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Abstract. We describe a large collection of benchmarks, publicly avail-
able through the wiki automata.cs.ru.nl, of different types of state
machine models: DFAs, Moore machines, Mealy machines, interface
automata and register automata. Our repository includes both randomly
generated state machines and models of real protocols and embedded
software/hardware systems. These benchmarks will allow researchers to
evaluate the performance of new algorithms and tools for active automata
learning and conformance testing.

1 Introduction

Active automata learning (or model learning) aims to construct black-box state
machine models of software and hardware systems by providing inputs and
observing outputs. State machines are crucial for understanding the behavior
of many software systems, such as network protocols and embedded control
software, as they allow us to reason about communication errors and compo-
nent compatibility. Model learning is emerging as a highly effective bug-finding
technique, and is slowly becoming a standard tool in the toolbox of the software
engineer [35,68]. Bernhard Steffen has been (and still is) the main intellectual
driving force behind this important development, and together with his students
and coworkers he has made numerous important contributions to the theory and
application of model learning, see e.g., [9,14,15,34,35,37,38,63]. His ideas have
been implemented in the open source automata learning framework LearnLib
[49,55,56], which has become the most prominent tool in this area.

Many model learning algorithms have been proposed in the literature, for
instance by Angluin [8], Rivest and Schapire [57], Kearns and Vazirani [40],
Shahbaz and Groz [61], Bollig et al. [10], Howar [33], Isberner et al. [37], Aarts
et al. [1], Cassel et al. [14,15], and Moerman et al. [50]. Often variations of
algorithms exist for different classes of models, e.g., DFAs, Mealy machines,
Moore machine, interface automata, and various forms of register automata.
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Active automata learning is closely related to conformance testing [9]. Whereas
automata learning aims at constructing hypothesis models from observations,
conformance testing checks whether a system under test conforms to a given
model. Conformance test tools play a crucial role within active automata learn-
ing, as a way to determine whether a hypothesis model is correct or not. Also in
the literature on conformance testing many algorithms have been proposed for
different model classes, for surveys see [23,43,44,67].

Although there has been some experimental work on evaluating algorithms
for model learning and conformance testing, see e.g., [3,12,23,24], the number of
realistic benchmarks is rather limited, and different papers use different models
and/or black-box implementations. Often the benchmarks used are small, aca-
demic, or randomly generated. Small, academic benchmarks are useful during
tool development, but do not say much about the performance on industrial
cases. The performance of algorithms on randomly generated benchmarks is
often radically different from performance on benchmarks based on real systems
that occur in practice. A mature field is characterized by the presence of a rich
set of shared benchmarks, used to evaluate the efficiency of algorithms and tools,
and as challenges for pushing the state-of-the-art.

In this article, we describe a large collection of benchmarks, publicly avail-
able through the wiki repository automata.cs.ru.nl, that includes both ran-
domly generated state machines and models of real protocols and embedded
software/hardware systems. Our benchmarks will allow researchers to compare
the performance of algorithms and tools for learning and conformance testing,
to check whether tools and methods advance, and to demonstrate that new
methods are effective.

We are aware of a few other repositories with benchmarks for model learning
and/or conformance testing. The ACM/SIGDA benchmark dataset [12,24] con-
tains behavioral models for testing, logic synthesis and optimization of circuits.
We have included Mealy machine versions of these benchmarks in our reposi-
tory. The goal of the GitHub repository AutomatArk [19] is to collect benchmark
problems for different models of automata, transducers, and related logics. In
particular, AutomatArk contains NFAs that are adapted from a few verification
case studies. The RERS challenges [38], www.rers-challenge.org, aim to provide
realistic benchmarks that allow researchers to compare different software vali-
dation techniques, e.g., static analysis, model checking, symbolic execution and
(model-based) testing. Benchmarks of previous challenges are still available via
the website. The StaMinA competition [71], stamina.chefbe.net, focused on
the complexity of learning with respect to the alphabet size. The competition is
closed, but the website still hosts all of its benchmarks, a total of 100. Finally, we
mention the Very Large Transition Systems (VLTS) benchmark suite, http://
cadp.inria.fr/resources/vlts/, which has been set up by CWI and INRIA to sup-
port the evaluation of algorithms and tools for explicit state verification. Whereas
the benchmarks in our repository model the behavior of individual components
with at most a few thousand states, the VLTS benchmarks typically describe the
behavior of concurrent systems that are composed of multiple components and

www.rers-challenge.org
http://cadp.inria.fr/resources/vlts/
http://cadp.inria.fr/resources/vlts/
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that have a global state space with milions of states. Most VLTS benchmarks
are completely out of reach for state-of-the-art learning and testing tools.

The remainder of this article is organized as follows. In Sect. 2, we discuss
the different types of automata frameworks that are supported in our reposi-
tory (DFAs, Moore machines, Mealy machines, interface automata, and register
automata) and behavior preserving translations between these frameworks. Even
though most of the definitions are standard, and most of the translations are
folklore, this is the first time all these definitions and translations are presented
together in a comprehensive manner, using consistent terminology and notation.
The translations play a crucial role in our automata repository, since they allow
us to transfer benchmarks from one framework to another, and thus obtain
many benchmarks “for free”. Section 3 gives an overview of the network pro-
tocols, embedded controllers, circuits, and other realistic applications for which
models have been included in our benchmark collection. Section 4 discusses algo-
rithms for generating the random automaton models that we have included in
our repository. Finally, Sect. 5 draws some conclusions.

2 State Machine Frameworks

Below we recall the definitions of the different types of state machines for which
we have collected benchmarks, discuss data formats to represent different model
classes, define the corresponding notions of behavioral equivalence, and describe
behavior preserving translations between types of state machines.

DFA Moore Mealy DFIA Register

genMoore genMealy

FSM

LTS

IA

Fig. 1. Overview of state machine frameworks.

Figure 1 presents an overview of the different state machine frameworks that
we will discuss, and their relationships. For the finite state frameworks indi-
cated with red boxes, benchmark models have been included in our repository:
DFAs, Moore machines, Mealy machines, deterministic finite interface automata
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(DFIAs), and register automata. For some frameworks, more general (nondeter-
ministic and infinite state) variants have been studied in the literature: general-
ized Moore machines, generalized Mealy machines, and interface automata (IAs).
All finite state frameworks have an underlying finite state machine (FSM), and
all infinite state frameworks have an underlying labeled transition system (LTS).
In Fig. 1, a regular arrow indicates that one framework is a substructure of
another, a dashed arrow that one framework is a special case of another, and a
dotted arrow that a behavior preserving translation exists.

