4% of the objects
labeled as sclerotic glomeruli (55 out of 72). There were
149 and 46 false positive detections for glomeruli and sclerotic
glomeruli, respectively.

CNN versus Banff Classification System
The network’s applicability for routine diagnostic tasks was
assessed by comparing the CNN’s quantification of a selection

of structures to visually scored histologic (Banff) components
in 82 PAS-stained transplant biopsies. Visual scoring was per-
formed on glass slides by multiple pathologists. Automated
quantification was performed using the CNN’s segmentation
mask of the corresponding WSI.

An example of a fully segmented transplant biopsy is de-
picted in Figure 5. The ICCs for glomerular counting by the
CNN and the pathologists ranged from 0.93 to 0.96 (Figure 6,
Table 3). The Spearman correlation coefficient for the average
intertubular area percentage visually estimated by two pathol-
ogists and the interstitium area percentage calculated by our
CNNwas 0.81 (R2=0.66, P,0.001) (Figure 7, Table 4). Several
pathologic processes can cause expansion of the interstitial
compartment of the kidney. Next to edema, influx of inflam-
matory cells and fibrosis are the main reasons for an increased
interstitial area. We assessed the relation between the area per-
centage interstitium and the average ci and ti lesion scores
of three pathologists, scored according to the Banff reference

Border

Interstitium

Glomeruli

Sclerotic glomeruli

Empty Bowman’s capsule

Proximal tubuli

Distal tubuli

Atrophic tubuli

Arteries

Undefined tubuli

Capsule
1 mm

Figure 4. Full segmentation of a tumor nephrectomy specimen by the CNN on WSI level. Left: segmentation result on low magni-
fication. Top right: segmentation result depicted for specific structures on high magnification.
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guide. The Spearman correlation coefficient for these analyses
were 0.55 (R2=0.30, P,0.001) and 0.71 (R2=0.50, P,0.001),
respectively (Figure 8, Table 4). In a similar analysis, to assess
the relationship between the percentage atrophic tubuli
and the average ci and ct score of the three pathologists, the
Spearman correlation coefficient was 0.62 (R2=0.38, P,0.001)
and 0.58 (R2=0.34, P,0.001) (Figure 8, Table 4). The Spearman
correlation coefficients for interstitium and atrophic tubuli per-
centage and average IFTA grading were 0.33 (R2=0.11, P,0.01)
and 0.58 (R2=0.30, P,0.001), respectively (Table 4).

The interobserver agreement among the pathologists for
glomerular counting and estimation of intertubular area per-
centage was expressed in ICCs. The interobserver agreement
for Banff lesion scoring was expressed in linear weighted
k values. The average ICCs and k values of the pathologists
are listed in Table 5.

DISCUSSION

In this study we developed a CNN for the multiclass segmen-
tation of renal tissue in routinely PAS-stained sections. Our
mainfindings are that theCNNachieves accurate segmentation

of glomeruli, tubuli, and interstitium in kidney transplant bi-
opsies; living donor kidney biopsies from an external center;
and nephrectomy samples.

The number of studies aiming to develop deep learning
applications for nephropathology has increased rapidly over
the past years.11,14,15 Pretrained neural networks have success-
fully been applied for the distinction between glomerular and
nonglomerular regions. Pedraza et al.14 trained a CNN for the
detection of glomeruli in preselected areas on PAS-stained
human renal biopsies. The glomerulus localizer of Bukowy
et al.15 detected healthy and injured glomeruli in whole
rat kidney sections stained with either Gömöri or Masson
Trichrome using a CNN. Both groups did not further classify
the detected glomeruli and aimed for detection of the glomer-
uli rather than segmentation. Gadermayr et al.11 investigated
two cascades where two U-nets are combined with a sliding
window CNN: 80% of glomerular objects where found with
a DC of 0.90 or higher when detection and segmentation were
combined.11 As a limitation, this work focused only on seg-
mentation of glomeruli, whereas the simultaneous segmenta-
tion and classification of the whole renal cortex can be of great
added value in kidney diagnostics and research. Our first ob-
jective was therefore to train a CNN for the segmentation

