The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/20686

Please be advised that this information was generated on 2020-01-27 and may be subject to change.
Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida


Periconceptional folate supplementation reduces the risk of neural-tube defects. We studied the frequency of the 677C-T mutation in the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene in 55 patients with spina bifida and parents of such patients (70 mothers, 60 fathers). 5% of 207 controls were homozygous for the 677C-T mutation compared with 16% of mothers, 10% of fathers, and 13% of patients. The mutation was associated with decreased MTHFR activity, low plasma folate, and high plasma homocysteine and red-cell folate concentrations. The 677C-T mutation should be regarded as a genetic risk factor for spina bifida.

Table: Prevalence of 677C-T mutation (+) and biochemical measurements

<table>
<thead>
<tr>
<th>Genotype</th>
<th>% of group (number of subjects)</th>
<th>Mean (SD) metabolite concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>/-</td>
<td>54 (111)</td>
<td>Homocysteine (μmol/L) 13-4 (3-4)</td>
</tr>
<tr>
<td>/-</td>
<td>42 (86)</td>
<td>Vitamin B12 (pmol/L) 246 (130)</td>
</tr>
<tr>
<td>+/-</td>
<td>5 (10)</td>
<td>Red-cell folate (nmol/L) 541 (188)</td>
</tr>
<tr>
<td>+/-</td>
<td>60</td>
<td>Plasma folate (nmol/L) 12-8 (6-7)</td>
</tr>
</tbody>
</table>

*Significantly different from /- groups by ANOVA; p (two-tailed) <0.02.

Figure: Specific versus residual MTHFR activity of controls and families with spina bifida offspring

The 677C-T mutation is the first identified genetic risk factor for spina bifida. Not only for mothers but also for patients a homozygous +/- genotype is a risk factor for spina bifida. The odds ratios are only modestly raised but the risk factor is important because the frequency of homozygous mutants is 5% in the general population.

The product of MTHFR, 5-methyltetrahydrofolate, is the predominant form of folate in plasma, whereas other folate derivatives such as the enzyme substrate, methylenetetrahydrofolate, are found mainly within cells. The effect of decreased MTHFR activity on folate metabolism is reflected by raised red-cell and decreased plasma folate concentrations in individuals homozygous for the mutation.

The body can only convert 5-methyltetrahydrofolate by methyl-group donation to homocysteine, resulting in formation of tetrahydrofolate and methionine. Raised plasma homocysteine can be explained by reduced availability of 5-methyltetrahydrofolate in homozgyous...
Role of thrombin in pulmonary fibrosis

Norma A Hernández-Rodriguez, Alison D Cambrey, Nicholas K Harrison, Rachel C Chambers, Andrew J Gray, Anne M Southcott, Roland M duBols, Carol M Black, Michael F Scully, Robin J McAnulty, Geoffrey J Laurent

Pulmonary fibrosis commonly develops in systemic sclerosis. We assessed the role of thrombin in promoting fibroblast proliferation in the lungs in this disorder. Bronchoalveolar lavage fluid (BALF) thrombin concentrations were higher in ten patients with systemic sclerosis than in 12 healthy controls (14.6 vs 3.6 nmol/L, p<0.02), but values in patients with cryptogenic fibrosing alveolitis (n=10) or sarcoidosis (n=10) were not increased. BALF from all patients induced fibroblast proliferation. This proliferation was attenuated by thrombin inhibitors for BALF from all patients induced fibroblast proliferation. This inhibition was supported by lower fibroblast proliferation in patients (figure 1); this median value was four-fold greater than the highest control value in all the systemic sclerosis patients only. We suggest thrombin contributes to lung fibroblast proliferation in this disorder.

Lancet 1995; 346: 1071–73

Systemic sclerosis is a multisystem disease; a major characteristic is the uncontrolled deposition of extracellular matrix components in the skin and internal organs. The lungs are involved in most patients, and pulmonary fibrosis is a common cause of death.1 One hypothesis for the pathogenesis is that after endothelial injury, bloodborne mediators or their precursors move from the circulation into adjacent tissues and activate fibroblasts to proliferate or produce excess extracellular matrix.23 One candidate mediator is thrombin, a key enzyme in the coagulation cascade, which is also a potent mitogen and chemoattractant for fibroblasts.44

To investigate the role of thrombin in promoting fibroblast proliferation in the lungs, we measured thrombin concentrations in bronchoalveolar lavage fluid (BALF) from patients with systemic sclerosis, healthy controls, and two other groups of patients with pulmonary fibrosis—cryptogenic fibrosing alveolitis and sarcoidosis. The contribution of thrombin to BALF-induced fibroblast proliferation was assessed with specific inhibitors of thrombin activity, hirudin, and PPACK (D-phenylalanine-proline-arginine-methylchloride), which block the catalytic site. We studied ten patients with systemic sclerosis (with no clinical evidence of pulmonary hypertension), ten with cryptogenic fibrosing alveolitis, ten with sarcoidosis, and 12 healthy volunteers. BALF (from bronchoalveolar lavage) was centrifuged, and the cell-free supernatant concentrated ten-fold by ultrafiltration. Thrombin was measured spectrophotometrically.13 Cell proliferation was assessed in human fetal and adult lung fibroblasts by a rapid spectrophotometric assay.1 Cells were seeded (6×10^4 per well) in Dulbecco’s modified Eagle’s medium plus 0.4% newborn calf serum. After 24 h incubation at 37°C in humidified air with 10% carbon dioxide, the medium from each well was replaced with fresh medium plus BALF at final dilutions for 20 min before addition to cells. Changes in cell number were assessed. The effects of thrombin and thrombin inhibitors on fibroblast proliferation were compared by t test, used to identify differences. The effects of thrombin and inhibitors on fibroblast proliferation were compared by t test.

Thrombin concentrations in BALF were higher than the highest control value in all the systemic sclerosis patients (figure 1); this median value was four-fold greater than that in controls (p<0.02). When expressed with respect to albumin the difference was two-fold (13-1

References

Departments of Pediatrics (N M van der Put msc, Prof F J M Trijbeek msc, L P van den Heuvel msc, H J Blom msc), Obstetrics and Gynecology (R P M Steegers-Theunissen msc, T K A B Eskes msc), Epidemiology (R P M Steegers-Theunissen), and Human Genetics (E C M Martin msc, University Hospital Nijmegen; Department of Hematology, Municipal Hospital Leyenburg, The Hague (M den Heyer msc), Netherlands; and Departments of Human Genetics, Pediatrics, and Biology, McGill University, Montreal, Canada (P Frost msc, R Rozen msc).

Correspondence to: Dr Henk J Blom, Department of Pediatrics, University Hospital Nijmegen, PO Box 9101. 8500 HB Nijmegen, Netherlands.

Vol 346 • October 21, 1995

1071