2.1 Labeled Transition Systems

All the state machines that we consider are labeled, directed graphs, equipped
with some extra structure. Following standard terminology, we refer to the under-
lying graphs as labeled transition systems [41].

Definition 1 (Labeled transition systems). A labeled transition system
(LTS) is a tuple S = 〈Q,Q0, A,→〉, where

– Q is a non-empty set of states,
– Q0 ⊆ Q is a non-empty set of initial states,
– A is a set of actions, and
– →⊆ Q × A × Q is a transition relation.

We write q
a−→ q′ if (q, a, q′) ∈→. An LTS S is deterministic if Q0 is a singleton

set, and for each state q ∈ Q and each action a ∈ A, there is at most one state
q′ ∈ Q such that q

a−→ q′. An action a ∈ A is enabled in state q ∈ Q, notation
q

a−→, if there exists a state q′ ∈ Q such that q
a−→ q′. An LTS S is completely

specified (or complete) if each action is enabled in each state. An LTS S is finite
and is called a finite-state machine (FSM) if sets Q and → are both finite.

For a sequence of actions σ = a1a2 · · · am ∈ A∗ and states q, q′ ∈ Q, we
write q

σ⇒ q′ if there exist states q0, . . . , qm ∈ S such that q0 = q, qm = q′, and
qj−1

aj−→ qj for all 1 ≤ j ≤ m.

FSMs and the various extensions that we will review below are syntactically
represented in our repository using the graph description language DOT [28].
Scripts are provided to translate between DOT and other common formats for
representing state machines. Figure 2 shows the graphical representation of a
simple FSM (left) and its representation in DOT (right). The graphical repre-
sentation follows the usual conventions for representing graphs. Initial states are
indicated by a small incoming edge. The DOT representation first lists all the
states, then the start states, and then the transitions. In order to mark the initial
states, an auxiliary “invisible” node is created with edges to all the start states.
Actions are indicated as labels of transitions.

Definition 2 (Bisimulation). Let S1 = 〈Q1, Q
1
0, A,→1〉, S2 = 〈Q2, Q

2
0, A,→2〉

be LTSs. A bisimulation between S1 and S2 is a relation R ⊆ Q1 ×Q2 that satisfies:



394 D. Neider et al.

q0start

q1start

q2

b

b

a

c

b

digraph S {

__start0 [label="" shape="none"]

__start1 [label="" shape="none"]

q0 [shape="circle" label="s0"]

q1 [shape="circle" label="s1"]

q2 [shape="circle" label="s2"]

__start0 -> q0

__start1 -> q1

q0 -> q1 [label="b"]

q1 -> q0 [label="a"]

q1 -> q2 [label="b"]

q2 -> q1 [label="c"]

q2 -> q2 [label="b"]

}

Fig. 2. An FSM and its representation in DOT.

1. for every q1 ∈ Q1
0 there exists a q2 ∈ Q2

0 such that (q1, q2) ∈ R,
2. for every q2 ∈ Q2

0 there exists a q1 ∈ Q1
0 such that (q1, q2) ∈ R,

3. for every q1, q
′
1 ∈ Q1, a ∈ A and q2 ∈ Q2 with (q1, q2) ∈ R and q1

a−→ q′
1, there

exists a q′
2 ∈ Q2 such that q2

a−→ q′
2 and (q′

1, q
′
2) ∈ R,

4. for every q2, q
′
2 ∈ Q2, a ∈ A and q1 ∈ Q1 with (q1, q2) ∈ R and q2

a−→ q′
2, there

exists a q′
1 ∈ Q1 such that q1

a−→ q′
1 and (q′

1, q
′
2) ∈ R.

We say that S1 and S2 are bisimilar, and write S1 	 S2, if there exists a
bisimulation between S1 and S2.

2.2 Finite Automata

A finite automaton [32] extends an FSM by identifying some states as accepting.

Definition 3 (Finite automaton). A (nondeterministic) finite automaton (or
NFA) is a tuple A = 〈Q,Q0, Σ,→, F 〉, where 〈Q,Q0, Σ,→〉 is an FSM and
F ⊆ Q is a set of final (or accepting) states. Elements of Σ are referred to as
input symbols. A deterministic finite automataton (DFA) is an NFA for which
the underlying FSM is deterministic and complete.

In the DOT format, accepting states of a finite automaton are denoted by a
double circle, following the standard convention:

digraph g {
...
q [shape="doublecircle"]
...

}
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Definition 4 (Equivalence of NFAs). A finite sequence (or word) w ∈ Σ∗

is accepted by NFA A iff there exists an initial state q ∈ Q0 and a final state
q′ ∈ F such that q

w⇒ q′. If w is not accepted then we say it is rejected. The
language L(A) of A is the set of all words accepted by A. Two NFAs A and B
are equivalent, notation A ≈ B, if they have the same set of input symbols and
L(A) = L(B).

2.3 Moore Machines

A (generalized) Moore machine [51] extends an LTS by assigning an output to
each state.

Definition 5 (Generalized Moore machine). A generalized Moore machine
(or genMoore) is a tuple M = 〈Q,Q0, Σ, Γ,→, ω〉, where 〈Q,Q0, Σ,→〉 is an
LTS, Γ is a set of output symbols, and ω : Q → Γ is an output function. We
call elements of Σ input symbols. A Moore machine is a genMoore for which
the underlying LTS is deterministic, complete and finite.

In the DOT representation of a Moore machine, the value o of the output
function in state q is listed after a “|” in the label of state q:

digraph g {
...
q [shape="record", style="rounded", label="{ q | o }"]
...

}

Definition 6 (Equivalence of genMoores). Suppose w = i1i2 · · · im ∈ Σ∗,

q0 ∈ Q0, and q1, . . . , qm ∈ Q with qj−1
ij−→ qj for all 1 ≤ j ≤ m. Then the

sequence ω(q1) · · · ω(qm) ∈ Γ ∗ is an output of genMoore M in reponse to w.1

The output function of M is the function λM that assigns to each input word
w ∈ Σ∗ the set of all outputs of M in response to w. Two genMoores M and
N are equivalent, notation M ≈ N , if they have the same input symbols and
λM = λN .

A DFA A = 〈Q,Q0, Σ,→, F 〉 can be translated to a Moore machine
DFA2Moore(A) = 〈Q,Q0, Σ, Γ,→, ω〉 by associating to each state q ∈ Q an output
that indicates whether or not q is final [32]. That is, we define Γ = {0, 1} and

ω(q) =
{

1 if q ∈ F,
0 otherwise.