Figure 5. Full segmentation of a transplant biopsy on whole-biopsy level. The (sclerotic) glomeruli segmentations by the CNN are
depicted in high magnification in the lower panel; all are correct. The CNN could not separate the two closely adjacent glomeruli (top
left), leading to a count of 17 nonsclerotic glomeruli and one sclerotic glomerulus (bottom right).
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of PAS-stained kidney sections into ten significant tissue clas-
ses. Adding a border class to the segmentation network, rep-
resenting the structure’s basal membranes (visible in Figure 2),
allowed us to separate touching structures and to identify
individual objects. The best segmentation performance was
achieved for the class glomeruli, containing healthy and seg-
mentally sclerotic glomeruli (mean DC 0.95). The biopsies
included in our training set displayed a wide range of inflam-
mation and/or chronic damage, which facilitated us to include

globally sclerotic glomeruli in the training data as well. The
CNN’s segmentation performance for this class was reason-
able (DC 0.62) but requires improvement. The number of
annotations for this class was limited (Table 1) and additional
training with more sclerotic glomeruli annotations will prob-
ably improve the segmentation results for this class. The po-
tential of the CNN to discriminate between different types of
tubuli was nicely illustrated by the high DCs for segmentation
of proximal (0.87) and distal tubuli (0.81) (Figure 2, Table 2).
Tubular atrophy is a continuous process resulting in the pres-
ence of mildly injured to severe atrophic tubuli. Therefore,
tubuli could not always be indisputably classified during
ground truth development. The difficulty of this annotation
task is emphasized by the low k values for ct scoring by three
pathologists. Correct classification of tubuli with different extents
of tubular atrophy by the CNN will benefit from more training
data. Crowd-sourcing experiments, where groups of nonexpert
annotators collectively generate a high number of annotations,
have shown how the size of a data set can compensate for
having a “noisy” ground truth.22 Without differentiation in sub-
types, the CNN classified tubuli very well (DC 0.92). Combined
with the DC of 0.88 for the segmentation of interstitium, this led
to a high-quality segmentation of the tubulo-interstitial compart-
ment. Although the CNN was not optimized for speed, segmen-
tation of one kidney biopsy WSI took under 2 minutes using a
standard desktop configuration with 20 gigabytes of RAM, using
two CPU cores and a single NVIDIA GTX 1080 GPU.

P
at

ho
lo

gi
st

 3
 -

 C
N

N 3

-3

-5

-8

0

0 5 10 15
Mean Pathologist 3 & CNN

20 25

P
at

ho
lo

gi
st

 2
 -

 C
N

N

4

2

0

-2

-4

-6

0 5 10 15
Mean Pathologist 2 & CNN

20 25

2

0

-2

-4

P
at

ho
lo

gi
st

 1
 -

 C
N

N

-6

-8
0 5 10 15

Mean Pathologist 1 & CNN
20 25

Figure 6. Bland–Altman plots representing the glomerular
counts per WSI by three nephropathologists and the glomerular
count by the CNN.

Table 3. ICCs for glomerular counting by three pathologists
(P1–P3) and the CNN

Pathologist CNN

P1 0.94
P2 0.96
P3 0.93
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Figure 7. Scatterplot visualizing the correlation between CNN-
based area percentage interstitium and the average intertubular
area percentage estimated by two pathologists.

Table 4. The Spearman correlation coefficients for
quantifications by the CNN and the average visual scores of
multiple pathologists for relevant (Banff) components

CNN

Visual Scoring Pathologists

Intertubular
Area (% Total
Cortical Area)

ci
Score

ti
Score

IFTA
Grade

ct
Score

Interstitium
(% total cortical area) 0.81 0.55 0.71 0.33 —

Atrophic tubuli area
(% of total n tubuli) — 0.62 — 0.58 0.58

– , these analyses were not performed.
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Large-scale, histopathologic studies often includematerial
from multiple centers. Differences in tissue processing tech-
niques, staining protocols, and slide scanners cause hetero-
geneous data sets, and WSIs of different file formats
and resolutions. With digital pathology gaining territory in
diagnostic settings, peer consultation using telepathology
platforms will happen more often. Therefore, our second ob-
jective was to test the CNN’s robustness to the abovemen-
tioned variations. Our CNN was trained using slides produced
and digitized at Radboudumc. The data augmentation tech-
niques applied during training should make the CNN robust
to variances in, e.g., color and morphology.19 We applied
the Radboudumc CNN to an external set of biopsy material.
This external tissue was fixed using formalin, leading to subtle
morphologic differences in the tissue when compared with
Radboudumc tissue (fixed with Bouin fixative). The use of a
different staining protocol and tissue scanner resulted in color
variance and lower image resolution.Nevertheless, the performance
of the CNN on this external data set was quite comparable to
that on Radboudumc tissue (weighted mean DC 0.84 versus
0.80, respectively), which obviates the need for additional,
external training data.

