Unusual spin properties of InP wurtzite nanowires revealed by Zeeman splitting spectroscopy

D. Tedeschi, 1 M. De Luca, 1,2 P. E. Faria Junior, 3 A. Granados del Águila, 4,5 Q. Gao, 6 H. H. Tan, 5 B. Schattschneider, 3,4 P. C. M. Christianen, 4 C. Jagadish, 5 J. Fabian, 1,3 and A. Polimeni 1,4
1Dipartimento di Fisica, Sapienza Università di Roma, 00185 Roma, Italy
2Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
3Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
4High Field Magnet Laboratory (HFML – EMFL), Radboud University, NL-6525 ED Nijmegen, The Netherlands
5Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia

(Rceived 27 October 2018; published 24 April 2019)

The knowledge of the value and anisotropy of the gyromagnetic factor in semiconducting nanowires (NWs) is crucial for their potential applications in several fields, such as spintronics and topological quantum computation. Here, we present a complete experimental and theoretical investigation of the Zeeman splitting of the fundamental exciton transition in an important material system: wurtzite (WZ) InP NWs. The excitonic g factors are derived by the Zeeman splitting of the spin levels observed by photoluminescence measurements under magnetic fields \(\vec{B} \) up to 29 T. In addition to being about three times greater than in zincblende InP, the g factor in the WZ phase is strongly anisotropic (50%) upon variation of the direction of \(\vec{B} \) from parallel to perpendicular to the NW axis. Moreover, it exhibits a marked sublinear dependence on \(\vec{B} \) whenever \(\vec{B} \) points along the NW axis, a feature common to other non-nitride III-V WZ NWs but never properly understood. All these features are well accounted for by a realistic \(k \cdot p \) modeling of the Landau levels in WZ InP with the envelope function approximation including excitonic effects. The nonlinearity is spin dependent and due to the coupling between the heavy-hole- and light-hole-like Landau levels. This is indeed a general signature of the bulk WZ structure not requiring quantum confinement nor NW geometry, and is demonstrated to hold also for GaAs, InAs and GaN WZ crystals as reported by Faria Junior et al. [Phys. Rev. B, present issue]. Our study solves the outstanding puzzle of the nonlinear Zeeman splitting found in several III-V WZ NWs.

DOI: 10.1103/PhysRevB.99.161204

The spin properties (such as value and anisotropy of the g factor) of semiconducting nanowires (NWs) are extremely important for the research fields of spintronics [1] and topological quantum computation [2]. For instance, in many studies of Majorana bound states based on a semiconductor NW-superconductor heterostructure, the ability to realize the topological phase in the proximitized NW depends on the interplay between the proximity-induced gap and the effective Zeeman energy; this latter quantity being dependent on the NW g factor [2]. Additionally, the g factor is quite sensitive to the changes occurring in the band structure of a crystal upon the interaction with foreign atoms [3]. While the spin properties of III-V NWs with a zincblende (ZB) crystal structure are available from the same material in the bulk form, this is not the case of NWs with the wurtzite (WZ) structure, as WZ has no bulk counterpart in many important III-V semiconductors, such as GaAs, InP, and InAs. Moreover, the g-factor dependence on the relative orientation between \(\vec{B} \) and specific crystallographic directions can provide insightful information about the symmetry characteristics of the underlying electronic structure [4–6]. Indeed, in the case of \(C_{6v} \) symmetry pertinent to the WZ, the Zeeman split components of the exciton differ considerably depending on the experimental configuration employed [7–9]:

\[
\Gamma_{5/6}^{E} - DS_{F} = S \cdot \mu_{B} |S_{e,||} - g_{h,||}| \vec{B}, \quad \text{for} \quad \vec{B} \parallel \vec{q} \parallel \hat{c} \quad \text{(Faraday),} \\
\Gamma_{5/6}^{E} - DS_{V} = S \cdot \sqrt{\Delta_{56}^{2} + \frac{\mu_{B}^{2} g_{c,\perp}^{2}}{\mu_{B}^{2} g_{e,\perp}^{2}}} \vec{B}, \quad \text{for} \quad \vec{B} \perp \vec{q} \parallel \hat{c} \quad \text{(Voigt),}
\]