Suppose A and B are DFAs with ε ∈ L(A) ⇔ ε ∈ L(B). Then A ≈ B iff
DFA2Moore(A) ≈ DFA2Moore(B). Thus, the translationDFA2Moore preserves the
behavior of DFAs. The counterexample of Fig. 3 shows that if we lift translation
1 Following Hopcroft and Ullman [32], we ignore the initial output in order to obtain

equivalence of Moore and Mealy machines.
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Moore to NFAs, the behavior is no longer preserved: A ≈ B since L(A) = L(B) =
{a, aa}, butDFA2Moore(A) �≈ DFA2Moore(B) since λDFA2Moore(A)(a) = {0, 1} and
λDFA2Moore(B)(a) = {1}.

s0start

s1

s2

s3 s5

s6

s4start

A B

a
a

a

a

a

Fig. 3. Two NFAs A and B with A ≈ B and DFA2Moore(A) �≈ DFA2Moore(B).

2.4 Mealy Machines

A (generalized) Mealy machine [48] is an LTS in which the labels of transitions
are input/output pairs.

Definition 7 (Generalized Mealy machine). A generalized Mealy machine
(genMealy) is a tuple M = 〈Q,Q0, Σ, Γ,→〉, where 〈Q,Q0, Σ×Γ,→〉 is an LTS.
We refer to elements of Σ as input symbols and to elements of Γ as output

symbols. We write q
i/o−−→ q′ if (q, (i, o), q′) ∈→. We say that M is input enabled

if, for each state q and input symbol i, there exists an output symbol o and a

state q′ such that q
i/o−−→ q′. We call M deterministic if Q0 is a singleton set, and

for each state q and each input i, there is exactly one output o and one state q′

such that q
i/o−−→ q′. We call M finite if its underlying LTS is finite, and a Mealy

machine if it is input enabled, deterministic, and finite.

In the DOT encoding of a Mealy machine, inputs and outputs are separated
by a “/” in the definition of transitions:

digraph g {
...
q1 -> q2 [label="i/o"]
...

}
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Definition 8 (Equivalence of genMealys). Suppose w = i1i2 · · · im ∈ Σ∗

and u = o1o2 · · · om ∈ Γ ∗. Then u is an output of genMealy M in response
to w if there exists q ∈ Q0 and q′ ∈ Q such that q

z⇒ q′, where z =
(i1, o1)(i2, o2) · · · (im, om). The output function λM of M assigns to each input
word w ∈ Σ∗ the set of outputs of M in response to w. Generalized Mealy
machines M and N are equivalent, notation M ≈ N , if they have the same
input symbols and λM = λN .

Equivalence of deterministic genMealys can alternatively be characterized
using bisimulations. Call genMealy’s M and N bisimilar, written M 	 N , if
they have the same input symbols and their underlying LTSs are bisimilar. Then
the following proposition holds:

Proposition 1. Let M and N be deterministic genMealys. Then M ≈ N iff
M 	 N .

Each generalized Moore machine M = 〈Q,Q0, Σ, Γ,→, ω〉 can be translated
to a generalized Mealy machine Moore2Mealy(M) = 〈Q,Q0, Σ, Γ,→′〉 by mov-
ing the output symbol of each state to all of the incoming transitions of that
state. Thus, for each transition q

i−→ q′ of M, Moore2Mealy(M) has a transition

q
i/ω(q′)−−−−→′q′. Then we have λM = λMoore2Mealy(M) (see e.g., [32]). This implies that

genMoores M and N are equivalent iff Moore2Mealy(M) and Moore2Mealy(N )
are equivalent. The reader may check that if we take a Moore machine and apply
translation Moore2Mealy, the result is a Mealy machine.

Example 1. Figure 4 shows a Moore machine and its associated Mealy machine.

q0
xstart

q1
y

a

b

b

a

q0start q1

a/x

b/y

b/y

a/x

Fig. 4. A Moore machine (left) and its translation to a Mealy machine (right).

Conversely, a generalized Mealy machine M = 〈Q,Q0, Σ, Γ,→〉 can be trans-
lated to a generalized Moore machine Mealy2Moore(M) = 〈Q′, Q′

0, Σ, Γ,→′, ω〉
by taking the output of a state to be equal to the output of the preceding tran-
sition. For initial states we pick an arbitrary output o0 ∈ Γ . Formally:

– Q′ = Γ × Q,
– Q′

0 = {(o0, q) | q ∈ Q0}, where o0 is an arbitrarily element of Γ ,2

2 If Γ = ∅ then also →= ∅, which means that M is equivalent to M with Γ replaced
by an arbitrary set. Thus, we may assume w.l.o.g. that Γ �= ∅.
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– →′ is the smallest set such that o ∈ Γ and q
i/o′
−−→ q′ implies (o, q) i−→′(o′, q′),

– ω((o, q)) = o.

Then we have λM = λMealy2Moore(M) (see e.g., [32]). This implies that gen-
eralized Mealy machines M and N are equivalent iff Mealy2Moore(M) and
Mealy2Moore(N ) are equivalent. The reader may check that if we take a Mealy
machine and apply translation Mealy2Moore, the result is a Moore machine.

Example 2. Figure 5 shows a Mealy machine and its associated Moore machine.

q0start q1

a/x

b/x

b/y

a/y

(x, q0)
x

(x, q1)
x

(y, q0)
ystart

(y, q1)
y

a
b

b
a

a
b

a
b

Fig. 5. A Mealy machine (left) and its translation to a Moore machine (right).

2.5 Interface Automata

A restriction of Mealy and Moore machines is that each input generates exactly
one output. In real-world systems, some inputs do not induce any output,
whereas others induce several consecutive outputs. In order to model such behav-
iors, De Alfaro and Henzinger [21] introduced interface automata, a modeling
framework related to the I/O automata of Lynch and Tuttle [46,47] and Jons-
son [39], and the I/O transition systems of Tretmans [65,66]. Interface automata
extend LTSs by declaring actions to be either inputs or outputs.

Definition 9. (Interface automata). An interface automaton (IA) is a tuple
T = 〈Q,Q0, Σ, Γ,→〉, where 〈Q,Q0, Σ ∪ Γ,→〉 is an LTS and Σ ∩ Γ = ∅.
We refer to elements of Σ as input symbols and to elements of Γ as output
symbols. An interface automaton is deterministic (resp. finite) if its underlying
LTS is deterministic (resp. finite). We refer to a finite deterministic interface
automaton as a DFIA.

