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Abstract Age-related macular degeneration (AMD) is a progressive disease of the retinal

pigment epithelium (RPE) and the retina leading to loss of central vision. Polymorphisms in genes

involved in lipid metabolism, including the ATP-binding cassette transporter A1 (ABCA1), have

been associated with AMD risk. However, the significance of retinal lipid handling for AMD

pathogenesis remains elusive. Here, we study the contribution of lipid efflux in the RPE by

generating a mouse model lacking ABCA1 and its partner ABCG1 specifically in this layer. Mutant

mice show lipid accumulation in the RPE, reduced RPE and retinal function, retinal inflammation and

RPE/photoreceptor degeneration. Data from human cell lines indicate that the ABCA1 AMD risk-

conferring allele decreases ABCA1 expression, identifying the potential molecular cause that

underlies the genetic risk for AMD. Our results highlight the essential homeostatic role for lipid

efflux in the RPE and suggest a pathogenic contribution of reduced ABCA1 function to AMD.

DOI: https://doi.org/10.7554/eLife.45100.001

Introduction
Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly population

of Western countries (Klein et al., 2013; Joachim et al., 2015) and its socio-economic impact is
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predicted to dramatically increase in the next decades (Wong et al., 2014). AMD is a progressive

disease of the macula, the central cone-rich region of the retina, and can develop into the ‘dry’ or

‘wet’ form in the advanced stage. Dry AMD is characterized by atrophy of the retinal pigment epi-

thelium (RPE) and photoreceptor degeneration, while wet AMD exhibits pathological neo-vasculari-

zation of the retina originating from the choroid. Both conditions eventually result in loss of RPE and

photoreceptors with deleterious consequences on high acuity and color vision (Bird et al., 1995;

Lim et al., 2012).

The etiology of AMD is complex and multifactorial but several lines of evidence associate the dis-

ease with local disturbances of lipid metabolism in the ageing human eye (Pauleikhoff et al., 1990).

Lipids physiologically accumulate in extracellular deposits known as drusen and sub-retinal drusenoid

deposits (SDDs) on the basal and apical side of the RPE, respectively. Drusen contain polar lipids,

such as un-esterified (free) cholesterol (UC) and phosphatidylcholine (PC), as well as neutral lipids,

such as cholesteryl esters (CEs), and several lipid-binding proteins (apolipoproteins) (Wang et al.,

2010; Curcio et al., 2011). The more recently identified SDDs, instead, seem to contain UC only,

together with apolipoproteins (Rudolf et al., 2008; Spaide et al., 2018). Drusen (Sarks, 1980) and

SDDs (Zweifel et al., 2010) are considered hallmarks of AMD but their actual origin and contribu-

tion to the pathology remain unknown. Recently, primary RPE cells isolated from AMD patients, but

not from control subjects, were shown to accumulate intracellular lipids in vitro (Golestaneh et al.,

2017), suggesting altered lipid metabolism in diseased cells.

Genome-wide association studies have linked AMD to several genes involved in generation and

remodeling of high-density lipoproteins (HDLs), namely ATP-binding cassette transporter A1

(ABCA1), apolipoprotein E (APOE), cholesteryl ester transfer protein (CETP) and hepatic lipase C

(LIPC) (Fritsche et al., 2016). A recent review (van Leeuwen et al., 2018) summarizes contradictory

results from different studies concerning the association between systemic lipid levels and the risk of

developing AMD and links long-term elevated plasma levels of HDL-cholesterol to increased AMD

risk. However, it remains unknown whether genes involved in lipid metabolism exert a local and/or a

systemic pathogenic effect on the retina.

A gene of interest in this context is ABCA1, encoding a transmembrane lipid transporter which

generates HDLs together with its partner ABCG1. Either transporter uses ATP to flip lipids, mainly

UC and phospholipids (PLs), but also sphingomyelins (SMs) and oxysterols, from the inner leaflet of

the plasma membrane to extracellular lipophilic acceptors such as apolipoproteins or nascent HDLs.

ABCA1 initiates the formation of HDL by direct interaction with naked apolipoproteins, while

ABCG1 requires a lipidated particle (Cavelier et al., 2006; Quazi and Molday, 2011; Li et al.,

2013). Since UC is one of the best established substrates of the two transporters, the ABCA1/

ABCG1 pathway is also known as ‘active cholesterol efflux’. The fundamental role of this pathway for

cellular lipid homeostasis is highlighted by macrophage foam cell formation (Tabas, 2002;

Favari et al., 2015) and by the progressive and age-dependent lung phenotype, including lipid

accumulation in alveolar macrophages and pneumocytes, lung dysfunction and inflammation

(Chai et al., 2017), in mice lacking ABCA1, ABCG1 or both. Inhibition of cholesterol efflux leads to

cell dysfunction also in pancreatic beta cells (Kruit et al., 2012), neurons (Karasinska et al., 2013)

and liver cells (Arguello et al., 2015). Liver X receptors (LXR) a and b are the upstream regulators of

the pathway: these two transcription factors are activated upon binding of oxysterols that accumu-

late in conditions of increased UC and upregulate expression of both ABCA1 and ABCG1

(Schultz et al., 2000).

