IFAL: Issue First Activate Later Certificates for V2X

Eric R. Verheul†, Christopher Hicks∗, Flavio D. Garcia∗
† Radboud University, Nijmegen, The Netherlands
eric.verheul@cs.ru.nl
∗School of Computer Science, University of Birmingham, United Kingdom
{c.hicks, f.garcia}@cs.bham.ac.uk

Abstract—This paper presents IFAL, a provably secure and privacy conscious scheme for Vehicle-to-Vehicle and Vehicle-to-Infrastruc-ture (V2X) communication. Issue First Activate Later (IFAL) is a practical and secure improvement to the leading European candidate for V2X (ETSI) and one that also merits over the leading US standard. IFAL incorporates a novel cryptographic mechanism that both avoids the need for certificate revocation and which supports vehicles with limited and intermittent connectivity. We introduce a new construction that is equivalent to symmetric key diversification in the public key setting with short, time-delayed activation. We also present a new formalisation of V2X security and privacy which we apply to IFAL to show that it is a provably secure and privacy conscious V2X scheme. IFAL is ETSI compliant and ready for integration into the standard.

I. INTRODUCTION

Vehicle-to-Vehicle and Vehicle-to-Infrastructure (V2X) communication introduces a number of conflicting requirements which make the design of Intelligent Transportation Systems (ITS) particularly challenging [1]. Close-range vehicle linkability is a key feature of V2X that enables enhanced situational awareness and which makes V2X a viable safety feature. ITS must harmonise the requirement for close-range linkability, vehicle authentication and accountability with the need to adequately protect the vehicle owner from the type of long-term tracking that threatens to uniquely identify their individual habits.

Long-term tracking data from ride-hailing services such as Uber has been misused to facilitate corporate espionage [2], track the whereabouts of important persons and to identify customers engaging in one-night stands [3]. It is therefore highly important that ITS are designed to prevent similar attacks being performed against connected cars executing standard protocols. The European Data Protection Working Party have identified the legal requirement for protection in relation to ITS vehicle data and have specifically called for new measures which limit the risks of long-term vehicle tracking [4].

The two main Public Key Infrastructure (PKI) proposals for ITS are the European Telecommunications Standards Institute (ETSI) standardised approach [5] and the U.S. Department of Transportation (USDOT) approach based on the Secure Credential Management System (SCMS) [6]. The Institute of Electrical and Electronics Engineers (IEEE) Wireless Access in Vehicular Environments (WAVE) standard [7] provides the common V2X message structure that is used by both of the main ITS proposals. The adoption of these standards is strongly encouraged by a European Parliament ITS Directive [8] which mandates interoperable communication between vehicles. Volkswagen, Toyota, General Motors and Daimler have already announced that they are using ETSI and WAVE standards for V2X communication [9].

Both the ETSI and USDOT PKI systems use a number of Certificate Authorities (CA) and Certificate Revocation Lists (CRL) to manage the credentials of vehicles. Privacy is managed by issuing each vehicle a long-term authorisation certificate and an additional number of short-term pseudonymous certificates which are used to sign V2X messages. Drivers are held accountable by an authority who can compel the certificate authorities to collude and link a pseudonym certificate with the registered owner of a vehicle.

It is particularly important that ITS PKI supports the revocation of credentials from misbehaving entities which send incorrect information. Both ITS standards use the CRL method for revoking credentials, effectively a blacklist of revoked credentials that is checked during each signature validation. The CRL method suffers from several drawbacks, including that the size is likely to grow very large given the anticipated scale of vehicular networks. Large CRL are particularly problematic when considering the latency between receiving a signed message and verifying that the corresponding certificate has not been revoked.

In recognition of the shortcomings of CRL in an ITS environment, the USDOT ITS standard uses linkage-based revocation [10] which reduces the size of the CRL to just one key per vehicle. However, with around 300 million registered cars in each of Europe and America, limited vehicle resources and tight signature processing constraints, this is still far from ideal. The ETSI standard is yet to finalise a revocation mechanism.

A. Our Contribution

The main contributions of this paper are:
• Our new IFAL V2X scheme, which is fully compliant with the ETSI standard and has additional features such as the ability to pre-issue pseudonym certificates that are only usable upon receiving small activation codes (via
e.g. SMS). IFAL offers a much greater flexibility with regards to vehicle connectivity and furthermore avoids the need for certificate revocation which does not scale and is hard to implement in real-time systems.

- The first formalisation of the security and privacy requirements set out in the ETSI ITS standard, in a provable security setting.
- A new key diversification mechanism with time-delayed activation in the public-key setting which may have applications beyond V2X.

B. Related Work

The ETSI ITS architecture [5] was developed from a number of earlier projects [11], including SeVeCom which developed many of the initial solutions for secure V2X communication [12]. The Car2Car Communication Consortium (C2C-CC) was influential in motivating the development of the ETSI ITS standards [13]. The ISO/TC204 [14] and IEEE 1609 WAVE [7] standards are important complimentary contributions that have been developed in parallel. The EVITA project developed a secure onboard vehicular system architecture that incorporates a hardware security module (HSM) for performing cryptographic operations [15]. The PRESERVE project developed a ‘close-to-market’ V2X implementation that integrates the EVITA onboard vehicle architecture with a broad range of other projects and standards including ETSI ITS [16].

In the US, SCMS [6] is the leading candidate architecture for V2X. SCMS is currently in the proof-of-concept development stage and is expected to be finalised in late 2020 [17]. SCMS shares a number of similarities with the ETSI ITS standard, however it uses an implicit certificate [18] based PKI which is incompatible with IFAL certificates. Implicit certificates save storage and transmission space by omitting the public key which they authenticate. In contrast to explicit certificates, implicit certificates have received relatively little cryptographic scrutiny [18] and are the subject of a number of patents [19], [20], [21] which risk misuse by means of becoming standard-essential [22].

Pseudonyms for vehicle privacy in V2X were first proposed by the SeVeCom project [12] and have been adopted by both of the leading V2X architectures [5], [7], [6]. ETSI have yet to standardise a certificate change strategy but recently published a survey of candidate methods in [23]. SCMS implements the C2C-CC pseudonym certificate pooling approach [24] in which there are 20-40 simultaneously valid vehicle credentials. It has been shown that even so-called ‘perfectly unlinkable’ pseudonym change strategies that use a different pseudonym for every message are vulnerable to attacks that use Multi-Hypothesis-Tracking to link position and trajectory from different messages [25]. Achieving k-anonymity has been attempted using silent periods [26], [27] and mix-zones [28], [29] but these techniques trade system safety and availability for privacy by introducing the possibility of V2X messages that are not transmitted or unable to be recovered, respectively.

Both leading V2X standards use role separation to provide unlinkability between different vehicle pseudonym certificates.

