Combination of Searches for Invisible Higgs Boson Decays with the ATLAS Experiment

M. Aaboud et al.* (ATLAS Collaboration)

(Received 11 April 2019; published 13 June 2019)

Dark matter particles, if sufficiently light, may be produced in decays of the Higgs boson. This Letter presents a statistical combination of searches for $H \rightarrow$ invisible decays where $H$ is produced according to the standard model via vector boson fusion, $Z(\ell \ell)/H$, and $W/Z$(had)/$H$, all performed with the ATLAS detector using $36.1\ fb^{-1}$ of $pp$ collisions at a center-of-mass energy of $\sqrt{s} = 13\ TeV$ at the LHC. In combination with the results at $\sqrt{s} = 7$ and $8\ TeV$, an exclusion limit on the $H \rightarrow$ invisible branching ratio of $0.26(0.17^{+0.07}_{-0.05})$ at 95% confidence level is observed (expected).

DOI: 10.1103/PhysRevLett.122.231801

Combination of Searches for Invisible Higgs Boson Decays with the ATLAS Experiment

M. Aaboud et al.* (ATLAS Collaboration)

(Received 11 April 2019; published 13 June 2019)

Dark matter particles, if sufficiently light, may be produced in decays of the Higgs boson. This Letter presents a statistical combination of searches for $H \rightarrow$ invisible decays where $H$ is produced according to the standard model via vector boson fusion, $Z(\ell \ell)/H$, and $W/Z$(had)/$H$, all performed with the ATLAS detector using $36.1\ fb^{-1}$ of $pp$ collisions at a center-of-mass energy of $\sqrt{s} = 13\ TeV$ at the LHC. In combination with the results at $\sqrt{s} = 7$ and $8\ TeV$, an exclusion limit on the $H \rightarrow$ invisible branching ratio of $0.26(0.17^{+0.07}_{-0.05})$ at 95% confidence level is observed (expected).

DOI: 10.1103/PhysRevLett.122.231801

One of the central open questions in physics today is the nature of dark matter (DM) that is found to comprise most of the matter in the Universe [1–4]. A compelling candidate for DM is a stable electrically neutral particle $\chi$ whose nongravitational interactions with Standard Model (SM) particles are weak. Such a particle with a mass comparable to the mass scale of the electroweak sector particles could be detectable [5–7] and accommodate the observed DM relic density [8,9]. Numerous models predict detectable production rates of such DM particles at the Large Hadron Collider (LHC) [10–12]. In a wide class of those models, the 125 GeV Higgs boson $H$ [13,14] acts as a portal between a dark sector and the SM sector, either through Yukawa-type couplings to fermionic dark matter, or other mechanisms [15–28]. If kinematically allowed, decays of the Higgs boson to DM particles represent a distinct signature in such models. Higgs boson decays to DM particles can only be indirectly inferred through missing transverse momentum [29] $E_T^{miss}$ due to DM particles escaping detection, and are therefore termed “invisible” (inv).

Direct searches for invisible Higgs boson decays have been carried out with the ATLAS detector [30–32] in Run 1 of the LHC, using up to $4.7\ fb^{-1}$ of $pp$ collision data at a center-of-mass energy of $\sqrt{s} = 7\ TeV$ and up to $20.3\ fb^{-1}$ at $8\ TeV$. Different event topologies were considered, assuming SM production rates: vector boson fusion (VBF) [33], Higgsstrahlung from a $Z$ boson decaying into a pair of electrons or muons ($Z$(lep)/$H$) [34], and Higgsstrahlung from a $W$ or $Z$ boson decaying into hadrons ($V$(had)/$H$) [35]. These searches for invisible Higgs boson decays have been statistically combined, and an upper limit at 95% confidence level (C.L.) on the invisible Higgs boson branching ratio of $B_{H \rightarrow\ inv} < 0.25(0.27^{+0.10}_{-0.08})$ [36] was observed (expected). In combination with visible decay modes of the Higgs boson, the upper observed (expected) limit improved to 0.23 (0.24) [36]. Direct searches for invisible Higgs decays were performed using up to $36.1\ fb^{-1}$ of $pp$ collision data at $\sqrt{s} = 13\ TeV$ recorded in 2015 and 2016 in the VBF [37], $Z$(lep)/$H$ [38], and $V$(had)/$H$ [39] topologies at ATLAS. The aforementioned results at $\sqrt{s} = 13\ TeV$ will be referred to as “Run 2 results” in the following. Similar searches were performed by the CMS Collaboration [40–44].

