
Model Learning and Testing
(and some observations on formal methods research in the Netherlands)

Frits Vaandrager
Institute for Computing and Information Sciences

Radboud University
Nijmegen, the Netherlands
F.Vaandrager@cs.ru.nl

1 Formal Methods in The Netherlands:
Where Are We?

Formal methods is often defined as the applied mathematics
of computer system engineering. The Netherlands has a
strong tradition in this area. This startedwith scientific giants
such as Van Wijngaarden and Dijkstra, continued with e.g.,
De Bakker, De Roever, Rozenberg, Rem, Barendregt, Bergstra
and Klop, and led to the strong formal methods groups that
we see at Dutch universities today. In addition, some highly
visible Dutch formal methods researchers are active abroad,
e.g., Katoen, Holzmann, Van Glabbeek and Bloem.

Still, my impression is that Dutch formal methods research
is not as influential and authoritative as it used to be. A
number of factors may have contributed to this:

1. The field has matured and changed considerably over
the years.Whereas, for instance, Bergstra & Klop could
create major impact with papers on complete axioma-
tizations of process algebras, nowadays a nice theoret-
ical idea is not enough. You also must show (or at least
make it plausible) that an idea can be implemented and
be effectively used to advance the state-of-the-art of
computer system engineering. This is a different game,
where rather than one or two brilliant theoreticians,
you need a whole team/network of researchers, with
different people focusing on theory, tools and appli-
cations. Despite notable exceptions, the Dutch formal
methods community as a whole has not adapted fast
enough to this new reality. Too often, I see formal
methods papers in which the introduction refers to
the importance of correct software, but the proposed
methods have not been applied to real software yet,
and there is not even a plausible scenario of how the
results could be applied to real systems. Too often,
also, I see colleagues write papers on questions and
research approaches that are almost identical to the
ones they explored in their thesis many years ago.

2. The funding situation has not been very helpful with
on the one hand the personal grants that support in-
dividuals (rather than teams/networks), and on the
other hands projects that require direct support from
industry (and typically have a focus on short term ap-
plications). The funding does not have the scale and

time horizon needed to solve the challenges that our
field is facing.

3. Maybe we no longer succeed to attract the most bril-
liant and ambitious students. Somehow, cyber security,
artificial intelligence and data science appear to have
a more attractive proposition.

2 Formal Methods in The Netherlands:
Where Do We Want To Go?

So what should we do to address the above problems? A first
thing is to bring the community together and to discuss the
problems. I am most grateful to Marieke and Eelco for their
initiative to organize this workshop. I suggest a couple of
actions:

1. Research agenda. We need to identify a couple of
major research challenges where we believe Dutch FM
researchers can really make a difference on industrial
practice within say seven years, and outline how we
want to do it. Only by working together we can create
the desired impact. Different teams may work on each
of these challenges, combining expertise ranging from
pure theory all the way to practical application. (Below
I will discuss the research challenge we work on.)

2. Industrial support crucial. In his contribution for
this meeting, Joost-Pieter Katoen argues for “More
Programs, Less Models”, and observes an international
trend “from model-based to code-based analysis”. In
my view, there are many good reasons why the Dutch
high-tech industry is still pursuing a model-based ap-
proach (high level of abstraction, possibility to simu-
late cyber-physical systems and explore design alterna-
tives before they are built (“digital twins”), automatic
code generation, etc,..). The presence of a number of
big companies that invest in model-based development
offers excellent opportunities for Dutch formal meth-
ods research, as long as we are willing to face the
complexity of industrial design, and try to help people
in industry with the problems they face (e.g., dealing
with complexity of models and with legacy software
for which no models are available. Having said that, I
do think (based on my own experience and feedback
from students who did internships) that within indus-
try there is much ignorance about modern software



Frits Vaandrager

analysis techniques, and alsowithin the formal method
community we could use more expertise on e.g., static
analysis and software verification.