In the event of vehicle misbehaviour, certificate authorities are expected to collaborate in order to resolve the canonical vehicle identity which can then have its certificates withdrawn. The REWIRE revocation protocol [30] uses trusted computing to provide enhanced vehicle privacy that avoids the need for pseudonym resolution. Under the assumption of trusted computing onboard each vehicle, REWIRE has the advantage of providing privacy against malicious and collaborating certificate authorities. The OTOKEN protocol is an extension of REWIRE that incorporates the results of formally analysing the original protocol [31]. The PUCA architecture builds upon the C2C-CC pseudonym scheme and the REWIRE revocation protocol by using anonymous credentials between vehicles and pseudonym certificate authorities to provide ‘full anonymity for honest users’ [32]. In further developments, Direct Anonymous Attestation (based on group signatures) has been applied to remove the pseudonym certificate authority altogether by allowing vehicles to generate their own pseudonyms [33]. Both REWIRE and PUCA assume that the vehicle trusted computing platform cannot be compromised, and that the vehicle computer will reliably deliver revocation messages to the trusted platform, as they decentralise trust from the certificate authorities to the vehicles.

IFAL provides an improvement to the ETSI ITS security architecture that avoids the need for certificate revocation by introducing pre-issued pseudonym certificates that are only usable upon receiving small activation codes (e.g. via SMS). IFAL defines a certificate change strategy that is less susceptible to impersonation attacks [34] than the C2C-CC pseudonym certificate pooling approach [24] adopted by the US standards [6]. Lastly, IFAL retains the centralised control over vehicle revocation which is lost by some of the more privacy-friendly and less standards-compliant architectures [32], [33].

II. Preliminaries

This section introduces notation and the syntax and security definitions for key derivation functions and digital signature schemes. Most of it is standard, we refer the reader to Krawczyk [35] and Goldreich [36], respectively, for a more thorough explanation.

A. Notation

With respect to encryption we use subscripted lower case k’s to refer to symmetric encryption keys and subscripted upper case P’s to refer to public keys. Correspondingly, we use $\text{enc}(k_i,m)$ and $\text{ENC}(P_i,m)$ to refer to the symmetric and public key encryption of the arbitrary message m under keys k_i and P_i, respectively. We use $\text{Hash}(m)$ to denote a secure hash function applied to a message m. When choosing an element k uniformly at random from a set K we write $k \overset{\$}{\leftarrow} K$.

To distinguish between group and scalar multiplication we use ‘\times’ and ‘\ast’ respectively.

Where s is a bitstring of length n, we define $|s| = n$. Where q is either prime or an order of 2, and n is prime and greater than 2^{160}, we use C to denote an elliptic curve over a finite field F_q, and we use G to denote a point on the curve which
generates a cyclic subgroup of order \(n \) under addition. We require that the discrete logarithm problem in the subgroup spanned by \(G \) is hard.

In the formal setting we use the term \(t \) to refer to some infeasible computational duration and the term \(\varepsilon \) to mean some negligible quantity such that \(t/\varepsilon \) is greater than the running time of any feasible attacker.

B. Key Derivation Function

A key derivation function (KDF) is a function which is used to produce cryptographically strong pseudorandom keys from some cryptographically inadequate initial source of randomness. The standard definition [35] demands that the output from a secure KDF is computationally indistinguishable from a random bitstring of the same length.

Definition 1 (Key Derivation Function). A KDF is an algorithm \(\mathcal{K} \) which takes as input a value \(k \) sampled from a source of keying material and a length parameter \(l \). Optionally a salt value \(r \) and a context variable \(x \) are also input. The KDF output is a bitstring of \(l \) bits.

The security of a KDF depends on the properties of the source of keying material, which we now define.

Definition 2 (KDF Source). A source of keying material \(\Phi \) is an efficient algorithm which takes as input a security parameter \(\eta \) and outputs a probability distribution tuple \((k,\alpha)\).

In the probability distribution output by source \(\Phi \), \(k \) is the secret key which is input to the KDF and \(\alpha \) represents auxiliary knowledge about \(k \) which is known to the attacker.

\[
\text{(t,q,\varepsilon)-Secure-KDF-Game}_\mathcal{K}(\eta, q, A) : \\
(k, \alpha) \leftarrow \Phi(\eta) \\
(x, l) \leftarrow \mathcal{A}^{\mathcal{K}(k, \cdot)}(\alpha) \\
b \overset{\$}{\leftarrow} \{0, 1\} \\
\text{if } b = 0 \text{ then } \\
b' \leftarrow \mathcal{A}^{\mathcal{O}_\mathcal{K}(\cdot, \cdot)}(\alpha, \mathcal{K}(k, l, x)) \\
\text{else} \\
x' \overset{\$}{\leftarrow} \{0, 1\}^l \\
b' \leftarrow \mathcal{A}^{\mathcal{O}_\mathcal{K}(\cdot, \cdot)}(\alpha, x') \\
\text{win if } b = b'
\]

Definition 3 ((t,q,\varepsilon)-Secure-KDF-Game). The security of a KDF is formalised as a distinguishing game which is played between a challenger and an adversary \(\mathcal{A} \). The challenger first provides a source of keying material \((k, \alpha)\) by calling the source algorithm \(\Phi \). The adversary \(\mathcal{A} \) is provided with auxiliary knowledge \(\alpha \) about the KDF input and is given access to the KDF oracle \(\mathcal{O}_\mathcal{K} \). For queries \(i = 1, \ldots, q' \leq q \), the KDF oracle responds to adaptively chosen context and length queries \((x_i, l_i)\) made by the adversary. Eventually, after \(q' \) queries, the adversary must output a target context and length tuple \((x, l)\). Next, the challenger chooses a random bit \(b \). If \(b = 0 \) then \(\mathcal{A} \) is provided with the output of \(\mathcal{K}(k, l, x) \), else \(\mathcal{A} \) is given a random bitstring. Finally, the adversary is once more given adaptive access to the KDF oracle \(\mathcal{O}_\mathcal{K} \) and may make up to \(q - q' \) queries, after which the adversary is required to output a bit \(b' \). The adversary is disallowed from submitting \((x, l)\) to the KDF oracle. The adversary wins the game if \(b' = b \).

Definition 4 (Secure KDF). A KDF \(\mathcal{K} \) is said to be \((t, q, \varepsilon)\)-secure with respect to a source of keying material \(\Phi \) if no attacker running in time \(t \) and making at most \(q \) queries can win the \((t, q, \varepsilon)\)-Secure-KDF-Game with a probability greater than \(1/2 + \varepsilon \).

C. Digital Signature Scheme

Formally, a digital signature scheme is a triple \((\mathcal{G}, \mathcal{S}, \mathcal{V})\) of efficient algorithms, where

- \(\mathcal{G} \) is a key-generation algorithm that takes as input the security parameter \(\eta \) and outputs a pair of bitstrings \((s, v)\) which are the signing and verification keys respectively;
- \(\mathcal{S} \) is a signing algorithm which takes as input a signing key \(s \) and a message \(m \) and outputs a signature \(\sigma \) on the message \(m \);
- \(\mathcal{V} \) is a verification algorithm that takes as input a verification key \(v \), a signature \(\sigma \), and a message \(m \), and outputs \text{true} if \(\sigma \) is a valid signature on \(m \).

The standard security definition for public key signature schemes is the notion of existence forgery on adaptively chosen message attacks (EUF-CMA) [38]. The definition involves a game in which the adversary is given access to a target public key and to an oracle which will sign arbitrary messages. The adversary wins the game if it can provide a signature with respect to the public key on a message that it has not submitted to the signing oracle.

\[
\text{EUF-CMA}_\sum(\eta, B) : \\
(s, v) \leftarrow \mathcal{G}(\eta) \\
(m, \sigma) \leftarrow B^{\mathcal{O}_\mathcal{S}(\cdot)}(v) \\
\text{win if } \mathcal{V}(v, \sigma, m) = \text{true}
\]

Definition 5 (EUF-CMA). A digital signature scheme \(\sum = (\mathcal{G}, \mathcal{S}, \mathcal{V}) \) is said to be secure against EUF-CMA if for all efficient adversaries \(B \), the probability of the experiment \(\text{EUF-CMA}_\sum(B) = \text{true} \) is a negligible function of \(\eta \).