This Letter presents the statistical combination of the Run 2 searches with $36.1\ fb^{-1}$ of data for invisible decays of the Higgs boson using the ATLAS detector. Subsequently, a statistical combination with the combined Run 1 result [36] from ATLAS is performed. An overview of all results used as inputs in this combination is given in Table I. The analysis is performed under the assumption of SM Higgs boson production. Visible decay modes of the Higgs boson are not considered.

A brief overview of the Run 2 searches for $H \rightarrow$ inv is given below.

**VBF topology [37].—** The analysis of the VBF production mode employs an $E_T^{miss}$ trigger that is 98% efficient or better in the considered region of phase space. The event selection requires $E_T^{miss} > 180\ GeV$. Jets ($j$) are reconstructed up to $|\eta(j)| < 4.5$ from energy clusters in the calorimeter using the anti-$k_t$ algorithm [45] with a radius parameter $R = 0.4$. The two jets leading in $p_T$ are required to be separated by $|\Delta\eta_{jj}| > 4.8$. There should be no additional jets with $p_T > 25\ GeV$ and no isolated electron or muon candidate with $p_T > 7\ GeV$. These requirements serve to reduce the contribution from $W/Z$ production in association with jets ($V +$ jets). In the search signal region

---

*Full author list given at the end of the Letter.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP³.
(SR) the \( m_{jj} \) distribution of the background falls more rapidly than the signal, where \( m_{jj} \) represents the invariant mass of the two selected leading jets. Thus the SR is divided into three \( m_{jj} \) regions (1 < \( m_{jj}/\text{TeV} \) < 1.5, 1.5 < \( m_{jj}/\text{TeV} \) < 2, and \( m_{jj}/\text{TeV} \) > 2) to improve the search sensitivity. The dominant background sources are \( Z(\nu\nu) + \text{jets} \) and \( W(\ell\nu) + \text{jets} \) production, where the charged lepton \( \ell \) is not detected. Control regions (CR) enriched in \( Z(\ell\ell) + \text{jets} \) and \( W(\ell\nu) + \text{jets} \) processes with \( \ell = e, \mu \) are defined to determine the respective normalization factors in the SR. The main contributions to uncertainties are from the finite number of simulated Monte Carlo (MC) events, the modeling of initial state radiation, and production via the VBF process. Selected events must pass an \( E_T^{\text{miss}} \) trigger and must not contain an isolated electron or muon with \( p_T > 7 \) GeV. As a \( V \) is boosted, the two jets from its decay become increasingly collimated and are eventually merged into one single reconstructed jet. Thus, this search is conducted in two topological channels. In the “merged” topology, the SR is defined with \( E_T^{\text{miss}} > 250 \) GeV and has at least one trimmed [48,49] large-\( R \) jet (\( J \)) that is reconstructed using the anti-\( k_t \) algorithm with \( R = 1.0 \). The signal large-\( R \) jet is the one with the highest \( p_T \). For the “resolved” topology, the selected event should have \( E_T^{\text{miss}} > 150 \) GeV and at least two small-\( R \) jets (\( j \)) with \( R = 0.4 \). Each event is first passed through the merged topology selection and, if it fails, it is passed through the resolved topology selection. To improve the search sensitivity, the selected events are further split into categories with zero, one, and two identified \( b \)-jets, and into two mass regions of the invariant mass of the signal large-\( R \) jet (two signal small-\( R \) jets) for the merged (resolved) topology. The low mass region (70 < \( m_j \), \( m_{jj}/\text{GeV} \leq 100 \)) targets the hadronic \( W/Z \) boson decays of the associated production, whereas the high mass region (100 < \( m_j \), \( m_{jj}/\text{GeV} < 250 \)) is sensitive to gluon fusion and VBF production. The main background contributions are from the \( V + \text{jets} \) and \( t\bar{t} \) processes. The predictions from MC simulations are constrained with CRs that contained one or two leptons, and are kinematically similar to the SR. The final discriminant is \( E_T^{\text{miss}} \).