where \(S \) is the spin vector component \((S = \pm \frac{1}{2}) \), \(\mu_{B} \) is the Bohr magneton, \(\vec{q} \) is the emitted photon wave vector, \(\hat{c} \) is the [0001] axis of the WZ lattice (corresponding to the axial direction in NWs, see insets in Fig. 1), and \(\Delta_{56} \) is the electron-hole exchange energy separating spin-allowed \(\Gamma_{5} \) (bright) and spin-forbidden \(\Gamma_{6} \) (dark) excitons [10]. \(\Gamma_{5/6} \) is the mixed state resulting when an external perturbation (e.g., a magnetic field) breaks the WZ crystal symmetry [7–9]. Finally, \(DS_{F/V} \) is the exciton diamagnetic shift relative to the Faraday (F, \(\vec{B} \parallel \vec{q} \)) and Voigt (V, \(\vec{B} \perp \vec{q} \)) configurations. “e” and “h” refer to electron and hole parameters. Clearly, a linear and quasilinear...
dependence on B is expected for $\vec{B} \parallel \vec{q}$ and $\vec{B} \perp \vec{q}$, respectively, each being ruled by a different g factor (labeled as g_j and g_l, respectively). Departures from these behaviors may occur whenever g is field dependent, a case observed in quantum wells and ascribed to the coupling between heavy- and light-hole subbands [11–15]. No similar effects were reported in bulk materials, while a B-dependent g was first observed in WZ NWs (InP, GaAs, and InGaAs) [9,16,17], but never modeled. Since the size ($\geq 100 \text{ nm}$) of those NWs rules out the carrier quantum confinement effect, the observation of the B dependence of the g factor has to be attributed exclusively to the WZ phase and not to the NW shape/size.

Here, we measured by magneto-photoluminescence (PL) and modeled with a multi band $k \cdot p$ theory the exciton Zeeman splitting (ZS) in WZ NWs. We focus on InP NWs, which is the NW III-V system where most of the main band structure properties have been best established to date [18]. Magnetic fields up to 29 T were used in Faraday and Voigt geometries. In the latter case, the exciton ZS follows Eq. (2)

$$Magnetic fields up to 29 \text{ T} were used in Faraday and Voigt which is the NW III-V system where most of the main band Zeeman splitting (ZS) in WZ NWs. We focus on InP NWs, with k and modeled with a multi band dependence on B is expected for $\vec{B} \parallel \vec{q}$ and $\vec{B} \perp \vec{q}$, respectively, each being ruled by a different g factor (labeled as g_j and g_l, respectively). Departures from these behaviors may occur whenever g is field dependent, a case observed in quantum wells and ascribed to the coupling between heavy- and light-hole subbands [11–15]. No similar effects were reported in bulk materials, while a B-dependent g was first observed in WZ NWs (InP, GaAs, and InGaAs) [9,16,17], but never modeled. Since the size ($\geq 100 \text{ nm}$) of those NWs rules out the carrier quantum confinement effect, the observation of the B dependence of the g factor has to be attributed exclusively to the WZ phase and not to the NW shape/size.

Here, we measured by magneto-photoluminescence (PL) and modeled with a multi band $k \cdot p$ theory the exciton Zeeman splitting (ZS) in WZ NWs. We focus on InP NWs, which is the NW III-V system where most of the main band structure properties have been best established to date [18]. Magnetic fields up to 29 T were used in Faraday and Voigt geometries. In the latter case, the exciton ZS follows Eq. (2) with $g_{e,\perp} = 1.29$ in Voigt.

dependence on B is expected for $\vec{B} \parallel \vec{q}$ and $\vec{B} \perp \vec{q}$, respectively, each being ruled by a different g factor (labeled as g_j and g_l, respectively). Departures from these behaviors may occur whenever g is field dependent, a case observed in quantum wells and ascribed to the coupling between heavy- and light-hole subbands [11–15]. No similar effects were reported in bulk materials, while a B-dependent g was first observed in WZ NWs (InP, GaAs, and InGaAs) [9,16,17], but never modeled. Since the size ($\geq 100 \text{ nm}$) of those NWs rules out the carrier quantum confinement effect, the observation of the B dependence of the g factor has to be attributed exclusively to the WZ phase and not to the NW shape/size.