III. System and Adversarial Model

This section describes the ETSI V2X system model, the broadcast message format and the threat model under which we analyse the scheme.
A. V2X System Model

In this paper, we follow the ETSI ITS model for V2X [5] shown in Figure 1. ITS systems (vehicles) are equipped with an onboard unit (OBU). Each OBU contains a trusted hardware element (TE), most likely a smart card, which provides secure key storage and can perform some basic cryptographic operations. The PKI environment comprises one or more of both an enrolment authority (EA) and an authorisation authority (AA). The role of an EA is the long-term identification and authentication of ITS systems. An AA authorises pseudonymised ITS systems to use a particular application or service. The separation of EA and AA functionality is intended to facilitate user privacy [39].

B. V2X Broadcast Message Format

In the ETSI model the messages which are exchanged between vehicles to create and maintain situational awareness are termed Cooperative Awareness Messages (CAM) [37]. CAM are structured according to the ETSI CAM security profile [40] of the IEEE WAVE standard [41]. The general structure of a CAM message is shown in Figure 2.

C. Threat Model

For our formalisation of V2X privacy we assume that the vehicle OBU is an honest device which will correctly execute the IFAL algorithms and which has access to a clock source which is loosely synchronised with other vehicle OBUs. This assumption is necessary because an untrustworthy OBU could send arbitrary privacy-compromising data to nearby listeners (e.g. a unique value could be inserted into every message). If the clock source were adversarially controlled then a vehicle could be tricked into signing its messages using a specific or previously-seen pseudonym certificate, undermining the privacy provided by periodic pseudonym change. This is the same assumption that is made when modelling the privacy properties of Direct Anonymous Attestation [42]. For our formalisation of both security and privacy we assume that the vehicle TE is a trusted and suitably audited secure hardware element which can generate an ECDSA key-pair, securely store the private key and will correctly execute the IFAL message signing algorithm. Any mass market smart-card such as the NXP SmartMX or JCOP Java cards would make a suitable TE. We assume that the EA and AA are honest-but-curious [36] adversaries that will correctly execute the IFAL protocol, which do not collude, but that may opportunistically attempt to learn more than is specified by the protocol. All of this is directly inherited from the ETSI ITS standard.

Our formalisation of V2X security holds under the weaker assumption that the OBU may be malicious, although denial-of-service is a possibility in this setting. IFAL ensures that V2X security is retained provided the TE is uncompromised. We focus our analysis on the cryptographic properties of IFAL as a secure and privacy conscious V2X scheme, and therefore we assume that the metadata of the network and the lower communication layers cannot be used to identify vehicles. This is a realistic assumption when considering that PKI enrolment and certificate file issuance in our scheme is a one-time process, and is likely to take place at manufacture.

<table>
<thead>
<tr>
<th>ITS Header</th>
<th>Basic Container</th>
<th>HF Container</th>
<th>LF Container (Conditional)</th>
<th>Special Vehicle Container (Conditional)</th>
</tr>
</thead>
</table>

Fig. 2. General structure of a CAM [37].
time. The delivery of IFAL activation codes can be highly infrequent and may even take place offline, for example during vehicle servicing.

IV. REQUIREMENTS

This section defines the standard requirements for ETSI compatible V2X security architecture. We denote the security, privacy and functional requirements by SR, PR and FR, respectively. We denote an arbitrary signed message \((m, \sigma_i)\), where \(\sigma_i\) is a valid digital signature on message \(m\) with respect to a pseudonym certificate \(\rho_i\). We use the term ‘canonical identity’ to refer to the proper legal identity of the vehicle occupant or owner.

- **SR1 - Message authenticity.** A recipient of a V2X signed message \((m, \sigma_i)\) and its corresponding pseudonym certificate \(\rho_i\) must be certain of its integrity and (pseudonymous) origin.
- **PR1 - Vehicle pseudonymity.** A signed message \((m, \sigma_i)\) and its pseudonym certificate \(\rho_i\) must not reveal the canonical identity of the vehicle owner.
- **PR2 - Vehicle accountability.** Optionally, a suitable authority should be able to resolve a signed message \((m, \sigma_i)\) and its pseudonym certificate \(\rho_i\) to a canonical identity.
- **PR3 - Pseudonym unlinkability.** Given a pseudonym certificate \(\rho_i\), an adversary should learn nothing about a distinct pseudonym certificate \(\rho_j\) which it did not know before learning \(\rho_i\).
- **PR4 - Corrupt CA tolerance.** The corruption of a single authority (i.e. either the EA or the AA) must not enable any number of signed messages \((m, \sigma_0), \ldots, (m', \sigma_j)\) or the pseudonym certificates which authenticate them \(\rho_0, \ldots, \rho_j\) to be linked to any canonical vehicle identity. See Section V-C1 for our discussion of the limits on achievable privacy in V2X.
- **FR1 - Limited and intermittent vehicle connectivity.** A V2X scheme must support vehicles that have limited bandwidth and which suffer from intermittent connectivity to centralised services. It is likely that there will be a large number of retrofitted connected vehicles during early deployment.
- **FR2 - Limited vehicle resources.** A V2X scheme must be designed with respect for the limited processing and storage capabilities of the vehicle OBU. The standard benchmark in the literature is that a vehicle must be able to cryptographically verify as many as 1000 messages per second [43]. In addition, vehicles are expected to generate and sign 10 messages per second, and must not require excessive storage space for certificates.
- **FR3 - Sybil attack resistance.** A V2X scheme must resist attacks which depend upon creating large numbers of adversarially concocted pseudonymous identities.
- **FR4 - PKI removal of misbehaving vehicles.** A V2X scheme must be able to remove misbehaving vehicles. Vehicle removal should be possible using either the canonical identity or a pseudonym certificate sent by the vehicle.
- **FR5 - ETSI compliant.** The scheme must be compatible with the ETSI ITS security architecture [44]. This ensures that a scheme is practical, both in terms of European interoperability and meeting the performance requirements (i.e. those determined by PRESERVE [43]) on constrained vehicle hardware.

V. V2X FORMAL MODEL

This section describes our formalisation of the ETSI V2X system model and we formalise the terms ‘secure V2X’ and ‘privacy conscious V2X’.

A. V2X Scheme

Our formal definition of a V2X scheme is as follows

Definition 6. (V2X scheme). A V2X scheme \(\Pi\) is composed by the following efficient algorithms and protocols

- an algorithm CreatePKI which outputs the public and private PKI parameters \((PP, SP)\). The public parameters are the public keys of the root CA, the EA and the AA. The secret parameters are the corresponding private keys;
- an algorithm CreateVehicle which outputs the TE public key pair \((PP_{TE}, SP_{TE})\) and the OBU public key pair \((PP_{OBU}, SP_{OBU})\);
- an interactive protocol EnrolVehicle between a vehicle and the EA;
- an interactive protocol AuthoriseVehicle between a vehicle and the AA;

B. V2X Security

In this section we formalise the security of a V2X scheme. The key security requirement of a V2X scheme is message authenticity (SR1). We capture this requirement by defining the authentication game *Auth-Game*.

