The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/208923

Please be advised that this information was generated on 2020-01-29 and may be subject to change.
T_H1-Polarized T_{FH} Cells Delay Naturally-Acquired Immunity to Malaria

Xi Zen Yap¹*, Lucie S. P. Hustin^{1,2}† and Robert W. Sauerwein¹

¹Department of Medical Microbiology, RadboudUMC Centre for Infectious Diseases, Nijmegen, Netherlands, ²Institut Curie, PSL Research University, CNRS UMR168, Paris, France

Humoral immunity is a critical effector arm for protection against malaria but develops only slowly after repeated infections. T cell-mediated regulatory dynamics affect the development of antibody responses to Plasmodium parasites. Here, we hypothesize that T follicular helper cell (T_{FH}) polarization generated by repeated Plasmodium asexual blood-stage infections delays the onset of protective humoral responses. IFN-γ production promotes polarization toward T_H1 and increased generation of regulatory follicular helper cells (T_{FR}). Delineating the mechanisms that drive T_H1 polarization will provide clues for appropriate induction of lasting, protective immunity against malaria.

Keywords: T_H1, T_{FH}1, IFN-γ, follicular T helper cells, B cells, malaria, humoral immunity

NATURALLY-ACQUIRED IMMUNITY IN MALARIA

Only after years of continued exposure to Plasmodium parasites do individuals from malaria endemic regions develop clinical immunity (CI), that protects against clinical disease but not from parasitaemia (1). This protection is mediated through both cellular and humoral immune effector mechanisms. In particular, humoral immunity (HI) apparently plays a pivotal role against blood-stages, which are responsible for pathology and disease. Seminal findings demonstrate that IgG transfer from malaria-immune adults to children with acute malaria can indeed reduce symptoms and parasite load (2).

Effective HI induction requires B cells to be activated by antigen-presenting cells (APCs), predominantly dendritic cells (DCs). Sustained "help" from cognate CD4⁺ T cells is subsequently required for B cell proliferation, affinity maturation, and Ig class-switching. T follicular helper cells (T_{FH}), which co-localize with B cells in the germinal centers (GCs), are crucial for both naïve B cell activation during primary infections and reactivation of memory B cells (MBC) in secondary infections. T_{FH} and other CD4⁺ helper T cells (T_H) can drive naïve B cells to differentiate into high-antibody-producing plasma cells (PC) or MBC, which rapidly reactivate and produce specific Abs during secondary infections.

While typically taking a number of years to develop fully, clinical malaria immunity is of relatively short duration and rapidly wanes in the absence of re-infection (3, 4). Antibody efficacy and specific MBC counts increase gradually with age and cumulative exposure, resulting in a strong T_H1 (IFN-γ-producing) immune response (5–9). The origins of the relatively slow acquisition of clinical immunity, however, remain elusive.

Here we hypothesize that T cell responses generated by repeated blood-stage malaria infection may in fact delay the onset of potent humoral responses. We contextualize the role of T_H and T_{FH} polarization surrounding the B cell response in malaria, and suggest that excessive polarization toward the IFN-γ producing T_H1 phenotype reduces the longevity of antibody responses.
B-CELLS AND PLASMA CELLS ARE DEREGLUTATED IN MALARIA

Potent humoral responses are characterized by the generation of specific and high-affinity long-lived PCs (LLPCs) and MBCs in the GCs. Yet both adults and children in malaria endemic areas show a delay in the development of MBC and short-lived antibodies targeting *P. falciparum* blood-stage antigens (10). Accordingly, antibodies generated during one acute malaria season are undetectable by the next (10). Similar delays in CI onset are found in malaria-naïve immigrants to Papua New Guinea (11).

Sustained parasitaemia may be a key factor affecting B cell differentiation. Recent studies have provided valuable insights into B cell subset dynamics and antibody kinetics in the context of *Plasmodium* infection. While it is clear that IgG+ MBCs are key effectors in long-term memory, high levels of non-IgG+ anti-*P. falciparum* MBCs may have a role in early protection (12). Frequent exposure to asexual parasites, as experienced in highly malaria-endemic regions, is associated with the development of MBCs with reduced memory function, known as atypical memory B-cells (AMBC). While the presence of AMBCs may contribute to the delayed and short-lived nature of HI to malaria (13), their presence may also be symptomatic of a more broadly deregulated humoral response.