Figure 6 shows the graphical representation of a simple DFIA (left) and its
representation in DOT (right). The DFIA has inputs Σ = {a, b} and outputs
Γ = {x, y}. There are three states: an initial idle state q0, a state q1 in which out-
put x is produced, and a state q2 in which output y is produced. From each state,



Benchmarks for Automata Learning and Conformance Testing 399

q1

q0start

q2

!x

?a

?b

?b

?a

!y

?b

?a

digraph S {

__start0 [label="" shape="none"]

q0 [shape="circle" label="q0"]

q1 [shape="circle" label="q1"]

q2 [shape="circle" label="q2"]

__start0 -> q0

q0 -> q1 [label="?a"]

q0 -> q2 [label="?b"]

q1 -> q0 [label="!x"]

q1 -> q1 [label="?a"]

q1 -> q2 [label="?b"]

q2 -> q0 [label="!y"]

q2 -> q1 [label="?a"]

q2 -> q2 [label="?b"]

}

Fig. 6. A DFIA and its representation in DOT.

input a brings the DFIA to state q1 and input b brings it to state q2. In DOT for-
mat, input symbols of an IA are of the form ?a, whereas output symbols are of the
form !x.

Various preorders have been advocated for IAs: Lynch and Tuttle propose
inclusion of (fair) traces [47], De Alfaro and Henzinger alternating refinement
[21], Tretmans [65] the ioco conformance relation, and Volpato and Tretmans
[69] uioco conformance. For deterministic automata all these relations coincide,
and their kernel coincides with bisimulation equivalence. Therefore, since our
benchmark repository focuses on deterministic IAs, we only consider bisimula-
tion as behavioral equivalence on IAs.

Definition 10. (Equivalence of IAs). Interface automata T and U are bisim-
ilar, written T 	 U , if they have the same input symbols and their underlying
LTSs are bisimilar.

Suppose M = 〈Q,Q0, Σ, Γ,→〉 is a generalized Mealy machine with disjoint
input and output symbols. Then M can be translated to an interface automaton

Mealy2IA(M) by adding states Γ ×Q, and splitting each transition q
i/o−−→ q′ of M

into a pair of consecutive transitions q
i−→ (o, q′) and (o, q′) o−→ q′. Note that if M

is a Mealy machine, Mealy2IA(M) is a DFIA. Figure 7 shows a Mealy machine
and its associated DFIA.

Proposition 2. Let M and N be deterministic genMealys. Then M ≈ N iff
Mealy2IA(M) 	 Mealy2IA(N ).

For any generalized Mealy machine M, Mealy2IA(M) has a specific form
in which inputs and outputs alternate: (a) the set of states can be partitioned
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q0start q1 q2

b/y

a/x

b/y

a/x a/z

b/y
q0start

(x, q0)

q1

(y, q1)

q2

(z, q1)

(y, q2)

a

b

x

a

by

z
a

b y

Fig. 7. A Mealy machine (left) and its translation to a DFIA (right).

into two sets Qin and Qout, with Q0 ⊆ Qin, (b) states in Qin enable no outputs,
whereas states in Qout enable no inputs, (c) all transitions go from states in Qin

to states in Qout, or from states in Qout to states in Qin (i.e., the underlying graph
is bipartite). We call an IA T that satisfies properties (a)–(c) Mealy-like. Any
Mealy-like IA T can be translated to a generalized Mealy machine IA2Mealy(T )
by taking Qin as set of states, Qin as the set of initial states, and merging each

pair of consecutive transitions q
i−→ q′ o−→ q′′ of T into a single transition q

i/o−−→ q′′.
Note that if T is a Mealy-like DFIA with each input enabled in each state from
Qin and a single output enabled in each state of Qout, IA2Mealy(T ) is a Mealy
machine. Also note that IA2Mealy ◦ Mealy2IA is the identity function, whereas
Mealy2IA ◦ IA2Mealy is not. However, we do have the following proposition:

Proposition 3. Let T and U be Mealy-like deterministic IAs. Then T 	 U iff
IA2Mealy(T ) ≈ IA2Mealy(U).

2.6 Register Automata

Register automata extend FSMs with data values that may be communicated,
stored and tested. Below we recall the definition of register automata from [15],
slightly adapted to the setting of interface automata. Register automata are
parameterized on a vocabulary that determines how data can be tested, which
in our setting is called a structure.3 A (relational) structure is a pair 〈D,R〉 where
D is an unbounded domain of data values, and R is a collection of relations on
D. Relations in R can have arbitrary arity. Known constants can be represented
by unary relations. Examples of simple structures include:

– 〈N, {=}〉, the natural numbers with equality; instead of the set of natural
numbers, we could consider any other unbounded domain, e.g., the set of
strings (representing passwords or usernames).

– 〈R, {<}〉, the real numbers with inequality: this structure also allows one to
express equality between elements.

3 In [15] this is called a theory, but we prefer the standard terminology from logic [18].
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Operations, such as increments, addition and subtraction, can in this frame-
work be represented by relations. For instance, addition can be represented by a
ternary relation p1 = p2 + p3. In the following definitions, we assume that some
structure 〈D,R〉 has been fixed.

We assume a set of registers V = {x1, x2, . . .}, and we assume that actions
carry a single formal data parameter p �∈ V.4 A guard is a conjunction of negated
and unnegated relations (from R) over the formal parameter p and the registers.
We use Φ to denote the set of guards. An assignment is a partial function in
V ⇀ (V ∪ {p}). We use Υ to denote the set of assignments. A valuation is a
partial function in (V ∪ {p}) ⇀ D.

Definition 11 (Register automaton). A register automaton (RA) is a tuple
A = 〈L,L0,X , Σ, Γ,→〉, where 〈L,L0, (Σ ∪ Γ ) × Φ × Υ,→〉 is an FSM, we refer
to elements of L as locations, Σ ∩Γ = ∅, X maps each location l ∈ L to a finite
set X (l) of registers, and for each transition 〈l, a, g, π, l′〉 ∈→, g is a guard over
X (l)∪{p} and π is a mapping from X (l′) to X (l)∪{p}. Function π specifies, for
each register x from target state l′, the parameter or register from source state l
whose value will be assigned to x.

Within the Tomte and RALib tools, XML formats have been defined for
representing register automata syntactically. We will not discuss these formats
here but refer to the tool websites http://tomte.cs.ru.nl/ and https://bitbucket.
org/learnlib/ralib/ for more details.

Example 3. Figure 8 shows a register automaton over structure 〈N, {=}〉 that
models a FIFO-set with capacity two, similar to an example in [34]. A FIFO-
set is a queue in which only different values can be stored. The automaton has
an input Push that tries to insert a value in the queue, and an input Pop that
tries to retrieve a value from the queue. Push triggers an output NOK if the
input value is already in the queue or if the queue is full. Pop triggers an output
NOK if the queue is empty, and otherwise an output Out with as parameter the
oldest value from the queue. We write x := y for the function that maps x to
y, and acts as the identity for the other variable in the target state. We omit
guards true, trivial assignments, and parameters that not occur in the guard and
are not touched by the assignment. Thus we write, for instance, Pop instead of
Pop(p). Function X assigns variable set ∅ to locations l0 and l3, variable set {v}
to locations l1, l4 and l6, and variable set {v, w} to locations l2, l5 and l7.