Firstly, we overload the standard digital signature verification algorithm \(V\) from Section II-C as follows. We let \(V\) take as input the pseudonym certificate \(\rho\), the V2X scheme root CA public key \(PP_1\), the message \(m\) and the message signature \(\sigma\). \(V(\rho, PP_1, m, \sigma)\) returns \(true\) only if:

- \(\sigma\) is a valid signature on \(m\) with respect to the definition of a secure digital signature scheme in Section II-C and the public key \(PP_1\) of the pseudonym certificate \(\rho\);
- the certificate path from the pseudonym certificate \(\rho\) to the V2X scheme root certificate is valid. This means that each certificate has a valid signature and that the issuer and subject public keys form an uninterrupted chain from \(PP_1\) to \(PP_2\) [45].

The authentication game takes as input the security parameter \(\eta\) and the efficient adversary \(C\). During the game \(C\) interacts with the V2X scheme \(\Pi\) which includes \(N\) vehicles. We assume \(C\) receives all of the messages sent by vehicles in the scheme as they are within transmission range. After some arbitrary period, \(C\) outputs the signed message and pseudonym certificate \((m, \sigma, \rho)\). We require that \(m\) is not equal to any
message sent by any of the vehicles in the V2X scheme II. The adversary \(\mathcal{C} \) wins the game if \(\mathcal{V}(\rho, P_1, m, \sigma) \) returns true.

Definition 7 (Secure V2X scheme). We say that a V2X scheme II is secure if for all efficient adversaries \(\mathcal{C} \), the probability of the experiment \(\mathsf{Auth\text{-}Game}^\mathcal{E}_\Pi(\eta, \mathcal{C}) = \text{true} \) is a negligible function of \(\eta \).

C. V2X Privacy

In this section we formalise the privacy notions for a V2X scheme.

1) **Achievable Privacy**: We cannot cryptographically defend against the functional requirement that vehicles frequently broadcast highly unique positional and trajectory data to an audience bounded only by transmission distance [1]. Even ‘perfectly unlinkable’ V2X signatures which use a different pseudonym for each message are vulnerable to attacks which exploit the relationship between vehicle position and speed at different points in time [46], [47].

Instead, we consider separately the contents of broadcast messages and their cryptographic signatures. This allows us to quantify the privacy leakage of the cryptographic protocols of a V2X scheme in a way which is not dependent on either human behaviour or vendor specific implementation details.

Defining V2X privacy in terms of cryptographic linkability, disentangled from the functional contents of CAM, captures the set of realistic adversaries who only have a partial overview of the whole environment. Such adversaries face periods of uncertainty in which a target vehicle is seemingly not broadcasting its location or trajectory. Provided there is sufficient noise in the form of other vehicles, an adversary becomes uncertain about reidentifying the target vehicle.

2) **V2X Privacy**: We define V2X privacy with respect to pseudonym change. To accomplish this we do not permit the message contents to contribute to the adversaries advantage. We use the notion of a vehicle reference analogously to how pointers are used in computer programming languages. The vehicle reference points to the vehicle ‘object’. The vehicle object broadcasts V2X messages using the methods and pseudonym scheme prescribed by the underlying V2X scheme II.

Definition 8 (Privacy adversary). The privacy adversary \(\mathcal{D} \) is an efficient algorithm which takes as input the public PKI parameters PP and has access to the following oracle which we denote \(\mathcal{O} \):

- \(\text{CreateObscuredVehiclePair}(c_0, c_1)\), which creates a pair of enrolled vehicles by calling the \(\text{CreateVehicle}()\), \(\text{EnrolVehicle}()\), and \(\text{AuthoriseVehicle}()\) protocols.

Rather than sending regular CAM, these vehicles transmit messages chosen uniformly at random from a distribution \(\mathcal{M} \). The new vehicle pair is referenced as \((c_0, c_1)\).

Our privacy game is similar to the off-line Radio Frequency IDentification (RFID) privacy model developed by Garcia et al. [48]. The game is played as follows.

Definition 9 (Privacy game). First the environment creates the system parameters by calling \(\text{Init}_\Pi\), and then provides the public parameters to the adversary \(\mathcal{D}_0\). This adversary has access to the oracle \(\mathcal{O}\). After a polynomial number of steps, \(\mathcal{D}_0\) must output two target vehicle references \(c_0^*\) and \(c_1^*\). Then, the environment chooses a random bit \(b\), invalidates the original references to \(c_0^*\) and \(c_1^*\) and calls the algorithm \(\text{Delay}\) which waits for time \(t\). The adversary \(\mathcal{D}_1\) is given access to the oracle \(\mathcal{O}\) and one of the vehicle references \(c_b^*\). After a polynomial number of steps, the adversary \(\mathcal{D}_1\) outputs a guess bit \(b’\). The adversary wins the game if \(b’ = b\).

Definition 10 (Privacy conscious V2X). A V2X scheme II is said to be privacy conscious if for all efficient privacy adversaries \(\mathcal{D} = (\mathcal{D}_0, \mathcal{D}_1)\), and time \(t\), the probability of the experiment outcome \(\mathsf{t\text{-}Priv\text{-}Game}^\mathcal{E}_\Pi\mathcal{D}(\eta, t) = \text{true}\) is a negligible function of \(\eta\).

VI. IFAL

This section presents the full design and specification of our IFAL V2X scheme. For simplicity and without loss of generality, we consider just one of each enrolment (EA), authorisation (AA) and root CAs. Furthermore, we only consider the most fundamental ITS service of basic CAM sending. The IFAL scheme straightforwardly scales to a wide range of ITS services, such as Electronic Traffic Pricing [49], and to a larger ecosystem of certificate authorities.

The differentiating approach of IFAL is to pre-issue vehicles with a lifetime supply of short-lived pseudonym certificates which can only be used after receiving an activation code. Each activation code allows a specific vehicle to, in essence, derive the pseudonym private keys for one epoch of pseudonym certificates. Since all cars sold in the EU are legally required since April 2018 to incorporate the ‘eCall’ emergency call system which equips each vehicle with a mobile SIM card, IFAL runs on existing infrastructure. Certificate pre-issuance
enables IFAL to support vehicles which do not have always-on internet connections. Indeed, each activation code can be represented as a 28-character alphanumeric string, comprising a 128 bit symmetric key-factor and an additional 40 bit epoch and certificate file identifier. IFAL activation codes are therefore easily sent using an SMS, or may even be entered manually during a service interval. See Section VIII for a more thorough analysis of the connectivity and bandwidth reduction offered by the IFAL scheme.

IFAL removes the need for CRL as misbehaving vehicles are simply denied the activation codes which are necessary to derive the keys to future pseudonym certificates. The scheme is flexible with regards to trading between vehicle connectivity requirements and the maximum time period of vehicle misbehaviour following revocation. Small CRL could remain part of the scheme and would enable sufficiently connected vehicles and roadside equipment to be almost entirely protected from misbehaving entities.