Here, we measured by magneto-photoluminescence (PL) and modeled with a multi band $k \cdot p$ theory the exciton Zeeman splitting (ZS) in WZ NWs. We focus on InP NWs, which is the NW III-V system where most of the main band structure properties have been best established to date [18]. Magnetic fields up to 29 T were used in Faraday and Voigt geometries. In the latter case, the exciton ZS follows Eq. (2) with $g_{e,\perp} = 1.29$ in Voigt.

The spectra were filtered by circular polarization. The different components are indicated by colored lines. Each $B \neq 0$ T spectrum has been redshifted by the corresponding diamagnetic shift. (b) Same as (a) for the Voigt $\vec{B} \perp \vec{q}/\hat{\epsilon}$ geometry. Insets: scanning electron microscopy images of the SAE NWs (scale bar is 1 μm) with illustrated experimental geometry. (c) Energy of the free-exciton components displayed in panels (a) and (b) after subtraction of the diamagnetic shift (DS, $i = F, V$): Faraday, full triangles; Voigt, empty triangles. Solid lines are the theoretical values obtained via Eq. (1) with the calculated $|g_{e,1} - g_{h,1}| = 4.66$ in Faraday. Dashed lines are fittings to the data via Eq. (2), using the calculated $g_{e,\perp} = 1.29$ in Voigt.

The spectra were filtered by circular polarization. The different components are indicated by colored lines. Each $B \neq 0$ T spectrum has been redshifted by the corresponding diamagnetic shift. (b) Same as (a) for the Voigt $\vec{B} \perp \vec{q}/\hat{\epsilon}$ geometry. Insets: scanning electron microscopy images of the SAE NWs (scale bar is 1 μm) with illustrated experimental geometry. (c) Energy of the free-exciton components displayed in panels (a) and (b) after subtraction of the diamagnetic shift (DS, $i = F, V$): Faraday, full triangles; Voigt, empty triangles. Solid lines are the theoretical values obtained via Eq. (1) with the calculated $|g_{e,1} - g_{h,1}| = 4.66$ in Faraday. Dashed lines are fittings to the data via Eq. (2), using the calculated $g_{e,\perp} = 1.29$ in Voigt.

The spectra were filtered by circular polarization. The different components are indicated by colored lines. Each $B \neq 0$ T spectrum has been redshifted by the corresponding diamagnetic shift. (b) Same as (a) for the Voigt $\vec{B} \perp \vec{q}/\hat{\epsilon}$ geometry. Insets: scanning electron microscopy images of the SAE NWs (scale bar is 1 μm) with illustrated experimental geometry. (c) Energy of the free-exciton components displayed in panels (a) and (b) after subtraction of the diamagnetic shift (DS, $i = F, V$): Faraday, full triangles; Voigt, empty triangles. Solid lines are the theoretical values obtained via Eq. (1) with the calculated $|g_{e,1} - g_{h,1}| = 4.66$ in Faraday. Dashed lines are fittings to the data via Eq. (2), using the calculated $g_{e,\perp} = 1.29$ in Voigt.
circularly dichroic, with the Zeeman-split levels being discernable by polarization optics. Γ_3 denotes the symmetry of the bright exciton formed by the conduction Γ_{7C} and valence Γ_{9V} band states of the WZ [26,27]. The spectra are shown only for PL detected selecting σ^+ circularly polarized light for clarity reasons (σ^- detection is shown in Ref. [28]).