The SRs and CRs of the individual input analyses are either orthogonal by construction, or were shown to have an overlap below \( 1\% \), which is neglected in the following.

The statistical combination of the analyses is performed by constructing the product of their likelihoods and maximizing the resulting likelihood ratio \( \Lambda(B_{H-\text{inv}}; \theta) \) [50]. This is done following the implementation described in Ref. [51,52], with \( B_{H-\text{inv}} \) as the parameter of interest. Systematic uncertainties are modeled in the likelihood function as nuisance parameters \( \theta \) constrained by Gaussian or log-normal probability density functions [36].
Expected results are obtained using the Asimov dataset technique [50].

In the combination of Run 2 results, most experimental systematic uncertainties as well as the uncertainty on the integrated luminosity and the modeling of additional $pp$ collisions in the same and neighboring bunch crossings (pileup) are correlated across all search channels. Some experimental uncertainties related to flavor tagging and the JES are represented through different parametrizations in the input analyses and are therefore treated as uncorrelated. The impact of this assumption on the combined result is estimated using alternative correlation models where the leading sources of systematic uncertainty in the respective parametrizations are treated as correlated, and found to have an absolute effect on the $B_{H\rightarrow \text{inv}}$ limit of the order of 0.01. The systematic uncertainties on the total $H \rightarrow \text{inv}$ signal cross section due to the choice of parton distribution functions (PDF) are considered correlated among all channels. By contrast, uncertainties due to missing higher order corrections are estimated through variations of factorization and renormalization scales and treated as uncorrelated between the $Z(\text{lep})H$ and $V(\text{had})H$ processes. This is not done for VBF, which represents a distinct topology. The impact of the corresponding uncertainties on the acceptance rather than the total cross section of $V(\text{had})H$ production is evaluated and found negligible. Few systematic uncertainties that are tightly constrained in a given analysis are left uncorrelated in order not to introduce any potential phase space specific biases.

The negative logarithmic profile likelihood ratios $-2\Delta \ln(\Lambda)/(B_{H\rightarrow \text{inv}}; \theta)$ as a function of $B_{H\rightarrow \text{inv}}$ of the individual analyses and of the combined Run 2 result are shown in Fig. 1, corresponding to a best-fit combined value of $B_{H\rightarrow \text{inv}} = 0.20 \pm 0.10$. The dominant uncertainty sources are finite event yields in data and MC simulations, reconstruction of jets and leptons, and modeling of diboson and $W/Z + \text{jets}$ production. In absence of a significant excess, an upper limit at 95% C.L. of $B_{H\rightarrow \text{inv}} < 0.38(0.21^{+0.08}_{-0.06})$ is observed (expected) with the $CL_s$ formalism [53] using the profile likelihood ratio as a test statistic. The excess in data corresponds to a $p_{SM}$ value of 3% under the SM hypothesis of $B_{H\rightarrow \text{inv}} \approx 10^{-3}$, and is a direct consequence of the excesses that are present in each of the three input analyses, see Table I. Each of the individual analyses has been scrutinized and these excesses have been found nonsignificant and independent. Subsequently, the above Run 2 result is combined with the Run 1 searches for $H \rightarrow \text{inv}$ decays [36]. Because of the differences between the detector layouts and data-taking conditions, reconstruction algorithms and their calibrations, and treatment of systematic uncertainties, the correlations between the runs are not clearly identifiable. Hence, no correlations between Run 1 and 2 are assumed for most instrumental uncertainties. The uncertainties related to the modeling of the calorimeter response dependence on jet flavor and pileup are taken as either correlated or uncorrelated between the runs, and the choice which results in a weaker expected exclusion limit on $B_{H\rightarrow \text{inv}}$ is adopted. The uncertainty on the JES of $b$-quark jets was estimated using MC simulations [54,55] and is therefore considered correlated. For the signal modeling, the parton shower uncertainty in the $V(\text{had})H$ channel, the uncertainty from missing higher order corrections in the $Z(\text{lep})H$ analysis, and the uncertainty on the jet multiplicity in the VBF channel [56] are each taken as correlated between the runs since the estimated uncertainties stem from the same source. For the same reason, the uncertainty from missing higher order corrections on the $E_T^{\text{miss}}$ observable in the dominant background from diboson production in the $Z(\text{lep})H$ search is treated as correlated. All other background modeling uncertainties are considered uncorrelated. The impact of these correlation assumptions on the combined $B_{H\rightarrow \text{inv}}$ limit is found to be at most 0.005. In addition, the impact on $B_{H\rightarrow \text{inv}}$ in scenarios ranging from full anti-correlation to full correlation is studied using the best linear unbiased estimator (BLUE) [57] for the components of the JES uncertainty, the $V + \text{jets}$ background, and diboson production that are nominally not correlated due to different parametrizations in Run 1 and 2. The resulting absolute effect on the $B_{H\rightarrow \text{inv}}$ limit is at most 0.01.