IFAL runs on existing infrastructure and one fixed-size IFAL activation code can correspond to an arbitrary number of different pseudonym certificates. This is superior to using time-limited certificates, in which it is necessary to trade bandwidth (each certificate has a fixed size) for privacy - the time-limit of each certificate. Using the ETSI recommendation of 5 minutes per certificate and an optimistic 1024-bit certificate size, one days worth of pseudonym certificates would require 288 KB or 308 SMS messages which in practice is the difference between a vehicle requiring a data subscription or not.

The IFAL scheme consists of three stages: initialisation, activation and usage. Briefly and as shown in Figure 3, the EA provides each vehicle with a signed long-term enrolment credential and an associated uid. The uid is shared between the EA and the AA as a pseudonymous reference to the vehicle. Vehicles authenticate themselves to the AA by presenting a long-term enrolment credential and uid. The AA then provides batches of pseudonymous certificates which authorise a vehicle to send CAM.

Periodically, the AA sends new activation codes to the EA. The EA sends the activation codes to the vehicle using a pre-arranged channel (e.g. SMS).

A. IFAL Preliminaries

IFAL requires one or more trust anchors to be in place before the initialisation protocol is run. Specifically, IFAL requires a root CA and its signature on the EA and AA public keys. Each vehicle OBU must be securely issued the root CA public key during manufacture. The root CA public key is used to verify the EA and the AA during the remainder of the scheme.

The ETSI ITS standard [40] prescribes the use of either NIST Curve P-256 [50] or BrainpoolP256r1 [51] as the scheme elliptic curve C. Both curves specify base points G of prime order n, where n is of length 256 bits. The parameters C, G and n are public values which we do not explicitly pass as input to the algorithms which utilise them.

IFAL requires a hash function, a public key encryption scheme and a symmetric key encryption scheme for which, in accordance with the ETSI ITS standard, we specify SHA-256 [52], Elliptic Curve Integrated Encryption Scheme (ECIES) [53] and the NIST SP 800-108 AES CMAC pseudorandom function [54] respectively.

1) IFAL KDF definitions: IFAL makes use of two secure and standards-conformant KDFs which we denote K_1 and K_2. We define both K_1 and K_2 as NIST SP 800-108 key derivation functions [55] in counter mode, using cipher-based message authentication code (CMAC) [54] as the pseudorandom function. The length of derived keys for both K_1 and K_2 is 256 bits. Both K_1 and K_2 output elements in $Z_n \setminus \{0\}$ using any suitable technique [56].

K_2 has the additional property of being a symmetric key encryption function, $E = (E, D) = (K_2, K^{-1}_2)$ such that for a key k and a fixed-length derivation bitstring D, where $|D| \leq 256$ bits, the property $K^{-1}_2(k, K_2(k, D)) = D$ holds.

2) Policy Files: IFAL Policy files define the security parameters of the scheme as illustrated in Figure 4. A policy file specifies the pseudonym certificate validity period T_{period}, the
pseudonym overlap period $T_{overlap}$ which defines the requirements for time synchronisation between vehicles, the number of pseudonyms per certificate file N_{certs}, the number of epochs which divide the certificate file N_{epochs} and an encoding which specifies the expected format. The minimum certificate validity period is derived by subtracting the overlap period from the total validity period: $T_{minimum} = T_{period} - T_{overlap}$.

3) Certificate Files: A certificate file comprises a digest of the policy file, the valid-from time T_{start}, a transport key k_T and the list of signed certificates $C_0, ..., C_{N_{certs}}$. The transport key k_T is retained by the AA and is used to encrypt the activation keys which are transmitted to the vehicle via the EA.

4) Auxiliary Algorithms: IFAL requires two auxiliary algorithms which we now define.

- The CreateMetadata algorithm takes as input the IFAL policy file and returns the metadata which is put at the beginning of each certificate file. The metadata is a tuple which comprises the first certificate validity time T_{start}, a hash of the policy file, the transport key encrypted using the vehicle OBE public key $\text{ENC}(P_{OBE}, k_T)$ and a certificate file encoding specification.

- The GetCertValidity algorithm takes as input a certificate index i, a policy file and a certificate file start time T_{start}, and returns a tuple containing the start and end validity time of certificate i in the certificate file.

B. IFAL Initialisation Protocol

The first stage of the IFAL scheme is the initialisation protocol, shown in Figure 5, during which a vehicle becomes enrolled in the scheme for the first time.

The vehicle OBU is installed with a policy file and a root certificate. The EA generates a public key pair (k_{EA}, P_{EA}) and the AA generates a public key pair (k_{AA}, P_{AA}), a signature counter symmetric key k_{sc} and a signature counter sc which is initialised to zero. The vehicle OBU generates a public key pair (k_{OBU}, P_{OBU}) and then initialises the TE, which generates a public key pair (k_{TE}, P_{TE}). The TE returns its public key to the OBU. The OBU composes the two vehicle public keys P_{OBU}, P_{TE}, the policy file, and an activation code channel specification into an authRequest which is signed and then sent to the EA.

The EA receives the authRequest, verifies the signature, and awaits out-of-band documentation which asserts the vehicle registrant. The EA role is most naturally assumed by an existing national vehicle registration agency. Next, the EA generates a unique vehicle uid which is used as a pseudonymous
vehicle reference between the EA and AA. The EA composes
the authRequest and the uid into an enrolment credential
erolCred which is signed, encrypted using the OBU public
key P_OBU and then returned to the vehicle.

Finally, the OBU requests the certificate file from the
AA by submitting its enrolment credential. The AA calls
the GenCertFile algorithm (Algorithm 1) which creates
the certificate file and the associated activation codes. The
pseudonym activation codes are linked to the vehicle uid
and retained by the AA. The certificate file is returned to the
requesting vehicle which verifies that the file was crafted in
accordance with the policy.

1) Initialisation Algorithms: During the IFAL initialisation
protocol, the AA creates a certificate file by calling the
GenCertFile algorithm. Each pseudonym certificate in the
certificate file is issued by calling the CertSign algorithm
(See Algorithm 2).

Algorithm 1: GenCertFile

input: authRequest, k_sc, k_AA
1 Create new record for uid
2 for j ← 0 to N_epochs − 1 do
3 Add k_j, k_{N_epochs−1} to the record for uid
4 Generate new file
5 header = CreateMetadata(policy)
6 Write header to file
7 for i ← 0 to N_epochs do
8 \(k_i \rightarrow k_i \times P_{TE} \)
9 valid = GetCertValidity(i, policy)
10 if valid then
11 certificate = CertSign(content, uid, k_sc, k_AA)
12 Write certificate to file
13 return file

The GenCertFile algorithm takes as input the authRe-
quest from the vehicle, the signature counter key k_sc, the
signature counter sc and the AA private key k_AA. The au-
thRequest contains the IFAL policy file and the vehicle public
keys (P_OBU, P_EA). The policy file specifies the number of
pseudonym certificates N_epochs and the number of epochs N_epochs
which are used by the algorithm. The algorithm returns an
IFAL certificate file which contains a batch of pseudonym
certificates and the metadata necessary to use them. The
certificate file is encrypted using the vehicle OBU public key
P_OBU.