At zero field, the FE lineshape exhibits a doublet structure caused by the scattering of the excitons with donor impurities [9,29]. These two components [named $\Gamma_5(U)$ and $\Gamma_5(L)$ for upper and lower energy, respectively] are regarded as two distinct exciton distributions. With increasing B, $\Gamma_5(U)$ and $\Gamma_5(L)$ both shift in energy and split into Γ_5^\pm Zeeman states (highlighted by solid lines). The corresponding diamagnetic shift (evaluated and discussed in Ref. [9]) has been subtracted to each $B \neq 0$ spectrum to highlight the ZS of the U and L components. In panel (b) we have $B \perp \hat{c}$//q and Γ_3 and Γ_6 excitons are mixed by the field and the resultant state is indicated as $\Gamma_{5/6}$ [4,26,27]. Each $B \neq 0$ spectrum has been redshifted by the corresponding diamagnetic shift to focus on the ZS only [9]. Due to the relative orientation between B and \vec{q}, no PL circular dichroism is observed [4,8,10,26] and circular polarization filtering cannot highlight the ZS. However, the narrow lineshape of the PL bands makes it still clearly visible. Indeed, the PL peaks corresponding to the $\Gamma_{5/6}^\pm$ branches are highlighted by solid lines. A bound exciton (BE) is also observed for $B \sim 10 T$ [9]. Notice that in both geometries there is a narrowing of PL bands with increasing B. This is caused by the B-induced quantization of the carriers’ energy into LLs, namely, by a modification of the density of states from three-dimensional (3D)- to 1D-like [30–33].

In order to describe the nonlinear features observed in Faraday, we must move beyond the linear g factor picture described by the simple Eq. (1). Thus, we use a more general approach combining the $k \cdot p$ method with the envelope function approximation [23,35]. The total single-particle Hamiltonian of the system is

$$H_{\text{bulk}} = -i\vec{\nabla} + \frac{e}{\hbar} \vec{A} \cdot \vec{r} + \frac{\mu_B}{2} g_\sigma \vec{\sigma} \cdot \vec{B},$$

where H_{bulk} is the $8 \times 8 k \cdot p$ bulk Hamiltonian for InP WZ [21]. \vec{A} is the vector potential, g_σ is the bare electron g factor, and $\vec{\sigma}$ is the Pauli matrices written in the bulk basis set, i.e., $\vec{\sigma} \cdot \vec{B}$ is the Zeeman term that takes into account only the spins of the bulk Bloch functions. As discussed, we treat the NWs as bulk [36,37]. For a magnetic field the vector potential has a spatial dependence, which we can choose to be only in one dimension for a suitable gauge (for Voigt $B = B_0 \hat{x} \Rightarrow A = B y \hat{z}$; for Faraday $B = B_0 \hat{z} \Rightarrow A = B x \hat{y}$). As a consequence, we have two quantum numbers in k space: k_\parallel, parallel to \vec{B}, and k_\perp, parallel to \hat{A} and thus the carrier wave vector is two dimensional ($k_\parallel - k_\perp$ plane for Faraday and $k_\parallel - k_\perp$ plane for Voigt). This is similar to what happens in the description of a quantum well profile [24,38,39], except that the quantum confinement in our case arises from the spatial dependence of the vector potential. This latter eventually provides the LL spectrum of the system. Because of the multiband character of the bulk Hamiltonian, we cannot find analytical solutions. However, we can obtain the numerical solutions using a finite-difference method in real space [24]. The resulting solution of the Hamiltonian in Eq. (3) gives the LL energies $E_n(k_\parallel, k_\perp)$ with wave functions $\psi_{n, k_\parallel, k_\perp}$. Details of the calculations are in Ref. [28].