Example 4. By just a minor change of the register automaton of Example 3, we
may define a priority queue with capacity 2. This register automaton over the
structure 〈R, {<}〉 is identical to the register automaton of Fig. 8, except that
the two outgoing Push-transitions of l1 have been replaced by transitions

l1
Push,p<v,v:=p;w:=v−−−−−−−−−−−−−→ l2 l1

Push,p≥v,w:=p−−−−−−−−−→ l2

4 Actually, our repository supports actions with zero or more data parameters, but
this assumption simplifies the presentation.

http://tomte.cs.ru.nl/
https://bitbucket.org/learnlib/ralib/
https://bitbucket.org/learnlib/ralib/
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l0start l1 l2

l4 l5l3

l6 l7

Push(p)
v:=p

Pop

p �= v
Push(p)
w:=p

p = v
Push(p)

Pop

Push(p)

Pop

p = v
Out(p)

p = v
Out(p)
v:=w

NOK

NOK NOK

Fig. 8. FIFO-set with capacity 2.

This ensures that in location l2, the value in register v is less than or equal to
the value in register w. As a result, output Out will return the smallest value in
the queue.

Semantically, a register automaton is just a finite representation of an infinite
interface automaton.

Definition 12 (Semantics register automata). Let A=〈L,L0,X , Σ, Γ,→〉 be
a register automaton. The interface automaton RA2IA(A) is the tuple 〈Q,Q0, Σ×
D, Γ × D,→′〉, where

1. Q is the set of pairs 〈l, ν〉 with l ∈ L and ν : X (l) → D.
2. Q0 is the set of pairs 〈l, ν〉 ∈ Q with l ∈ L0.

3. 〈l, ν〉 a(d)−−−→′〈l′, ν′〉 iff A has a transition l
a,g,π−−−→ l′ such that g is satisfied in l

and by parameter d (i.e., ι |= g, where ι = ν ∪ {(p, d)}), and ν′ = ι ◦ π.

Two register automata A and A′ are bisimilar iff their associated interface
automata are bisimilar, i.e., RA2IA(A) 	 RA2IA(A′). Similarly, we call regis-
ter automaton A deterministic iff its associated interface automaton RA2IA(A)
is deterministic.

The interface automaton associated to the register automaton of Fig. 8 is
deterministic and, for instance, has the following sequence of transitions:

〈l0, ∅〉 Push(4)−−−−→ 〈l1, {(v, 4)}〉 Push(5)−−−−→ 〈l2, {(v, 4), (w, 5)}〉 Pop−−→ 〈l5, {(v, 4), (w, 5)}〉

Out(4)−−−−→ 〈l1, {(v, 5)}〉 Push(5)−−−−→ 〈l6, {(v, 5)}〉 NOK−−−→ 〈l1, {(v, 5)}〉.
Register automata over structure 〈N, {=}〉 can be translated to a finite interface
automaton by restricting the data domain D to a finite set. Let RA2IAn(A) be
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the finite interface automaton obtained by replacing D by {0, . . . , n − 1} in the
definition of RA2IA(A), for any n ∈ N. Heidarian [22, Chapter 8] showed that two
register automata A and A′ are bisimilar iff RA2IAn(A) 	 RA2IAn(A′), for large
enough n. Via the translations RA2IAn, each deterministic register automaton
benchmark can be used to generate an infinite number of DFIA benchmarks, in
which the numbers of states and transitions grow unboundedly. In several of our
register automata benchmarks, inputs and outputs alternate. As a result, the
DFIAs obtained via translations RA2IAn are Mealy-like, and can subsequently
be converted to Mealy machines via translation IA2Mealy from Sect. 2.5.

Thus far, all the register automaton benchmarks in our repository are deter-
ministic register automata over structure 〈N, {=}〉, but we are planning to
include register automata benchmarks over different structures, such as the mod-
els described in [25].

3 Benchmarks Derived from Applications

Our repository automata.cs.ru.nl contains four types of benchmarks: (1) ran-
domly generated automata, (2) small toy examples, (3) benchmarks derived from
realistic applications, and (4) benchmarks obtained via the translations from
Sect. 2. In this section, we focus on the benchmarks derived from realistic appli-
cations, and briefly pay attention to some of the smaller “toy” models that have
been included in the repository. All the benchmarks in this section are either
Mealy machines or register automata. In the next Sect. 4, we discuss algorithms
for generating random automata, and a collection of randomly generated DFAs
and Moore machines that we have included in the repository.

3.1 Mealy Machines

The large majority of the Mealy machine benchmarks in our repository has fewer
than 100 states, fewer than 20 inputs, and fewer than 50 outputs. For a detailed
listing of the numbers of states, inputs and outputs of all the benchmarks we
refer to automata.cs.ru.nl/Table.

Toy Examples. We included several toy Mealy machines, such as a simple model
of a coffee machine used as running example in [63], a trivial three state model
used to explain L∗ in [68], and some instructive examples from [44,52].

Circuits. The logic synthesis workshops (LGSynth89, LGSynth91 and LGSyn-
th93) provided 59 behavioral models for testing, logic synthesis and optimization
of circuits, see [12,24]. These models can be viewed as Mealy machines in several
ways. We provide four interpretations of each model as a Mealy machine. If two or
more interpretations give equivalent results, we have included only one of them in
the repository. The circuit benchmarks have been used recently for Mealy machine
testing by Hierons & Türker [31].
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TCP. The Transmission Control Protocol (TCP) is a widely used transport layer
protocol that provides reliable and ordered delivery of a byte stream from one
computer application to another. The authors of [26] combined model learning
and model checking in a case study involving Linux, Windows and FreeBSD
implementations of TCP. Model learning was used to infer models of different
software components and model checking was applied to fully explore what may
happen when these components (e.g., a Linux client and a Windows server)
interact. The analysis revealed several instances in which TCP implementations
do not conform to their RFC specifications.

TLS Protocol. TLS, short for Transport Layer Security, is a widely used protocol
that aims to provide privacy and data integrity between two or more communi-
cating computer applications, for example in HTTPS. The authors of [58] ana-
lyzed both server- and client-side implementations of TLS with a test harness
that supports several key exchange algorithms and the option of client certificate
authentication. Using LearnLib, they succeeded to learn Mealy machine mod-
els of a number of TLS implementations. They showed that this approach can
catch an interesting class of flaws that is apparently common in security proto-
col implementations: in three of the TLS implementations that were analyzed
(GnuTLS, the Java Secure Socket Extension, and OpenSSL), new security flaws
were found. This indicates that model learning is a useful technique to system-
atically analyze security protocol implementations. As the analysis of different
TLS implementations resulted in different and unique state machines for each
one, the technique can also be used for fingerprinting TLS implementations.