Algorithm 2: CertSign

input: pseudonym, uid, k_sc, k_AA
1 sc = sc + 1
2 if \(sc = (2^m - 1) \) then
3 \(k_AA \rightarrow k_{AA} \times G \)
4 \(P_AA = k_{AA} \times G \)
5 \(k_{sc} \rightarrow (0, 1)^n \)
6 sc = 0
7 \(k = K_2(k_{sc}, sc \mid uid); (r, y) = k \times G \)
8 r = x \mod n; h = Hash(pseudonym)
9 s = k^{-1}(h + k_{AA} \times r) \mod n
10 if \(r = 0 \) OR \(s = 0 \) then
11 goto line 1
12 return (r, s)

The CertSign algorithm returns a signed IFAL
pseudonym certificate. The algorithm performs a variant of
the deterministic ECDSA signature algorithm [57] in which
the randomisation key k, which is usually a random bitstring,
is derived by applying the secure KDF K_2, such that k =
K_2(k_{sc}, sc \mid uid). The derived key k can be used by the AA
to recover the uid from messages signed by a misbehaving
vehicle.

The signature counter sc is incremented each time the
CertSign algorithm is called so that each signature key and
counter tuple \((k_{sc}, sc)\) is unique. The algorithm also checks
that sc has not reached its maximum value and, once reached,
generates a new signature key k_{sc}, re-initialises sc to zero and
generates a new public key pair \((k_{AA}, P_{AA})\).

C. IFAL Activation Protocol

The IFAL activation protocol is a periodic process in which
the AA distributes new activation codes to authorised vehicles
via the EA. Each activation code permits the vehicle to
generate the set of pseudonym private keys which correspond
to one epoch of certificates from the certificate file.

The activation protocol proceeds as shown in Figure 7. The
AA maintains a database which relates the pseudonymous uid
of each vehicle and the activation codes which were generated
during the initialisation protocol. The AA iterates the database
and sends each uid and the next corresponding activation
Code to the EA. Separately, the EA maintains a database

Vehicle

<table>
<thead>
<tr>
<th>TE</th>
<th>OBE</th>
</tr>
</thead>
</table>

\[k_{epoch} = \text{dec}(k_T, \text{activationCode}) \]

Fig. 7. IFAL activation protocol

The IFAL activation protocol

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>OBE</th>
<th>EA</th>
<th>AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>activationCode</td>
<td>activationCode, uid</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/* for each UID: */</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/* Send activation code */</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/* end */</td>
<td></td>
</tr>
</tbody>
</table>

287
which links each uid with a canonical vehicle identity and an activationCode channel specification. The EA sends each new activationCode to the vehicle corresponding to the uid indicated by the AA. The activationCode channel can range from manual installation (e.g. during annual servicing) to ad-hoc over-the-air delivery, depending upon the connectivity of the vehicle. Each activationCode is only 128 bits in size and is therefore readily sent using an SMS message. The vehicle decrypts the activationCode using the transport key which was in the certificate file received from the AA during the initialisation protocol.

D. IFAL Usage Protocol

The IFAL usage protocol is run each time a vehicle signs a message. The protocol is comparable to the ECDSA algorithm, however the message digest is subject to an additional transformation process (similar to Chaum’s blind signatures [58]) and the algorithm execution steps are shared between the vehicle TE and OBU. Specifically, the OBU computes the hash of the message and then applies a transformation function. The TE generates a signature on the transformed message hash which is returned to the OBU. The OBU applies a final transformation to the signature which completes the signature generation process.

Algorithm 3: MessageSign

| input: message, t, Tstart, Tminimum, Ncerts |
| i = (t − Tstart)/Tminimum |
| epoch = i/Ncerts |
| /* If no kepoch return error */ |
| kcert = K1(kepoch, 1) |
| h = Hash(message) |
| h’ = h + kcert mod n |
| (r, s) = Sign(h’) |
| s’ = s * kcert mod n |
| return (r, s’) |

The vehicle OBU computes the IFAL signature on a message as follows (See Algorithm 3). Firstly the MessageSign algorithm identifies the epoch key kepoch corresponding to the certificate which is valid at the time of sending the message. The MessageSign algorithm takes as input the unsigned message, the current vehicle time t, the certificate file start time Tstart, the minimum certificate validity period Tminimum and the number of certificates Ncerts.

Next, The pseudonym private key kcert is derived by applying the K1 KDF to the certificate index value i using the epoch key kepoch. The algorithm computes the hash digest h of the message, and then multiplies it by the inverse pseudonym private key k−1cert to yield the transformed message digest h’.

The algorithm execution now passes to the vehicle TE which runs the Sign algorithm (Algorithm 4). The Sign algorithm takes as input the transformed message digest h’ and the TE private key kTE, and returns the ECDSA signature (r, s) on h’.

The vehicle OBU takes the TE signature (r, s) and transforms s by multiplying it by the pseudonym private key kcert to yield s’ = kcert * s. The IFAL signature (r, s’) is output by the MessageSign algorithm. We show that the signature tuple (r, s’) output by the MessageSign algorithm is a valid signature with respect to pseudonym public key P1 in the Appendix.

E. IFAL Removal of Misbehaving Vehicles

There are two different mechanisms by which vehicles can be removed from the IFAL PKI.

The first mechanism is that the EA receives a request to deactivate a vehicle based on its canonical identity. This could occur when a vehicle is taken off the road by its owner, or after a vehicle is ‘written off’ by an insurer following an accident. The EA uses the canonical vehicle registration information to look up the uid associated with the vehicle and then sends a removal request to the AA. The AA will no longer issue activation codes to this vehicle. The AA will no longer issue activation codes to this vehicle which has misbehaved. For example, the vehicle might have been involved in a hit-and-run accident. The pseudonym certificate will be of the form (r, s), where (r, s) = (x mod n, k−1(h + kAA + r) mod n). This can be re-written in terms of k such that k = s−1(h + kAA + r) mod n. As k was generated by the invertible KDF K2, the AA can use K2−1(ksc, k) = sc ∥ uid to recover the uid of the vehicle which has sent the message. The AA will no longer issue activation codes to this uid, and can also share the uid with the EA so that the canonical vehicle registration information can be linked to the incident.

VII. SECURITY AND PRIVACY OF IFAL

A. IFAL Security Proof

This section shows that IFAL is a secure V2X scheme with respect to Definition 7.

Theorem 1. Let Z be a EUF-CMA secure signature scheme, then the IFAL scheme we present in Section VI is a secure V2X scheme.

Proof. Assume for contradiction that IFAL is not a secure V2X scheme. This means that for Nv vehicles, and for
i, j ∈ \{0, \ldots, N_e - 1\} where i ≠ j, there is an adversary C who controls the communication links and manages, with non-negligible probability, to deliver a message (m, σ) to a vehicle c_j such that the sender c_j has not sent m but c_j accepts m as authentic and coming from c_i.

We show how to use C to break the security of one of the underlying cryptographic primitives. Specifically, we construct an adversary B which uses C to win the game EUF-CMA.

At the beginning, the adversary B randomly picks a target vehicle c^* and an epoch e^*. B will execute adversary C, for this B needs to emulate the PKI environment and the vehicles \{c_0, \ldots, c_{N_e-1}\} \setminus \{c^*\}. To emulate the PKI environment, B first generates the EA and AA credentials. The AA credentials include the signature counter sc and the counter key k_{sc}.