Figure 1(c) shows the field evolution of the Zeeman-split states resulting from the spectra displayed in Figs. 1(a) and 1(b) and evaluated by the spectrum second derivative [9]. In Voigt geometry (open triangles), the Zeeman-split components can be resolved at all fields only for the $\Gamma_{5/6}(L)$ exciton distribution. The two $\Gamma_{5/6}^\pm$ components shift at the same rate following Eq. (2) at all fields. The dashed lines are fittings to the data with only one free parameter: the electron-hole Γ_{56} factor. The presence of a field-dependent g factor solely in Faraday geometry suggests that the valence band states ought to be responsible for such a behavior. Indeed, only in Faraday geometry the hole g factor plays a role in the ZS, as apparent from Eqs. (1) and (2).
It is now important to discuss the origin of the nonlinear dispersion that appears in the VB in both configurations. As shown in Eq. (7) in Ref. [28], the total solution of the coupled set of equations contained in Eq. (3) is a linear combination of wave functions from the bulk energy bands, thus leading to different superpositions for different LLs. Specifically regarding the first LL of the VB, we found that the LH contribution increases with magnetic field. At 30 T, there is \(~8\%\sim1\%) of LH character for the Faraday (Voigt) configuration that indicates the mixing between the HH and LH LLs. The probability densities of the actual wave functions that remain in the superposition of the first LL are given in the inset of Fig. 2(b) for \(B = 30\) T.

Therefore, the interplay between the WZ symmetry, embedded in the \(k \cdot p\) Hamiltonian, and the break of time-reversal symmetry due to the magnetic field, gives rise to the observed LL dispersion presented in Fig. 2, which is very peculiar for a bulk-like system. In Faraday configuration, the sizeable nonlinear features arise from the LL branch with spin aligned to \(B\). Such a spin-dependent nonlinearity can be understood by looking at the leading terms of the Hamiltonian (specifically, the second order \(k \cdot p\) term) [21]. Let us indicate with \(n\) the LLs of the single bands (namely, the HH and LH VBs) [43]. In a simple picture, the coupling term between spins up connects HH states (pertinent to band A in WZ), having LH LLs. Since \(n < 0\) are not allowed indices to the LLs, spin-down interactions are suppressed. In Voigt configuration, there is no spin-dependent coupling (both spin components contribute equally) and thus the coupling to the LH state is reduced, hence providing a much smaller nonlinear dispersion than in the Faraday configuration. This explains why Eq. (2) reproduces quite well the Voigt data, while Eq. (1) does not reproduce the Faraday data. To illustrate the coupling between HH and LH states in the presence of magnetic field, we depict an analogy with optical spin orientation in WZ materials [28,44]. This coupling between VB states is indeed a general mechanism that triggers the nonlinearity in other WZ materials, as discussed in Ref. [19].

We move now to the total excitonic ZS obtained in Fig. 1(c) as energy difference between spin components with opposite helicity. In order to provide a reliable comparison to the experimental results, we included the effects of the exciton interaction within the dielectric environment of WZ [45] by numerically solving the effective BSE [25,46], for different values of \(B\) (details in Ref. [28]).

The calculated exciton ZS is shown in Fig. 3 (solid lines) in comparison with the experimental data (colored symbols)
and the single-particle LLs (dashed lines) at $\vec{k} = 0$ (extracted from Fig. 2) [47]. The single-particle curve does not consider the effects of nonzero k values, and therefore does not provide the full quantitative account of the data, but still provides excellent qualitative agreement and a clear physical description [48]. Using the robust approach of the effective BSE for excitons, we can reproduce the experimental exciton ZS in Faraday and Voigt geometries very well. Contrasting with the single-particle curve at $\vec{k} = 0$, the exciton calculations probe via Coulomb interaction nonzero k values of the band structure that shows different ZS [49]. Ultimately, the Coulomb interaction averages (with particular weights obtained via the BSE) the contributions of different k points and consequently brings the values significantly closer to the experimental curve. We emphasize that remarkable agreement is attained without any free parameters. In addition, the same excellent agreement holds also for VLS InP NWs [28].

In conclusion, we presented a full description of the spin properties of WZ InP NWs under external magnetic field. We found a markedly anisotropic g_{exc} in accordance with the symmetry properties of the WZ lattice. In the Faraday configuration, the g_{exc} value is about three times larger than in ZB InP (see our values measured in a InP epilayer [28]) and therefore it becomes as high as in materials with quite a large exciton g factor, such as monolayer WS$_2$ [50]. Another important difference between WZ and ZB InP is the absence of nonlinearity in the ZS of the ZB exciton, confirmed by our theoretical model [28].