SSH Protocol. SSH, short for Secure Shell, is a cryptographic network protocol
that is widely used to interact securely with remote machines. The authors of
[27] applied model learning to three SSH implementations (OpenSSH, Bitvise
and DropBear) to infer Mealy machine models, and then used model checking
to verify that these models satisfy basic security properties and conform to the
RFCs. The analysis showed that all tested SSH server models satisfy the stated
security properties. However, several violations of the standard were uncovered.

ABN AMRO e.dentifier2. The e.dentifier2 is a hand-held smart card reader with
a small display, a numeric keyboard, and OK and Cancel buttons. Customers of
the Dutch ABN AMRO bank use it for Internet banking in combination with a
bank card and a PIN code. The authors of [16] showed that model learning can be
successfully used to reverse engineer the behavior of the e.dentifier2, by using a
Lego robot to operate the devices. The Mealy machines that were automatically
inferred by the robot revealed a security vulnerability in the e.dentifier2, that
was previously discovered by manual analysis, and confirmed the absence of this
flaw in an updated version of this device.

EMV Protocol. Bank cards (debit cards) are smart cards used for payment
systems. Most smart cards issued by banks or credit cards companies adhere
to the EMV (Europay-MasterCard-Visa) protocol standard, which is defined
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on top of ISO/IEC 7816. In [6], LearnLib and some simple abstraction tech-
niques were used to learn Mealy machine models of EMV applications on bank
cards issued by several Dutch banks (ABN AMRO, ING, Rabobank), one Ger-
man bank (Volksbank), and one MasterCard credit cards issued by Dutch and
Swedish banks (SEB, ABN AMRO, ING) and of one UK Visa Debit card (Bar-
clays). These models provide a useful insight into decisions (or indeed mistakes)
made in the design and implementation, and would be useful as part of security
evaluations—not just for bank cards but for smart card applications in general—
as they can show unexpected additional functionality that is easily missed in
conformance tests.

MQTT Protocol. The Message Queuing Telemetry Transport (MQTT) proto-
col is a lightweight publish/subscribe protocol that is well-suited for resource-
constrained environments such as the Internet of Things (IoT). The authors of
[64] used model learning to obtain Mealy machine models of five freely avail-
able implementations of MQTT brokers (included in Apache ActiveMQ 5.13.3,
emqttd 1.0.2, HBMQTT 0.7.1, Mosquitto 1.4.9 and VerneMQ 0.12.5p4). Exam-
ining these models, the authors found several violations of the MQTT speci-
fication. In fact, all but one of the considered implementations showed faulty
behavior.

ESM Printer Controller. The Engine Status Manager (ESM) is a software com-
ponent that is used in printers and copiers of Oce. Using a combination of Learn-
Lib and a novel conformance testing algorithm, the authors of [62] succeeded to
learn a Mealy machine model of this component fully automatically. Altogether,
around 60 million queries were needed to learn a model of the ESM with 77
inputs and 3.410 states. They also constructed a model by flattening a Rational
Rose Real-Time description from which the ESM software was generated, and
established equivalence with the learned model.

An Interventional X-ray System. Model learning and equivalence checking are
used by [60] to improve a new implementation of a legacy control component.
Model learning is applied to both the old and the new implementation of the
Power Control Service (PCS) of an interventional X-ray system. The result-
ing models are compared using an equivalence check of a model checker. The
authors report about their experiences with this approach at Philips. By grad-
ually increasing the set of input stimuli, they obtained implementations of the
PCS for which the learned behavior is equivalent.

From Rhapsody to Dezyne. In his PhD thesis, Schuts [59, Chapter 8] describes
a case study, carried out at Philips, in which models created with a legacy
tool (Rhapsody) are transformed to models that can be used by another tool
(Dezyne). The transformation is established by means of a DSL for the legacy
models. Model learning was applied to increase confidence in the correctness of
the generated code. Two versions of state-machine code, generated by Rhapsody
and Dezyne, were stimulated by all possible inputs and the resulting outputs were
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examined by LearnLib. The two models constructed by LearnLib were compared
by the equivalence checker of the mCRL2 tool set. With this approach two
errors were found in the Dezyne models that were not detected by the existing
regression test set.

3.2 Register Automata

Toy examples. We included several toy models in the repository: the sender and
receiver of the well-known Alternating Bit Protocol, a simple login protocol, an
automaton that test whether a list of numbers is a palindrome or a repdigit, and
a river crossing puzzle.

SIP. The Session Initiation Protocol (SIP) is a signalling protocol used for initi-
ating, maintaining, and terminating real-time sessions that include voice, video
and messaging applications. In [4], an abstract Mealy machine model was inferred
that describes the SIP Server entity when setting up connections with a SIP
Client. The model was obtained by connecting LearnLib with the protocol simu-
lator ns-2, and generated a model of the SIP component as implemented in ns-2.
Using a (manually constructed) mapper component, concrete SIP messages were
converted into abstract input and output symbols. Even though no implementa-
tion errors were found, the work of [4] showed the feasibility of the approach for
inferring models of implementations of realistic communication protocols. In [2],
the Mealy machine model of [4] was converted into a register automaton model
that is included in the repository.

Data Structures. As observed by Howar et al. [34], register automata with input
and output events can be used to represent semantic interfaces of simple data
structures such as stacks, queues, and FIFO-sets with fixed capacities. Since
they are parametrized by their capacity, these data structures provide excellent
benchmarks for model learning tools, see e.g., [3].

Biometric Passport. The biometric passport is an electronic passport provided
with a computer chip and antenna to authenticate the identity of travelers.
Examples of used protocols are Basic Access Control (BAC), Active Authen-
tication (AA) and Extended Access Control (EAC) [13]. Official standards are
documented in the International Civil Aviation Organisation’s (ICAO) Doc 9303
[36]. In [7], LearnLib was used to automatically generate a model of fragments
of these protocols as implemented on an authentic biometric passport. The data
on the chip could be accessed via a smart card reader with JMRTD serving as
API. A simple mapper component serves as an intermediary between the SUT
and LearnLib.

Bounded Retransmission Protocol. The Bounded Retransmission Protocol
(BRP) is a well-known benchmark case study from the verification literature
[20,30]. The BRP is a variation of the classical alternating bit protocol that
was developed by Philips to support infrared communication between a remote
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control and a television. In [5], a reference implementation of the protocol is
described, as well as six faulty mutants of this implementation. The authors use
a combination of model learning, model-based testing and verification to detect
behavioral differences between the mutants and the reference implementation.