3. Funding strategy/lobby.Once a national formalmeth-
ods agenda is there, we should just start working on
it, irrespective of whether the agenda is supported by
funding agencies. Simultaneously, we should try to
get funding from a variety of sources asap. For this it
would be helpful if the agenda gets some formal status
and is officially recognized by VERSEN, IPN, as part of
the new sector plan, and/or even as part of the Dutch
national science agenda. We should definitely lobby
for a Jacquard like program funded by NWO. In the
discussion about funding it is urgent to arrive at a clear
division of work / areas of expertise between different
formal methods groups in the Netherlands, e.g., via
a list of ten subfields where each university claims a
leading role in at most two or three topics.

4. Attracting talent. Clearly, having a convincing re-
search agenda with challenging problems and a vision
on how to tackle these problems will attract talent. My
suggestion would be to organize another meeting at
some point to exchange ideas on how we can attract
more talented students to our area.

3 Model Learning and Testing
Active automata learning (or model learning) aims to con-
struct black-box state machine models of software and hard-
ware systems by providing inputs and observing outputs.
State machines are crucial for understanding the behavior
of many software systems, such as network protocols and
embedded control software, as they allow us to reason about
communication errors and component compatibility. Model
learning is emerging as a highly effective bug-finding tech-
nique [1]. It has been successfully used in several different
application domains, including

• generating conformance test suites of software com-
ponents, a.k.a. learning-based testing,

• findingmistakes in implementations of security-critical
protocols,

• learning interfaces of classes in software libraries,
• checking that a legacy component and a refactored
implementation have the same behavior.

There is certainly a large potential for application of model
learning to many different aspects of software development,
maintenance and refactoring, especially when it comes to
handling legacy software. To realize this potential, two major
challenges must be addressed: (1) currently, techniques do
not scale well, and (2) they are not yet satisfactorily devel-
oped for richer classes of models.

One way to address these challenges is to augment model
learning with white-box information extraction methods
(e.g., symbolic execution, tain analysis, static analysis), which

are able to obtain information about the system-under-learning
at lower cost than black-box techniques. When dealing with
computer-based systems, there is a spectrum of how much
information we have about the code. For third party com-
ponents that run on separate hardware, we may not have
access to the code at all. Frequently we will have access to
the executable, but not anymore to the original code. Or we
may have access to the code, but not to adequate tools for
analyzing it (this often happens with legacy components). If
we can construct a good model of a component using black-
box learning techniques, we do not need to worry about
the code. However, in cases where black-box techniques do
not work and/or the number of queries becomes too high,
it makes sense to exploit information from the code during
model learning.

Active automata learning is closely related to model-based
testing, and both activities can be viewed as two sides of the
same coin. Whereas automata learning aims at constructing
hypothesis models from observations, model-based testing
checks whether a system under test conforms to a given
model. Model-based test tools play a crucial role within active
automata learning, as a way to determine whether a learned
model is correct or not. For this reason, the activities in
Nijmegen on model learning and model-based testing are
closely aligned, and inspire/challenge each other.

Within our group, Nils Jansen recently started as an assis-
tant professor working at the intersection between formal
verification, machine learning, and control theory, along the
lines described in Sections 4 and 5 of Katoen’s contribution.

Research objective. Our objective is to reach — within say
seven years – the point where active automata learning and
model based testing have become standard tools in the tool-
box of the software engineer, equally mature as model check-
ing is right now.

Collaboration. Our group e.g., collaborates closely with the
groups of Bernhard Steffen and Falk Howar at the TU Dort-
mund on learning tools, with the group of Andreas Zeller
from Saarland University on the use of taint analysis in learn-
ing, with TNO ESI on the model-based testing tool TorXakis,
with the Digital Security Group in Nijmegen on case studies
related to security, and with ASML and Philips Healthcare
on case studies related to refactoring of legacy software. All
these collaborations are vital for reaching our research ob-
jectives. We would be most interested to collaborate with
other groups in the Netherlands, e.g., on the use of white-box
analysis techniques in automata learning.

References
[1] F.W. Vaandrager. 2017. Model Learning. CACM 60, 2 (Feb. 2017), 86–95.

https://doi.org/10.1145/2967606