Frequent parasite exposure seems to be a driving factor in AMBC development. AMBC frequency increases proportionate to transmission intensity, age, and cumulative malaria exposure (13–19), and AMBC proportions increase after each acute malaria episode (20). Conversely, the percentage of AMBCs declines in the absence of parasite exposure, inducing stable populations of malaria-specific classical MBCs (17, 19, 21, 22). This may be the result of direct B cell interactions with *Plasmodium* parasites, or indirectly generated by the pro-inflammatory environment (23, 24), or by a combination of the two, i.e., AMBCs as a product of persistent antigen engagement by B cells within a highly inflammatory environment of chronic malaria exposure, driven by Th1 cells (25).

Hence, inappropriate IFN-γ production may be a reflection of inadequate T cell help caused by frequent exposure to blood-stage *P. falciparum*.

BLOOD-STAGE INFECTION INDUCES CHANGES IN T CELL PHENOTYPES AND POPULATIONS

Malaria parasites typically induce human T cells with high surface expression of PD-1 and LAG3 and high production of both IFN-γ and IL-10 (26–28). Hence, CD4+ T cells in the malarial environment frequently display a phenotype associated with immunosuppression. Furthermore, the malarial environment polarizes CD4+ T cells toward the IFN-γ-producing Th1-like phenotype, consequently reducing B-cell responses by suppressing antibody-inducing Th2 and Tfh lineages. While this may be beneficial for containing parasite-mediated pathology, it may contribute to immunopathology and limit reactivation of long-lived MBC. Modeling analyses by Lonnberg et al indicate that monocytes in particular have a role in regulating the T cell response, producing cytokines which skew naïve cells away from the Tfh lineage and toward a Th1-like phenotype (26).

THE IMPACT OF Tfh CELLS ON HUMORAL IMMUNITY

The Tfh subset is particularly crucial for B cell development in the GC and the subsequent generation of a functional memory B cell compartment. Tfh responses are widely hypothesized to be disrupted in malaria, as reflected by the relatively high frequency of autoreactive AMBCs and classical MBCs (29).

Due to the challenges of obtaining secondary lymphoid tissue, human research on Tfh cells has primarily concentrated on circulatory CD4+CXCR5+ Tfh (30). These circulatory Tfh cells share functional characteristics with GC Tfh cells including IL-21 production and the ability to induce B cell differentiation *in vitro* (31). They also have properties of a central memory-like Tfh population (26, 31–34). In contrast to GC-resident Tfh, however, circulatory Tfh cells lack BCL6 expression, which is required for survival and induction of secondary antibody responses (31, 35–38). BCL6 re-expression can be induced by re-challenge with cognate MBC (39), indicating that sustained antigen presence is required for Tfh function.

In the last decade, circulatory Tfh subsets equivalent to Th1, Th2, Th17, and Threg have been characterized in mice and humans (40, 41). Th1-like Tfh cells (Tfh1) show reduced potential to provide adequate help during antibody maturation *ex vivo* compared to Th2-like Tfh cells (Tfh2) (33, 35, 42). The concept that Tfh subset imbalance may affect development of antimalarial immunity has gained more traction due to Tfh subsets’ potential roles in other chronic diseases, such as HIV (43). In parallel, polarization toward Th1-like responses has been well-documented in malaria and causes fundamental changes in multiple cell subsets, such as induction of Th1-like regulatory cells (Treg1) (6, 28, 44).

Thus, dysfunctional GC processes and inappropriate Tfh reactions are a likely consequence of malaria infection. Indeed, polarization of Tfh is observed in Malian children, with more activated Tfh1, more Th1-like cytokine responses, and less prominent Th12 polarization (26, 34, 45–47). This Th1-like cytokine response may lead to decreased GC reactions and therefore reduced generation and reactivation of T cell-dependent antibody responses (Figure 1).

Murine data suggest that circulatory Tfh may represent pre-Tfh generated from partly committed Tfh lineage cells rather than mature memory GC-derived Tfh cells (45). In murine malaria models, frequency of pre-Tfh expressing the Tfh1-associated transcription factor Tbet increases after a single *P. berghei* ANKA infection (46). It will be important to clarify whether malaria-induced circulating Tfh1 are simply pre-Tfh generated in the periphery after a single exposure without entering the GCs, and if circulating Tfh2 therefore represent the mature Tfh memory pool. This may explain the differential functionality of these two Tfh subtypes in malaria. A proper
understanding of the relationship between circulating- and GC
T_{FH} will be essential to delineate their particular role in the
development of HI.

HOW IS THE TH1-LIKE SIGNATURE AND TFH1-LIKE POLARIZATION REALIZED?