4 Random Generation of Benchmarks

As argued throughout this paper, high-quality benchmarks are an integral part
of the evaluation of (automata learning) algorithms. In this context, synthetic,
i.e., randomly generated, automata play an important role due to their relevancy
to average case analyses and their usually high Kolmogorov complexity [17,45].
Contrary to what one might think, however, randomly generating automata is
not a trivial task: automata carry a semantics (in form of the accepted language)
and, hence, properties such as connectedness and minimality with respect to
the accepted language are of great importance. In fact, estimating the number
of pairwise non-equivalent automata of a certain size is already a challenging
problem [17,29].

In this section, we survey three popular algorithms for generating random
DFAs, taken both from the literature and from automata learning competitions:

1. the algorithm used in the Abbadingo DFA learning competition [42], which
we present in Sect. 4.1;

2. the algorithm used in the Stamina DFA learning competition [70,71] (based
on the forest-fire algorithm [45] for generating random graphs), which we
present in Sect. 4.2; and

3. Champarnaud and Paranthoën’s method [17], which we present in Sect. 4.3.

Methods for generating other types of state machines (such as NFAs, Mealy and
Moore machines, etc.) exists as well, but are often ad-hoc approaches and far
less studied.

In Sect. 4.4, we briefly describe a series of random DFAs and random Moore
machines, which we have generated on the occasion of Bernhard Steffen’s 60th

birthday. In this section, we also sketch a simple method for randomly generating
Moore machines.

For the following description, recall from Sect. 2.2 that a DFA is a tuple
A = 〈Q,Q0, Σ,→ , F 〉 where 〈Q,Q0, Σ,→〉 is a complete and deterministic
FSM and F ⊆ Q is a set of final states. Moreover, let n = |Q| denote the desired
size, i.e., the number of states, of the DFA to be generated.

4.1 Abbadingo Competition Random DFA Algorithm

The Abbadingo random DFA algorithm [42] is a simplistic algorithm, which
constructs a DFA with n states (n > 0) in four steps:

1. It creates n states, say Q = {q1, . . . , qn}.
2. For each pair of state p ∈ Q and input symbol a ∈ Σ, it chooses a destination

state q ∈ Q uniformly at random and adds the transition p
a−→ q.
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3. It chooses a state q0 ∈ Q uniformly at random and marks it as the initial
state, i.e., Q0 = {q0}.

4. For each state q ∈ Q, it determines whether q is a final state by flipping a
fair coin, i.e., it adds q to F with probability 1/2.

Clearly, a major drawback of this simple approach is the neglect of any
structural property of the generated DFA—except for the fact that the resulting
automaton is deterministic. In particular, the algorithm neither guarantees that
the resulting DFA is accessible, i.e., that all its states are reachable from the
initial state, nor that it is minimal. For this reason, the Abbadingo competition
used the following procedure: in order to obtain a DFA of size roughly n, a DFA
of size 1.2n is generated and all states that are not reachable from the initial
state are removed. Although this additional step ensures that the resulting DFA
is accessible, it might still not produce minimal DFAs.

4.2 Stamina Competition Random DFA Algorithm

The algorithm used in the Stamina competition [70] has been designed to pro-
duce random DFAs that are representative of software models. Its basis is the
forest-fire algorithm by Leskovec, Kleinberg, and Faloutsos [45], which produces
directed graphs that resemble complex networks arising in a variety of domains.
The forest-fire algorithm is an iterative algorithm (each iteration adds one new
vertex as well as edges from and to this vertex) that takes three parameters as
input: a number N > 0 of vertices, a forward burning probability p ∈ [0, 1], and
a backward burning ratio r ∈ [0, 1].

The forest-fire algorithm proceeds in N rounds. In the first round, it initial-
izes the graph with a single vertex. In each subsequent round, it performs the
following four steps (Step 1 inserts a new vertex, while Steps 2, 3, and 4 insert
new edges):

1. The algorithm creates a new vertex v. Moreover, it initializes an auxiliary set
U = ∅, which is used to mark vertices that have been visited by the algorithm
in the current round.

2. It picks a vertex w �= v, called ambassador vertex, uniformly at random and
adds the edge v → w. Moreover, it adds w to U , marking w as visited.

3. It draws a random number x ∈ N from a geometric distribution with mean
p/(1−p) and a second random number y ∈ N from a geometric distribution
with mean rp/(1−rp). Then, it selects

– x incoming edges of w, say v1 → w, . . . , vx → w, and
– y outgoing edges of w, say w → v′

1, . . . , w → v′
y,

uniformly at random such that {v1, . . . , vx, v′
1, . . . , v

′
y} ∩ U = ∅, i.e., none of

the vertices v1, . . . , vx and v′
1, . . . , v

′
y have been visited in this iteration; if not

enough edges are available, the algorithm selects as many as possible.
4. It adds the edges v → v1, . . . , v → vx, v → v′

1, . . . , v → v′
x and then applies

Step 2 recursively with each of the vertices v1, . . . , vx, v′
1, . . . , v

′
y as ambassador

vertex. Note that this procedure stops eventually as vertices cannot be visited
more than once.
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To generate a DFA (rather than a directed graph), the algorithm used in
the Stamina competition takes three additional parameters as input: a set Σ
of input symbols, a self-loop probability l ∈ [0, 1], and a parallel-edge probability
e ∈ [0, 1]. (Note that the forest-fire algorithm can neither create self-loops nor
parallel edges.) Based on these additional parameters, the forest-fire algorithm
is adapted as follows:

– The initial state is chosen uniformly at random, and each vertex has the
probability 1/2 of being a final state.

– In order to make sure that each state is reachable, edges added in Step 2 are
added in the reverse direction, i.e., w → v.

– Whenever the forest-fire algorithm adds an edge in Step 4, with probability l
this edge gets instead redirected to form a self-loop.

– Whenever the forest-fire algorithm inserts an edge, the edge is turned into a
transition that is labeled with an input symbol a ∈ Σ. The input symbol a is
drawn uniformly at random from the set Σ such that the automaton remains
deterministic, i.e., symbols that are already used in an outgoing transition
from the state in question are not considered. If all symbols from Σ already
occur on an outgoing transition, then no transition is added.

– Finally, every time a transition is inserted, a second, parallel transition is
added with probability e. The second transition is labeled using the labeling
rule described above.

