The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/204816

Please be advised that this information was generated on 2021-01-10 and may be subject to change.
ophthalmological examination, and spectral-domain optical coherence tomography (OCT; Spectralis OCT, software v. 4.0, Heidelberg Engineering, Dossenheim, Germany) imaging to measure RNFL thickness. Subjects were excluded from the study if any of the following were present: glaucoma, optic neuropathy, high ametropia (refractive error spherical equivalent more severe than ± 5 dioptres), history of ocular or neurological trauma, or other relevant retinal and/or optic nerve disease.

Fifty-six subjects with treated MS and 35 healthy subjects were included. Mean global (MS: 89.6 ± 15.4 µm; control: 104.3 ± 9.1 µm; p < 0.001) and sectorial RNFL thicknesses were significantly less in the MS group than in the control group (Table 1). Global RNFL thickness was thinnest in MS subjects with a history of ON (79.8 ± 15.9 µm), followed by MS subjects without a history of ON (93.6 ± 13.3 µm), and thickest in the control group (104.3 ± 9.1 µm; all p < 0.001). Additionally, the Spearman rank correlation coefficient (rs) between the number of ON episodes and RNFL thickness was −0.41 in the MS group (p < 0.001). Therefore, MS subjects that had more ON episodes had a thinner RNFL thickness. The area under the receiver operating characteristic curve (AUROC) for global RNFL measurements was 0.83 (95% confidence interval [CI]: 0.66-0.94) for discriminating between healthy subjects and those with MS. Sectorial RNFL thickness measurements had the highest AUROC (0.83, 95% CI: 0.67–0.93), and subsequently the best accuracy, in the superior temporal sector. That means that the superior temporal parapapillary sector is the most affected in MS.

Interestingly, subjects with a higher number of ON episodes had larger RNFL changes than subjects with a lower number of ON episodes. This finding indicates that serial OCT monitoring of patients with MS may provide useful information on disease status, disease activity and treatment efficacy. However, caution should be used to not overlook RNFL changes in eyes classified as ‘within normal limits’, because the software database is made for glaucoma, not for demyelinating disease. Serial testing is always helpful for comparison to baseline values obtained at the beginning of a disease process.

In conclusion, MS subjects without a history of ON had a thinner RNFL than normal subjects. Additionally, RNFL thickness was negatively correlated with the number of prior ON episodes, indicating a larger amount of RNFL damage. Therefore, we recommend that all patients with MS, and not just those with a history of ON, undergo regular RNFL thickness measurement with OCT during the diagnostic process and follow-up.

References

Genetic influence on contrast sensitivity in young adults

Koen V. Haak1,2

1Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands; 2Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands

Correspondence: Ivan M. Tavares, MD

Department of Ophthalmology and Visual Sciences

Universidade Federal de São Paulo

Paulista School of Medicine

Rua Botucatu

821 – 2nd floor

Sao Paulo 04023-062

Brazil

Tel: +55 11 5576 4981

Fax: +55 11 5576 4981

Email: im.tavares@unifesp.br

doi: 10.1111/aos.13955

© 2018 The Author. Acta Ophthalmologica published by John Wiley & Sons Ltd on behalf of Acta Ophthalmologica Scandinavica Foundation. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDevs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
between 14% and 38%; much lower than might be expected of a core, biologically-based visual function (Cronin-Golomb et al. 2007). However, due to the relatively homogeneous sample of middle-aged men, it is unclear whether these estimates reflect environmental influences on development or the rate of age-related decline, which normally begins at age 40–50 for higher spatial frequencies (Owsley et al. 1983). Here, therefore, I estimated the genetic influence on contrast sensitivity in a sample of healthy young adults of both sexes between 22 and 36 years of age, who can be considered to represent the population at large with respect to ethnic and socio-economic diversity, and whose visual contrast sensitivity should be fully developed but not yet aged.

The sample contained 149 monozygotic (MZ) and 94 dizygotic (DZ) twin pairs of the WU-Minn Human Connectome Project (Van Essen et al. 2013) whose twin-status was confirmed by genetic testing. The mean (SD) age was 29.3 (3.4) and the sample included 295 females (174 MZ, 121 DZ). Inclusion and exclusion criteria are detailed elsewhere (Van Essen et al. 2013). Contrast sensitivity was assessed binocularly using the Mars Letter Contrast Sensitivity test. Visual acuity throughout adulthood. Ophthalmol Vis Sci 46: 2225–2229

Continuous traits were normalized using the inverse normal transformation.

The mean (SD) log contrast sensitivity across all twin pairs was $1.80 (0.06)$ and the mean (SD) visual acuity was $-0.14 (0.12)$ logMAR. There were no significant differences between the monozygotic and dizygotic groups in contrast sensitivity, visual acuity, age (all $p > 0.58$), or the proportion of males/females ($\chi^2 = 1.72$, $p = 0.19$). Contrast sensitivity was moderately heritable, with additive genetic effects explaining 27% of the phenotypic variance ($h^2 = 0.27$, SE = 0.07, $p = 1.2 \times 10^{-4}$), which is consistent with the prior estimates for peak contrast sensitivity in middle-aged men.

The comparably moderate heritability of contrast sensitivity in early and middle adulthood suggests a strong influence of nongenetic, non-aging-related factors. While these influences may partly reflect measurement error, variations in cognitive ability and/or task engagement, a large proportion likely involves individual-specific environmental experiences during childhood and adolescence (Cronin-Golomb et al. 2007; Baker 2013; Bartholomew et al. 2016). Identifying these experiences is an important direction of future research, as they may be altered to improve visual function in adulthood.

Acknowledgement

Netherlands Organisation for Scientific Research (NWO-Veni 016.171.068). Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: D.C. Van Essen and K. Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

References

Correspondence:

Koen V. Haak, PhD
Donders Centre for Cognitive Neuroimaging
Radboud University
Kapittelweg 29, 6525EN
PO Box 9101
6500HB Nijmegen
The Netherlands
Tel.: +31243668064
Fax: +31243610652
Email: k.haak@donders.ru.nl

Persisting diplopia after periorcular injection of parallel imported Kenalog® (triamcinolone acetonide)

Käre Clemmensen, Mette Slot Nielsen and Susanne Krag
Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark
doi: 10.1111/aos.13960

Editor,

We report four cases with persisting diplopia as an unusual complication after periorcular steroid injections with Kenalog Orifarm.

Case 1 A 20-year-old man with bilateral idiopathic pars planitis complicated by cystoid macular oedema (CME) in his left eye. Immediately after a periorcular injection with Kenalog Orifarm, the patient developed painless diplopia, which initially was thought to be caused by the