Studies with transgenic murine P. yoelii parasites suggest a
positive feedback loop induced by Type I interferon and IL-2;
T_{H1} cytokines secreted during Plasmodium infection increase
CD4+ T cell responsiveness by up-regulating Tbet and BLIMP-1
(44, 47). Consequently, CD4+ T cells gain an increased predisposition to become T_{FH1} cells.

Deregulation of humoral malaria immunity may be the
result of an increased T_{FH1}:T_{FH2} ratio in combination with
the efficacy of the individual responses. Sustained polarization
toward a T_{FH1} response after a single infection may affect an
individual’s ability to respond to subsequent malaria episodes.
Frequencies of CXCR3+CCR6+ T_{FH1} s increase transiently but
significantly during acute malaria, while CXCR3−CCR6− T_{FH2}
frequencies decrease long-term in response to multiple malaria
parasite exposures (48). In addition, T cell co-receptors may
play a role in regulating T_{FH} activation, as shown in P. yoelii-
infected mice, where activation of OX40 leads to up-regulation of
IFN-γ (49), resulting in activation of the inhibitory PD-1 pathway.
Consequently, T_{FH} help will shut down, resulting in
dysfunctional B cell responses including the generation of
AMBCs (25) and decreased parasite clearance due to lower
specific IgM and IgG titres (49, 50). Therefore, CXCR3+ over-
activation may be an important albeit not exclusive factor that
limits T cell-dependent antibody responses to Plasmodium.

Co-infection with other pathogens can also impact humoral
immunity to malaria. Multiple murine studies demonstrated that
co-infection with murine Epstein-Barr virus analog MHV68
during P. yoelii XNL infection led to very high mortality from
symptoms of malaria (51, 52). The latter study indicated that
mortality was due to loss of humoral immunity by the MHV68
virus via induction of host IL-10 (52). Host factors involved in
parasite sensing can also have a role: humanized mice engineered
to express a single MHCII haplotype, HLA-DR4 (0401), had
higher rates of parasitaemia and morbidity to P. yoelii 17XNL
infection than mice engineered to express alternate haplotypes.
The loss of parasite control was due to downregulation of
humoral immunity by overproliferating T_{REG} s (53).

OTHER CHECKPOINT FACTORS
INFLUENCING T CELL DIFFERENTIATION
IN MALARIA

Regulatory T cell subtypes are likely key modulators of HI. The
recently characterized regulatory follicular helper T cell (T_{FR})
subset is especially relevant for HI regulation. Contrary to T_{R}, which arise from T_{FH1}, T_{FR} are a FOXP3+ subclass derived
directly from T_{REG}, which express both BCL-6 and BLIMP-1 (54).
Crucially, T_{FR} can directly suppress both T_{FH} and B cells in GC
reactions and therefore directly affect GC formation (55–59).

T_{FR} have not yet been studied in the context of malaria,
even though their importance is indicated by their key role in
controlling antibody production in HIV (60). T_{FR} cell
functionality is assumed to be determined by their ratio with
T_{FH}. As the proportion of T_{FR} increases with age, similarly to
T_{REG} (57), we hypothesize that T_{FR} have the potential to play
a role in the delayed onset of NAI. Murine studies show that the
T_{FR} fraction increases with age while the T_{FH} proportion remains
constant (60). T_{FR} may therefore progressively regulate the T_{FH}
driven over-activation of DCs, T cells and B-cells.

Conversely, a higher T_{FR}:T_{FH} ratio may inhibit T_{FH} activation
and proliferation, as suggested by T_{FR}-induced downregulation of
the proliferation marker Ki67 in T_{FH} cells in vitro, dampening
T_{FH1} activation (61, 62). However, T_{FR} also downregulate
the T_{H2}-associated cytokines IL-21 and IL-4 in in vitro
murine studies, potentially leading to marked defects in GC
formation, and B cell affinity maturation (61, 63–65). Changes
in the T_{FR}:T_{FH} ratio may therefore redirect GC B cells.

FIGURE 1 | T_{FH}-like T cell responses in malaria. Follicular T helper cells are required for B cell activation and the generation of humoral immunity, but malaria profoundly affects T cell polarization and leads to short-lived antibody responses. The presence of asexual parasitaemia promotes activation of T_{FH1} and NK cells, which produce high levels of IFN-γ. This microenvironment promotes cellular upregulation of exhaustion markers like LAG3 and PD-1 and T_{FH} differentiation into T_{FH1} cells, which are less effective at activating B cells. Quality of the T cell help in malaria-driven inflammation is therefore reduced, leading to B cell apoptosis or differentiation into short-lived plasma cells and atypical memory B cells, which are poor contributors to the long-term maintenance of humoral immunity.
toward becoming extra-follicular MBCs and short-lived PCs, therefore further decreasing generation of long-lived high-affinity antibodies (58, 62).