The observed $-2\Delta \ln(\Lambda)/(B_{H\rightarrow \text{inv}}; \theta)$ ratio of the combined Run 1 + 2 result is represented in Fig. 1, alongside the individual Run 1 and Run 2 combinations. A best-fit value of $B_{H\rightarrow \text{inv}} = 0.13 \pm 0.08$ is obtained, corresponding to an observed (expected) upper limit of $B_{H\rightarrow \text{inv}} < 0.26(0.17^{+0.07}_{-0.05})$ at 95% C.L. The $p_{SM}$ value under the SM hypothesis is 10%, and the compatibility between the Run 1 and Run 2 results is 1.5 standard deviations. The final result, together with the results in the individual Run 2 analyses as well as the Run 2-only and the Run 1-only combinations, are summarized in Table I, and the upper limits on $B_{H\rightarrow \text{inv}}$ are graphically represented in Fig. 2.

FIG. 1. The observed negative logarithmic profile likelihood ratios $-2\Delta \ln(\Lambda)$ as a function of $B_{H\rightarrow \text{inv}}$ of the $V(\text{had})H$, $Z(\text{lep})H$, and VBF topologies using Run 2 data only and their statistical combination (left). The $-2\Delta \ln(\Lambda)$ functions for the Run 2 combination together with the Run 1 combination and the total Run 1 + 2 combination (right).
The results are consistent with a similar statistical combination in Ref. [40].

The constraint from the combined observed Run 1 + 2 exclusion limit of $B_{H\to \text{inv}} < 0.24$ at 90% C.L. is compared to the results from representative direct DM detection experiments [58–62] in Fig. 3. This comparison is performed in the context of Higgs portal models [63]. The translation of the $H \to \text{inv}$ result into a weak interacting massive particle–nucleon scattering cross section $\sigma_{\text{WIMP-N}}$ relies on an effective field theory approach [33] under the assumption that invisible Higgs decays to a pair of WIMPs are kinematically possible and that the WIMP is a scalar or a fermion [23,64,65], using the nuclear form factor $f_N = 0.308 \pm 0.018$ [66]. The excluded $\sigma_{\text{WIMP-N}}$ values range down to $2 \times 10^{-45}$ cm$^2$ in the scalar WIMP scenario. In the fermion WIMP case, the effective coupling is reduced by $m_H^2$ [33], excluding $\sigma_{\text{WIMP-N}}$ values down to $10^{-46}$ cm$^2$. While the ATLAS exclusion limits extend to $m_{\text{WIMP}} < 1$ GeV, that region is subject to uncertainties in modelling of the nuclear recoil and is therefore not included in Fig. 3.