Ubiquitous expression of ABCA1 and ABCG1 has been reported in the mouse, monkey and

human retina, including the RPE (Tserentsoodol et al., 2006; Duncan et al., 2009; Zheng et al.,

2012; Ananth et al., 2014; Zheng et al., 2015; Storti et al., 2017). The function of ABCA1 and

ABCG1 in the RPE was previously investigated in vitro (Ishida et al., 2006; Duncan et al., 2009;

Biswas et al., 2017; Storti et al., 2017; Lyssenko et al., 2018) and shown to mediate transport of

UC to ApoA-I, ApoE, HDLs and human serum on both sides of the RPE. This was true for plasma

lipoprotein- as well as outer segment (OS)-derived cholesterol. However, the relevance of active cho-

lesterol efflux for the RPE in vivo remains unknown. This, together with the fact that the RPE needs

an efficient metabolism to handle large amounts of lipids coming from daily OS phagocytosis

(Strauss, 2005), prompted us to generate an RPE-specific Abca1;Abcg1 double knockout (KO)

mouse. We characterize the retinal phenotype of this mouse model and provide evidence
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suggesting a correlation between AMD-associated ABCA1 genotypes and expression levels of this

gene in human cells.

Results

Generation of RPE-specific Abca1;Abcg1 double KO mice (RPEDAbca1;

Abcg1)
Expression of ABCA1 and ABCG1 throughout the retinal layers, including the RPE, was confirmed

by immunofluorescence (IF) in wild type mouse retinal sections (Figure 1A) (Ananth et al., 2014). As

previously described for RPE cells in vitro (Storti et al., 2017), no co-localization with ezrin (EZR), a

marker of the apical microvilli of the RPE, was observed. In order to study the function of ABCA1/

ABCG1 in the RPE, we used BEST1Cre mice to delete floxed sequences from Abca1flox/flox;Abcg1-
flox/flox mice and generate RPE-specific Abca1;Abcg1 double KOs (called RPEDAbca1;Abcg1, see ‘Mate-

rials and methods’, Table 1 and Figure 1—figure supplement 1). BEST1Cre mice express Cre

recombinase under control of the human bestrophin 1 (BEST1, also known as vitelliform macular dys-

trophy 2, VMD2) promoter, resulting in post-natal CRE activity specifically in the RPE

(Iacovelli et al., 2011). Although both strains were used before to successfully generate a number of

mouse models (Westerterp et al., 2012; Yao et al., 2015; Westerterp et al., 2016;

Sundermeier et al., 2017; Ban et al., 2018a; Ban et al., 2018b; Eblimit et al., 2018; Roman et al.,

2018), we nonetheless validated the specificity of Cre expression in RPEDAbca1;Abcg1 mice. High

mRNA levels for Cre were detected in the eyecup (RPE/choroid) with only a minimal amount of tran-

scripts found in the neural retina, probably due to contamination during eye dissection (Figure 1B).

To confirm presence of CRE protein in the RPE, we performed IF staining on retinal sections.

Although some un-specific staining was observed in the inner retina, CRE-positive nuclei were

detected only in the RPE layer of RPEDAbca1;Abcg1 but not of control (Ctr, Cre-negative) mice

(Figure 1C). Finally, we checked for successful CRE-mediated excision of floxed fragments by ampli-

fying Abca1 and Abcg1 specific sequences from genomic DNA extracted from retina and eyecups

(including RPE) of RPEDAbca1;Abcg1 and Ctr mice. As expected, deletion of Abca1 and Abcg1 was

observed in eyecups, but not neural retinas, of Cre-positive mice (Figure 1D). Even though end-

point PCR reactions may not be used to quantify products, the highly variable signal intensities of

the amplified Abca1 and Abcg1 excised fragments suggested mouse-to-mouse variability in Cre

expression (Figure 1B and data not shown) and/or in deletion efficiency (Figure 1D). Of note, the

BEST1Cre mouse is known to have patchy and variable Cre expression in the RPE (Iacovelli et al.,

2011; Sundermeier et al., 2017), which could partially explain decreased rather than abolished

expression of Abca1 and Abcg1 mRNA in eyecups of RPEDAbca1;Abcg1 mice (Figure 1—figure sup-

plement 2).

Lack of Abca1 and Abcg1 in the RPE leads to morphological alterations
and intracellular lipid accumulation
Already at 2 months of age, the fundus of RPEDAbca1;Abcg1 but not of Ctr mice showed a dotted pat-

tern, possibly reflecting alterations in the pigmentation of RPE cells (Figure 2A). Light and electron

microscopy on retinal sections revealed an irregular apical RPE border and accumulation of intracel-

lular material resembling lipid droplets (LDs) in RPEDAbca1;Abcg1 but not Ctr mice (Figure 2B and C).

Staining with OilRedO (ORO) in retinal sections (Figure 2D) and LipidTOX in RPE flat mounts

(Figure 2E) revealed strong lipid accumulation in CRE-positive RPE cells of RPEDAbca1;Abcg1 mice.