SUMMARY, CONCLUSIONS, AND OUTLOOK

Malaria infection induces T_{H1} polarization characterized by the production of IFN-γ. Overproduction of IFN-γ may be central to poor acquisition of HI by polarizing T_{FH} toward T_{H1} and causing a positive feedback loop of T_{H1} polarization. It will be crucial to understand the specific parasite components responsible for T_{H1} polarization so that we can better target parasite antigens which catalyze T_{H1} polarization.

Malaria-naïve adults and children from low-transmission regions tend to generate strong pro-inflammatory responses: T_{H1} cytokines IFN-γ and TNFα, and other pro-inflammatory cytokines such as IL-1β and IL-6, are produced, which may favor generation of T_{H1}-like responses. However, children with sustained parasitaemia develop a cytokine signature consisting of IFN-γ, Type I IFN, and regulatory cytokines IL-10 and TGF-β (9, 66, 67). It is unclear whether this is related to parasite density, incidence of infections, or both. Parasite burden and transmission intensity could affect T_{FH} polarization through systemic cytokine-mediated effects.

Dendritic cells and NK cells may be responsible for maintaining T_{H1} polarization. Malaria could affect early T cell polarization by disrupting dendritic cell function (68, 69), and DCs co-incubated with blood-stage parasites in vitro are shown to polarize naïve T cells toward a T_{H1}-like phenotype that produces IFN-γ and TNFα (70, 71). Furthermore, DCs are required for NK cell activation to blood-stage parasites (72). NK cells are major producers of IFN-γ, and rapid reactivation of NK cells in response to blood-stage infection could lead to the formation of a T_{H1} cytokine signature, thereby inhibiting development of positive HI-forming responses. The presence of memory-like responses (trained immunity) from NK cells upon re-encountering pRBCs in vitro (73) suggests that NK cell activation in response to malaria may occur rapidly after the first infection, increasing early tendencies toward Th1-like responses. Moreover, NK cell cross-talk with dendritic cells is important for CD4 T cell priming in murine malaria models (74, 75), suggesting that NK cells may bias T_{H1} polarization through multiple pathways.

However, it is unclear whether the blood-derived T_{FH} differ functionally from their GC counterparts. Better models of T_{FH} will be required to study these differences and assess the functional relationship between T_{FH} subsets and the generation of humoral immunity more thoroughly: what phenotypes are generated by B-cells co-stimulated by T_{FH1}, the quality of the antibody response, and whether their ability to differentiate into LPFCs or classical MBCs is impacted by malaria-generated T_{FH1}s. A culture system to induce T_{FH} or novel systems such as humanized mice which could generate larger quantities of T_{FH} and even allow for isolation of tissue-resident T_{FH} would permit further, in-depth study of these cells. This would also permit mechanistic studies into how T_{H1} polarization occurs.

In summary, malaria infection, especially repeated infection with high parasitaemia, may generate "inappropriate" T_{H1}-like T cell responses that fail to provide the adequate environment for long-lasting HI. This may be due to (i) compromised T_{FH} help, reducing the generation of functional GC and development of typical memory B-cells, leading to a loss of HI longevity; (ii) increased proliferation of regulatory subsets such as T_{FR} which may further inhibit HI by decreasing T_{FH} activation and proliferation; (iii) a strong T_{H1}-like immune signature characterized by high production of IFN-γ, illustrated by the increased fraction of T_{H1} and other T_{H1}-like cells, including the T_{FH1} subset. To break the cycle, we need improved methods to study T_{FH} and understand the underlying mechanisms of T_{H1} polarization in malaria.

AUTHOR CONTRIBUTIONS

XZY and LH wrote the first draft of the manuscript, which was reviewed by RWS. All authors have approved the publication of the final manuscript.

FUNDING

XZY is supported by funding from the Bill and Melinda Gates Foundation (Grant numbers OPP1091355 and OPP1080385).

REFERENCES

9. Montes de Oca M, Good MF, McCarthy JS, Engwerda CR. The impact of established immunoregulatory networks on vaccine efficacy and the
doi: 10.4049/jimmunol.1600619

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Yap, Hustin and Sauerwein. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.