Although this algorithm produces accessible DFAs, it does not guarantee that
these DFAs are minimal. To account for this, the DFAs used in the Stamina com-
petition have been generated slightly larger than desired and have subsequently
been minimized. The parameters used to generate the competition DFAs were
Σ = {1, . . . , a} for a ∈ {2, 5, 10, 20, 50}, n = 50 (the actual value N has been cho-
sen slightly larger than 50 due to the subsequent minimization process), f = 0.31,
r = 0.385, l = 0.2, and e = 0.2.

4.3 Champarnaud and Paranthoën’s Method

Champarnaud and Paranthoën’s method [17] is a generalization of an algorithm
proposed by Nicaud [53], which randomly generates accessible DFAs over two
input symbols. An interesting property of Nicaud’s algorithm is that it generates
minimal DFAs with a probability of about 4/5. Champarnaud and Paranthoën’s
method shares this property when generating DFAs over two input symbols,
while an experimental evaluation with over a million DFAs has shown that
nearly all generated DFAs were minimal if the number of input symbols was
chosen greater than two [17]. Hence, should a minimal DFA be required, a viable
approach is to simply repeat Champarnaud and Paranthoën’s method until the
resulting DFA is minimal.

Champarnaud and Paranthoën’s method is a fairly complex algorithm, which
is based on two ideas:
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– The FSM 〈Q,Q0, Σ,→〉 underlying any DFA can be represented by a
Σ-labeled tree of arity m = |Σ| with n = |Q| inner nodes, i.e., a tree of
arity m with n inner nodes whose edges are labeled with symbols from Σ.

– Labeled trees can be encoded by a special type of tuples over the natural
numbers, which Champarnaud and Paranthoën call generalized tuples.

Hence, one can generate a random DFA by first randomly generating a general-
ized tuple, then constructing the corresponding tree, and finally deriving a DFA
from the tree. Although an in-depth description of this procedure is out of the
scope of this paper, the remainder of this section sketches the main steps of the
algorithm.

At the heart of Champarnaud and Paranthoën’s method lies the observation
that every Σ-labeled tree is determined (up to isomorphism) by one of its pre-
fix traversals. More precisely, a complete m-ary tree with n inner nodes—and,
therefore, s = n(m − 1) + 1 leaf nodes—can be encoded by the tuple

(k1, . . . , ks−1) ∈ {1, . . . , n}s−1,

where the i-th entry ki corresponds to the number of inner nodes visited during
a prefix traversal of the tree prior to the visit of the i-th leaf (note that there
is no need to store this information for the last leaf as this number is n). The
set of all generalized tuples of length l + 1 can be constructed recursively from
the set of generalized tuples of length l, and Champarnaud and Paranthoën give
an algorithm to draw such tuples randomly. Once a generalized tuple of length
s − 1 has been generated, the corresponding tree with n inner nodes can be
constructed effectively.

The tree generated in the previous step represents a deterministic transition
structure that serves as template for a number of (non-isomorphic) n-state DFAs.
Constructing a DFA from such a template involves two steps: first, edges to leaf
nodes need to be redirected to inner nodes (so as to be able to produce a DFA
that is complete and accepting an infinite language); second, final states have
to be selected. However, edges cannot be redirected arbitrarily as this might
result in the same DFA being generated from two different generalized tuples. In
order to prevent this from happening, Champarnaud and Paranthoën’s method
redirects edges only to inner nodes that have been visited earlier during the
prefix traversal. The final DFA is then obtained by setting the initial state to
be the root node and choosing uniformly at random one possibility of inserting
back edges and selecting final states. Note that this implies in particular that
the probability of a state being final is 1/2.

4.4 Random DFAs and Moore Machines Dedicated to Bernhard
Steffen’s 60th Birthday

On the occasion of Bernhard Steffen’s 60th birthday, we have included four sets
of randomly generated DFAs and Moore machines in our repository:

1. 60 × 60 DFAs with 1 000 states each over the alphabet Σ = {0, 1, . . . , 19};
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2. 60 × 60 DFAs with 2 000 states each over the alphabet Σ = {0, 1, . . . , 9};
3. 60 × 60 Moore machines with 1 000 states each over the input alphabet Σ =

{0, 1, . . . , 19} and output alphabet Γ = Σ; and
4. 60 × 60 Moore machines with 2 000 states each over the input alphabet Σ =

{0, 1, . . . , 9} and output alphabet Γ = Σ.

The number of states and the number of elements in the input/output alphabets
of these automata were chosen to be challenging, though still manageable for
state-of-the-art algorithms.

All DFAs were generated using libalf’s [11] off-the-shelf implementation of
Champarnaud and Paranthoën’s method. To generate Moore machines, we used
the following two-step process: first, we randomly generated a DFA using Cham-
parnaud and Paranthoën’s method, which serves as the LTS underlying our
Moore machines; second, we assigned to each state an output symbol that was
drawn uniformly at random from the output alphabet. Note that the second
step is in fact a generalization of the way Champarnaud and Paranthoën select
final states, which is essentially by flipping a fair coin for each state. As with all
methods described in this section, however, our DFAs and Moore machines are
accessible but might not be minimal.

5 Conclusions

Many of the benchmark models in our repository have clear practical relevance,
e.g., they helped to reveal standard violations in network protocols and eliminate
bugs in industrial software. Nevertheless, the benchmarks are surprisingly small:
several models have less than ten states and our largest models only have a few
thousand states. A possible explanation is that model learning and testing typi-
cally focus on a single component (e.g., a TCP server) and there is already some
implicit abstraction in the selection of the interface. This should be contrasted
with benchmarks used for explicit model checking, which typically focus on the
behavior of networks of components, and have millions of states.

Even though our benchmarks are small, they still pose enormous challenges
for state-of-the-art automata learning and conformance testing tools. In prac-
tice, conformance testing algorithms often have difficulties to find subtle bugs in
implementations for models with more than say a hundred states and a dozen
inputs. For instance, with 3.410 states and 77 inputs the ESM printer controller
model is at the limit of what current algorithms can handle [62]. In particular,
state-of-the-art techniques are unable to learn models of the printer controller for
slightly different configurations of the same software. Also, input/output inter-
actions and resets of software and hardware often take a significant amount of
time. For instance, in the case study of the interventional X-ray system [60], it
took up to 9 hours to learn models with up to 9 states and 12 inputs. This was
because running a single test sequence took on average about 10 seconds and a
reset of the implementation took about 5 seconds. This means that any reduc-
tion of the number of queries needed for learning and testing reliable models has
immediate practical relevance. Clearly, a comprehensive evaluation of existing
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learning and testing algorithms on our benchmarks is an important direction for
future research.

Finally, we would like to encourage all our colleagues to contribute new bench-
marks to the repository! Our automata wiki is built using the PmWiki software,
which makes it easy to add new benchmarks.
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