PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/20881

Please be advised that this information was generated on 2019-03-21 and may be subject to change.
TARGETING GENE THERAPY TO PROSTATE CANCER

OLIVER CASSAERT, MARIAM ANDRAWSKI, MICHEL PERRICOUDET AND PHILIPPE BERTHOIN

Department of Recherche in Urologie, Hopital Saint Louis, 75475 Paris Cedex 10.

As a consequence of the idiotype network theory it has been suggested that individuals with a high antibody titre to prostate specific antigens may be more prone to developing prostate cancer. We have investigated whether the immunisation of mice with human prostatic tumor-cell extracts and the subsequent elicitation of T cell responses to tumor-specific antigens can induce an antitumor effect in vivo. Immunized mice were challenged s.c. with prostatic tumor cells. Treatment with tumor-specific T cells or with the polyclonal antibody (PAP) resulted in a significant inhibition of tumor growth in vivo compared to controls. The antitumor effect of the tumor-specific T cells was dependent on the presence of helper T cells. These results suggest that tumor-specific T cells can be used for the immunological treatment of prostate cancer.

P 19

GENERATION OF ANTI-IDIOTYPE MONOCLONAL ANTIBODIES RELATED TO PSA

Uemura H, Kitagawa H, Ozono S, Hirao Y, and Okajima E.


As a consequence of the idiotype network theory it has been suggested that individuals with a high antibody titre to prostate specific antigens may be more prone to developing prostate cancer. We have investigated whether the immunisation of mice with human prostatic tumor-cell extracts and the subsequent elicitation of T cell responses to tumor-specific antigens can induce an antitumor effect in vivo. Immunized mice were challenged s.c. with prostatic tumor cells. Treatment with tumor-specific T cells or with the polyclonal antibody (PAP) resulted in a significant inhibition of tumor growth in vivo compared to controls. The antitumor effect of the tumor-specific T cells was dependent on the presence of helper T cells. These results suggest that tumor-specific T cells can be used for the immunological treatment of prostate cancer.