In summary, direct searches for invisible Higgs boson decays using 36.1 fb$^{-1}$ of pp collision data at $\sqrt{s} = 13$ TeV recorded in 2015 and 2016 in the VBF, $Z(\text{lep})H$, and $V(\text{had})H$ topologies are statistically combined assuming SM-like Higgs boson production. An upper limit on the invisible Higgs branching ratio of $B_{H\to \text{inv}} < 0.38(0.21^{+0.08}_{-0.06})$ is observed (expected) at 95% C.L. A statistical combination of this result with the combination of direct $H \to \text{inv}$ searches using up to 4.7 fb$^{-1}$ of pp collision data at $\sqrt{s} = 7$ TeV and up to 20.3 fb$^{-1}$ at 8 TeV collected in Run 1 of the LHC yields an observed (expected) upper limit of $B_{H\to \text{inv}} < 0.26(0.17^{+0.07}_{-0.05})$ at 95% C.L. The combined Run 1 + 2 result is translated into upper limits on the WIMP-nucleon scattering cross section for Higgs portal models. The derived limits range down to $2 \times 10^{-45}$ cm$^2$ in the scalar and $10^{-46}$ cm$^2$ in the fermion WIMP scenarios, highlighting the complementarity of DM searches at the LHC and direct detection experiments.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COCICENCIAS, Colombia; MPS, CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCG, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, CRC and Compute Canada, Canada; COST, ERC, ERDF, Horizon 2020, and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF.
and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [67].


1Department of Physics, University of Adelaide, Adelaide, Australia
2Physics Department, SUNY Albany, Albany, New York, USA
3Department of Physics, University of Alberta, Edmonton, Alberta, Canada
4aDepartment of Physics, Ankara University, Ankara, Turkey
4bIstanbul Aydin University, Istanbul, Turkey
4cDivision of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
6High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
7Department of Physics, University of Arizona, Tucson, Arizona, USA
8Department of Physics, University of Texas at Arlington, Arlington, Texas, USA
9Physics Department, National and Kapodistrian University of Athens, Athens, Greece
10Physics Department, National Technical University of Athens, Zografou, Greece
11Department of Physics, University of Texas at Austin, Austin, Texas, USA
12Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
12bIstanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
12cDepartment of Physics, Bogazici University, Istanbul, Turkey
12dDepartment of Physics Engineering, Gaziantep University, Gaziantep, Turkey
13Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
14Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
15Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
15aPhysics Department, Tsinghua University, Beijing, China
15bDepartment of Physics, Nanjing University, Nanjing, China
15cUniversity of Chinese Academy of Science (UCAS), Beijing, China
15dInstitute of Physics, University of Belgrade, Belgrade, Serbia
16Department for Physics and Technology, University of Bergen, Bergen, Norway
17Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
18Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
19Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
20Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogota, Colombia
21School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
22INFN Bologna and Universita’ di Bologna, Dipartimento di Fisica, Italy
23INFN Sezione di Bologna, Bologna, Italy
24Physikalisches Institut, Universität Bonn, Bonn, Germany
25Department of Physics, Boston University, Boston, Massachusetts, USA
26Department of Physics, Brandeis University, Waltham, Massachusetts, USA
27Transilvania University of Brasov, Brasov, Romania
28Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
29Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
30National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca, Romania
31University Politehnica Bucharest, Bucharest, Romania
32West University in Timisoara, Timisoara, Romania
33Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic
34Department of Nuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
35Physics Department, Brookhaven National Laboratory, Upton, New York, USA
36Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
37California State University, California, USA
38Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
39Department of Physics, University of Cape Town, Cape Town, South Africa
40Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa
41School of Physics, University of the Witwatersrand, Johannesburg, South Africa
42Department of Physics, Carleton University, Ottawa, Ontario, Canada
Also at National Research Nuclear University MEPhI, Moscow, Russia.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

Also at Giresun University, Faculty of Engineering, Giresun, Turkey.

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.