Our network appeared to be very capable of segmenting
WSIs of nephrectomy specimens, even though it was not
trained on this type of material. A clear distinction between
capsule, cortex, and medulla could be derived from the seg-
mentationmask, as visualized in Figure 4. To provide a proof of
concept for the applicability of our CNN for glomerular
assessment in research settings, we calculated the segmenta-
tion performance for glomeruli and sclerotic glomeruli in the
nephrectomy samples. The DCs calculated for the nephrectomy
samples were comparable to those calculated for the kidney
transplant biopsies (0.90 versus 0.95 and 0.59 versus 0.62, re-
spectively). Additionally, we have demonstrated that our seg-
mentation masks can be used for detection of glomeruli. Of all
glomeruli (healthy, segmentally and globally sclerotic), 92.7%
were detected by the CNN. The high false positive rate in the
sclerotic glomeruli class emphasizes that more training data are
crucial for correct segmentation of this class.

Finally, we compared quantifications based on CNN seg-
mentation data to visually scored components of the Banff
classification system inwhole transplant biopsies. Biopsy qual-
ity assessment is generally performed by glomerular counting.
We observed high correlations for glomerular counting per-
formed by the network and the renal pathologists. The rules for
counting glomeruli are established in theBanff reference guide.
Nevertheless, the pathologists did not fully agree for every case,
indicating room for interpretation and, thus, subjectivity.
Using a CNN for counting glomeruli will eliminate this
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Figure 8. Box plots visualizing the CNN’s quantification of
interstitium and atrophic tubuli and the ci, ti, and ct lesion scores
per pathologist. Top: percentage area of interstitium scored by
the CNN and the ci score per pathologist. Middle: percentage

area of interstitium scored by the CNN and the ti score per pa-
thologist.Bottom:percentageof atrophic tubuli scoredby theCNN
and the ct score per pathologist. Each bar represents one
pathologist.

JASN 30: 1968–1979, 2019 Deep Learning for Kidney Pathology 1977

www.jasn.org CLINICAL RESEARCH



subjectivity and could take over this tedious task from the
pathologist.

An additional high correlation was observed for the area
percentage of interstitium generated from the CNN’s segmen-
tation mask and the intertubular area percentage estimated
by two renal pathologists. Next to edema, inflammation and
fibrosis are some of the main causes for interstitium expan-
sion. In this cohort, we found a high correlation between the
area percentage interstitium and the average total inflamma-
tion score of three pathologists. This was lower for the
average interstitial fibrosis score. These correlations will
depend highly on the composition of the data set. Without
an additional technique for the automated segmentation
of fibrosis or detection of inflammatory cells, the reason
for interstitial expansion cannot solely be based on the
interstitium segmentation.

The atrophic tubuli percentage derived from the CNN’s
segmentation mask showed significant correlation to param-
eters of chronic damage, expressed by the average tubular
atrophy score or by IFTA grading of three pathologists. After
more extensive training of the CNN for this heterogeneous
class, the atrophic tubuli percentage could potentially become
an even more reliable indicator of chronic injury.

The number of neural networks trained for the analysis of
histopathologic slides has increased tremendously in the past
decade, showing exciting results for tumor detection and
tumor grading. The delicate histologic changes in renal tissue,
which are connected to awide range of kidney diseases or types
of allograft rejection, make renal pathology one of the most
complicated specializations in pathology. Nevertheless, the
renal field could benefit equally from this digitization of pa-
thology with a robust segmentation algorithm. We present
a CNN for the multiclass segmentation of renal tissue in
routinely PAS-stained sections. Our CNN is applicable onma-
terial from multiple centers and we sustained a high segmen-
tation performance, despite differences in fixation, staining
protocol, and scanning resolution. The CNN is capable of
segmenting biopsies and nephrectomy samples, and can be
used for the analysis of healthy and pathologic tissue. Signif-
icant relations were found between the CNN’s quantification
of the glomeruli, interstitium, and atrophic tubuli tissue clas-
ses and visually scored glomerular count, intertubular area
percentage, interstitial lesions, and chronic damage parame-
ters. This is the first validation of quantitative results obtained

by a CNNwith components of the Banff classification system.
The results of these analyses are encouraging for the applica-
tion of deep learning in renal (transplantation) pathology.
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