The quantitative agreement between the $k \cdot p$ modeling and experimental ZS data highlighted key aspects regarding the influence of the magnetic field on the excitons in WZ NWs. First, admixing effects between LLs of the A and B VBs occurred at fields as low as 5 T and induced a nontrivial strong bowing of the holes’ ZS. Second, the inclusion of the electron-hole Coulomb interaction provided a realistic quantitative account of the experimental data due to the contribution of non-Γ states forming the exciton levels. These properties appear to be general features of WZ crystals and may play a relevant role in several WZ NW systems, which could become the building blocks of topological quantum computers. In fact, such nonlinear features are also present in other WZ materials, for instance InAs, GaAs and even GaN, as shown by Faria Junior et al. [19], employing the theoretical approach developed here in this study.

We acknowledge the support of HFML-RU/FOM, a member of the European Magnetic Field Laboratory (EMFL). Part of this work has been supported by EuroMagNET II under the EU Contract No. 228043. D.T. and M.D.L. acknowledge funding by Sapienza Università di Roma under the “Avvio alla Ricerca” grants. A.P. acknowledges financial support from “Awards 2014” and “Ateneo” funding schemes by Sapienza Università di Roma. M.D.L. acknowledges support from the Ambizione grant (Grant No. PZ00P2_179801) by the Swiss National Science Foundation. A.G.D.A acknowledges the financial support of the Presidential Postdoctoral Fellowship program of the Nanyang Technological University. P.E.F.J. and J.F. acknowledge the financial support of the Alexander von Humboldt Foundation, CAPES (Grant No. 99999.000420/2016-06) and SFB 1277 (B05). The Australian authors acknowledge the Australian Research Council for financial support and Australian National Fabrication Facility and Australian Microscopy and Microanalysis Research Facility for providing access to some of the equipment used in this work.

[12] J. Jadczyk, M. Kubisa, K. Ryczko, L. Bryja, and M. Potemski, High magnetic field spin splitting of excitons in...

[40] The spin projection is given with respect to the field direction, regardless of Faraday or Voigt configurations: parallel (antiparallel) spin means spin pointing in the same (opposite) direction of B.

[41] In general, g factors are positive if the orbital (and spin-orbital) effects are smaller than the bare carrier g factor, g, so that $g_{\text{tot}} = g + g_{\text{orbital}} > 0$, in which g_{tot} is the total g factor and g_{orbital} is the orbital (and spin-orbital) contribution. For a more detailed treatment see Eqs. (4) and (5) in Ref. [28].

[42] These branches are green in Fig. 2(a) because the calculated components of the spin along B are very small (0.1 for the upper branch and -0.04 for the lower branch at 30 T), but since the spin projections although small are nonzero, they still have a direction with respect to B, and this direction is represented by the red and blue arrows.

[43] Since n is a quantum number associated with the number of nodes of the wave function of the noninteracting HH and LH LLs, our calculations show that n is equal to 0 for HH (0 nodes) and 2 for LH (2 nodes); see the inset in Fig. 2(b). Thus, in Fig. 2, the first LL pertinent to the valence band consists of a superposition of different ns with different band characters (HH and LH) and thus n is no longer a good quantum number to label the LLs [hence our choice of label L in $\psi_{n;\lambda_\parallel,\lambda_\perp}$].

[47] For the Voigt configuration we also subtracted the electron-hole exchange energy that is not considered in the present theory.

[48] It is also worth mentioning that although the single-particle description does not provide the best quantitative agreement with the experimental data, it still offers a reliable qualitative behavior that could be used to explore these nonlinear features under different experimental conditions or in different material systems.

[49] For values of magnetic field below 8 T, additional LLs are required to provide a reliable convergence of the excitonic effects, which would drastically increase the computational time without adding new physics to the description. Moreover, we can observe that decreasing the magnetic field the exciton curves converge to the single-particle result.