Next, adversary B must emulate all of the vehicles required by adversary C. Emulating the vehicle c_i means generating the vehicle public key pairs (k_{TE_i}, P_{TE_i}) and (k_{OBU_i}, P_{OBU_i}), and then enrolling and authorising the vehicle in the PKI environment by emulating the EnrolVehicle and AuthoriseVehicle protocols, respectively. Adversary C is given access to the vehicle oracles c_0, \ldots, c_{N_e-1} and c^*. When emulating c^*, B will use the signing oracle O_{S} from the EUF-CMA game. For all the other cases, B will compute signed messages by using the vehicle private keys and executing the MessageSign algorithm.

At some point, after a number of pseudonym validity periods N_p, adversary C terminates. With a non-negligible probability there must exist a c_j which accepts a signed message (m, σ) from c_i. In order for c_j to accept the signed message, it means that C has sent a signed message (m, σ) which contains a valid signature σ on message m and a matching certificate from a trusted authorisation authority.

Specifically, a signed message (m, σ) is an IEEE WAVE compliant signed CAM [41] crafted according to the ETSI ITS CAM security profile [40]. Where m is the triplet (hashId, tbsData, signer) and σ is the signature, the signed message (m, σ) is a IEEE1609dot2 SignedData element as shown in Figure 8.

```
SignedData ::= SEQUENCE |
  hashId HashAlgorithm, |
  tbsData ToBeSignedData, |
  signer SignerIdentifier, |
  signature Signature |
```

Fig. 8. SignedData specification from IEEE 1609.2 [41].

```
SignerIdentifier ::= CHOICE |
  digest HashedId8, |
  certificate SequenceOfCertificate, |
  self NULL, |
  ... |
```

Fig. 9. SignerIdentifier specification from IEEE 1609.2 [41].

If c_i = c^* the adversary C will send the signed message (m, σ) to adversary B, otherwise it will not. In order to win the EUF-CMA game the adversary B needs to output a signed message (m, σ) such that

1. \(\forall (v, σ, m) = true\);
2. the signed message was never queried to the signature oracle.

Condition 1. holds because the signed message (m, σ) has a valid signature since it was verified by vehicle c_j. Verification by c_j means all of the following must be true

1. If the message SignerIdentifier component (see Figure 9) is a digest then c_j has previously received the certificate to which the digest belongs;
2. The authoritative certificate on the signature has a valid certification path;
3. The message includes a valid signature as determined by \(\forall (v, σ, m) = true\).

Condition 2. holds because m was not queried to the signature oracle O_{S}. As the vehicle c^* is chosen randomly by adversary B before the PKI initialisation phase, the probability that adversary C also attacks c^* is \(P[σ = c_i] = 1/N_e\).

The advantage of the adversary C in winning the Auth-Game is therefore the probability that C attacks c^* multiplied by the advantage of B against the signature scheme.

Since C may attack either the signature on the message during a pseudonym validity period, or the authoritative signature at any stage of the certification path, the advantage of the adversary is further divided by the length of the certification path \(t\) and the number of pseudonym validity periods over which the game is played \(N_p\).

\[\text{Adv}_{\text{Auth-Game}}^B = \frac{\text{Adv}_{\text{EUF-CMA}}^B(\eta)}{t \times N_e \times N_p}\]

B. IFAL Privacy Proof

In this section we show that, for a period of time \(t > T_{\text{period}}\), IFAL satisfies the notion of V2X privacy in Definition 8.

Informally an adversary cannot link separate pseudonyms because all pseudonym keys are output by a secure KDF. For an adversary to win the \(i\)-Priv-Game with a non-negligible probability, the adversary must be able to learn something which is common to each of the keys. Since a secure KDF has the property that the output keys are indistinguishable from random bitstrings, and random bitstrings do not tell us anything about future random bitstrings, no adversary could link different pseudonyms to a single source.

The IFAL signature scheme is privacy conscious because a secure KDF is used to generate the pseudonym public and private keys. Where \(k_{TE}\) is the TE private key, \(k_{epoch}\) is the activation key, \(K_2\) is a secure KDF and i is the pseudonym certificate index, we define the following pseudonym KDF

\[K_{\text{pseudo}}(k_{epoch}, i) = K_2(k_{epoch}, i) \times k_{TE} \mod n\]

Theorem 2. If \(K_2\) is a secure KDF, then \(K_{\text{pseudo}}\) is a secure KDF with respect to Definition 1.

By definition, the output of \(K_2\) is a random bitstring in the field \(Z_n^*\). Since \(k_{TE}\) is a cryptographically secure ECDSA
private key generated by a secure hardware component, and modular multiplication under a prime modulus \(n \) is uniformly distributed in \(\mathbb{Z}_n \), then \(k_{\text{pseudo}} \) is a secure KDF. Where \(i \) is the certificate index in the certificate file and \(k_{\text{epoch}} \) is the corresponding activation key, each pseudonym private key is calculated by applying the pseudonym KDF \(K_{\text{pseudo}} \) as follows

\[
k_{\text{pseudo}} = K_{\text{pseudo}}(k_{\text{epoch}}, i)
\]

Theorem 3. If \(K_{\text{pseudo}} \) is a secure KDF, then IFAL satisfies the notion of V2X privacy in Definition 8.

From Theorem 2 it follows that the pseudonym private key \(k_{\text{pseudo}} \) is a random bitstring in the field \(\mathbb{Z}_n \). The pseudonym public key is produced by multiplying \(k_{\text{pseudo}} \) by the elliptic curve base point \(G \). The public key resulting from this operation is highly distinguishable from a random bitstring [59]. However, in our notion of V2X privacy, we only require that the vehicle public key is indistinguishable from a random point on the curve. It therefore suffices that the pseudonym private key \(k_{\text{pseudo}} \) is output by a secure KDF.

Proof. Assume that the IFAL CAM protocol is not privacy conscious. This means that there is an adversary \(D \in (D_0, D_1) \) that wins the \textit{Priv-Game} with non-negligible probability.

We build an adversary \(E \) which uses \(D \) to win the game \((q,t)\)-\textit{Secure-KDF-Game} and break the underlying secure KDF.

The adversary \(E \) initialises the system and then runs the adversary \(D_0 \) simulating all oracle calls. Eventually \(D_0 \) finishes and outputs an obscured vehicle pair \((c_0, c_1)\). Next, as in the privacy game, \(E \) will draw a random bit \(b \), wait for duration \(t \), and then run the second adversary \(D_1(c_0) \). \(D_1 \) will eventually output a bit \(b' \). By hypothesis, \(b' = b \) will occur with a probability significantly higher than 1/2. This means that \(D \) has distinguished the pseudonym public key of \(c_b \) from that of \(c_{b-1} \).

In order to win the \((q,t,e)\)-\textit{Secure-KDF-Game}, either

1. The period of time \(t \), between \(D_0 \) and \(D_1 \) having access to the vehicle \(c_b \), is less than the certificate validity period \(T_{\text{period}} \). If \(t < T_{\text{period}} \) then \(c_0 \) will broadcast messages which are signed using a certificate which was witnessed by \(D_0 \). \(D \) will win the \((q,t,e)\)-\textit{Secure-KDF-Game} with advantage 1;

2. The adversary \(D \) broke the KDF which generated \(c_b \)'s latest pseudonym key and was able to link the public keys revealed to \(D_1 \) with the ones revealed to \(D_0 \) by \(c_b \).

Condition 1. holds provided that \(t > T_{\text{period}} \). Condition 2. holds because \(D \) was able to output \(b' = b \) with a probability significantly higher than 1/2. This means that the public keys revealed to \(D_1 \) by \(c_b \) were able to be linked to the public keys revealed to \(D_0 \) by \(c_b \). Since \(t > T_{\text{period}} \) we know that, at the very least, two different public keys were witnessed by \(D \). From Theorem 2 we know that each public key was calculated by multiplying a random bitstring output by a secure KDF by the base point \(G \). Therefore, \(D \) must be able to break the secure KDF construction and learn something about the source of keying material allowing it to link separate public keys. Where \(T_{\text{periods}} \) is the number of pseudonym validity periods which separate the adversaries \(D_0 \) and \(D_1 \), calculated as the integer ceiling division of \(t \) by \(T_{\text{period}} \), and \(q \) is the number of KDF queries, the advantage of adversary \(D \) in winning the \textit{t-Priv-Game} is therefore

\[
\text{Adv}_{D}^{\text{t-Priv-Game}} = T_{\text{periods}} \cdot \text{Adv}_{D}^{(q,t,e)\text{-Secure-KDF-Game}}(T_{\text{periods}})
\]
requirement, the computational complexity is only increased by one KDF function call and one modular inverse operation per pseudonym certificate every 5 minutes plus two modular multiplications per message. These small overheads can easily be accommodated within existing V2X hardware without a significant performance impact. A 5 year supply of IFAL certificates requires as little as 32.1 megabytes of vehicle OBU storage. We evaluate the IFAL certificate file creation and storage requirements more thoroughly in Section VIII-A.

IFAL is Sybil attack resistant (FR3) because, at most, only two IFAL pseudonym certificates are valid for a single vehicle at the same time (determined by \(T_{overlap}\)). Having two pseudonym certificates valid at the same time is optimal unless you are willing to accept strict time synchronization between the vehicles, and is much better than the SCMS C2C-CC pseudonym certificate pooling approach in which there are 20-40 simultaneously valid vehicle credentials which are changed weekly [24].

IFAL supports the PKI removal of misbehaving vehicles using either the vehicle canonical identity or a pseudonym certificate (FR4), as we have shown in Section VI-E. The parameters in an IFAL policy file exchanged during the initialization protocol both determine the granularity with which misbehaving vehicles can be removed from the scheme and define the connectivity requirements for enrolled vehicles. A misbehaving vehicle can continue to misbehave for as long as the activation codes for future epochs are known. Equivalently, vehicles must be able to connect to an EA as often as they require new activation codes. These parameters therefore present a trade off between connectivity requirements for activation code issuance, certificate storage requirements, and the removal of misbehaving vehicles.

IFAL is superior to the ETSI standard approach of using time-limited certificates because it is not necessary to compromise between the bandwidth required for transferring certificates and the privacy afforded by the time-limit of each certificate. Using the ETSI recommendation of 5 minutes per certificate and an optimistic 1024-bit certificate size, one day worth of pseudonym certificates would require at least 288 KB or 308 SMS messages of bandwidth. We compare the bandwidth requirements of the ETSI approach with IFAL in Figure 10.

In practice, IFAL will likely require less than a single text message worth of bandwidth per day and is the difference between a vehicle requiring a data subscription or not.

Finally, IFAL conforms to ETSI ITS standards and security architecture (FR5) as we have used the system model and the same cryptographic primitives.

![Bandwidth vs. Months of Continuous Driving](image)

Fig. 10. IFAL vs. ETSI ITS: Cellular bandwidth requirements

A. Experimental Results

We have created a proof of concept reference implementation of IFAL in C++ based on the Crypto++ library and used our implementation to evaluate the practicality of our scheme. Since signature verification on the vehicle is unchanged, namely a standard ECDSA verification operation, and we do not add significant computational complexity to message signing, we focused on the performance of the server-side GenCertFile and CertSign algorithms executed by the AA (See Algorithm 1 and 2 in Section VI-B).

We wrote an IFAL policy specifying a certificate file with a 5 year total duration, a 90 day epoch duration, a 5 minute pseudonym duration and a 2 minute overlap period. Using a standard desktop computer we were able to compute the certificate file containing 5 years of pseudonym certificates in 9.03 seconds on average. Our reference certificate file contains 525,600 pseudonym certificates and therefore requires at least 525,600 \(\times\) 1024 \(\approx\) 64.2 MB of storage on the vehicle. Additionally, the certificate file can be halved in size to just 32.1 MB if the vehicle OBE has sufficient resources to derive the pseudonym public keys as they are required.

We have made our reference implementation open source and freely available at https://github.com/hkscy/IFAL.

IX. Conclusion

In this paper we have presented the Issue First Activate Later (IFAL) V2X scheme which is a practical improvement upon the ETSI ITS standard V2X architecture.

We introduce a novel key diversification method that both avoids the need for certificate revocation and enables support for vehicles with limited and intermittent connectivity. The IFAL scheme pre-issues vehicles with a lifetime supply of pseudonym certificates during manufacture, divides the certificates into epochs and then periodically issues activation codes which enable a vehicle to derive pseudonym signatures during an epoch. By removing the need for CRL, IFAL offers improved verification latency over the previous proposals.

Activation codes are much smaller than the corresponding pseudonym certificates and therefore facilitate a much broader range of vehicle connectivities. Several activation codes fit within a single SMS message and may even be entered manually during vehicle servicing. Misbehaving vehicles are removed from the scheme by refusing to issue further activation codes and therefore denying vehicles the capability to sign messages.

We have shown that IFAL meets the ETSI ITS V2X architecture requirements, is provably secure and privacy conscious in a formal setting and has favourable performance in our reference implementation. IFAL is suitable for integration into the ETSI ITS standard.

Future research challenges include running simulations to determine optimal key management policies as well as symbolic protocol verification. Optimal pseudonym change strategies remain an open problem.
REFERENCES

APPENDIX

IFAL signature correctness. Here we show that the signature tuple \((r, s')\) output by the MessageSign algorithm is a valid signature with respect to pseudonym public key \(P_i\) generated by the GenCertFile algorithm. Where \(k \overset{\$}{\leftarrow} \mathbb{Z}_n \setminus \{0\}\) is the ephemeral key generated by the Sign algorithm and \(k_{\text{cert}} = K_1(k_{\text{epoch}}, i)\) is the key derived from an activation code by the MessageSign algorithm

\[
\begin{align*}
\text{r} &= x \mod n \\
\text{s} &= k^{-1}(h' + k_{\text{TE}} \ast r) \mod n \\
\therefore \text{s}' &= k_{\text{cert}} \ast k^{-1}(h \ast k_{\text{cert}} + k_{\text{TE}} \ast r) \mod n \\
\therefore \text{s}' &= k_{\text{cert}} \ast k^{-1}(h + k_{\text{cert}} \ast k_{\text{TE}} \ast r) \mod n \\
P_i &= K_1(k_j, i) \times P_{\text{TE}} = k_{\text{cert}} \ast k_{\text{TE}} \times G
\end{align*}
\]

Hence, \((r, s')\) is a standard ECDSA signature with respect to the private key \(k_{\text{cert}} \ast k_{\text{TE}}\).