CRE-negative RPE cells and other retinal layers were ORO-negative and served as internal controls

demonstrating the specificity of lipid accumulation in RPE cells lacking Abca1 and/or Abcg1. Both

ORO and LipidTOX stain neutral lipids, which constitute the hydrophobic core of LDs

(Olofsson et al., 2009). Moreover, actin staining of RPE flat mounts showed morphological irregular-

ities of CRE-positive cells in RPEDAbca1;Abcg1 mice when compared to the regular, mainly hexagonal

shape of Ctr cells (Figure 2F). These morphological irregularities progressively worsened and were

more pronounced at 4–6 months of age (Figure 3). In particular, double staining for the tight junc-

tion protein zona occludens 1 (ZO-1) and the Wnt signaling mediator b-catenin (b-cat) in mutant cells

revealed re-localization of b-cat from the plasma membrane to the cytosol, a feature of disorganized

RPE (Yang et al., 2018). Pigment epithelial cells in 4 months old RPEDAbca1;Abcg1 mice were
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Figure 1. Generation of RPEDAbca1;Abcg1 mice. (A) IF staining for ABCA1 (yellow), ABCG1 (violet) and the RPE apical marker EZR (white) in retinas of 2-

months-old wt mice. Lower panels show magnification of the RPE layer. Nuclei were counterstained with DAPI (blue). Ch: choroid; RPE: retinal pigment

epithelium; ONL: outer nuclear layer; INL: inner nuclear layer; GCL: ganglion cell layer. (B) Cre mRNA levels were measured by semi-quantitative real-

time PCR in neural retinas and eyecups (RPE/choroid) from 2-months-old RPEDAbca1;Abcg1 mice. Shown are data from individual samples and

means ± standard deviations (SD, N = 4). Statistics: Student’s t-test; ***: p<0.001. (C) IF staining for CRE (red) in retinal sections from 2-months-old Ctr

and RPEDAbca1;Abcg1 mice: white arrowheads indicate CRE-positive nuclei in the RPE of mutant mice. Nuclei were counterstained with DAPI (blue). Note

the non-specific signal in the inner retina. Representative pictures of N = 6 mice. (D) Detection of CRE-mediated excision fragments in Abca1 and

Abcg1 (Abca1/Abcg1 exc) by conventional PCR on genomic DNA from eyecups and neural retinas of Ctr and RPEDAbca1;Abcg1 mice (N = 3). For this

picture, animals showing heterozygous deletion of Abca1/Abcg1 in ear biopsies (see ‘Materials and methods’) were excluded in order to detect

excision truly due to CRE expression in the eye. PCR for the floxed sequences (Abca1/Abcg1 flox) was performed as positive control. Shown are PCR

products run on a 2% agarose gel and visualized with ethidium bromide. Note the lack of the excised fragment in the neural retina. M: DNA size

marker, indicated fragment sizes are shown in base pairs (bp).

DOI: https://doi.org/10.7554/eLife.45100.002

The following figure supplements are available for figure 1:

Figure supplement 1. Genotyping and definition of the mouse models.

DOI: https://doi.org/10.7554/eLife.45100.003

Figure 1 continued on next page
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significantly larger and irregularly shaped (Figure 3A, quantification in 3B and 3C). At 6 months, we

observed areas of dysmorphic RPE with accumulation of intracellular material and areas of RPE atro-

phy with infiltration of inflammatory cells (see below) in mutant but not control mice (Figure 3D and

E). Photoreceptor loss correlated with RPE atrophy (see below). Variability of the phenotype within

the same retina was probably due to patchy Cre expression (Figures 1 and 2). Reduced expression

levels of Cre and the RPE marker monocarboxylic acid transporter 3 (Mct3) further indicated atrophic

RPE at 6 months of age (Figure 3F and G). Loss of RPE cells in aged RPEDAbca1;Abcg1 mice was most

likely a consequence of the lack of ABCA1 and/or ABCG1 activity in RPE rather than of CRE expres-

sion per se, since Cre mRNA levels declined in eyecups of old RPEDAbca1;Abcg1 (Figure 3F) but not

old BEST1Cre mice (Figure 3—figure supplement 1). Similarly, morphological abnormalities of RPE

cells in RPEDAbca1;Abcg1 mice were not due to potential CRE toxicity (Thanos et al., 2012; He et al.,

2014) as BEST1Cre mice only showed minor morphological alterations in the RPE and few bright

spots in the fundus, but no lipid accumulation or functional changes (Figure 3—figure supplement

2). Thus, lack of Abca1 and/or Abcg1 resulted in lipid accumulation in the RPE and led to several

morphological abnormalities that aggravated with time and eventually resulted in RPE cell death.

To exclude developmental effects as a cause for the phenotype, we tested lipid accumulation in

the RPE after inactivation of Abca1 and Abcg1 in adult mice. For this purpose, we injected an

adeno-associated virus (AAV) expressing Cre and green fluorescent protein (GFP) under the control

of the BEST1 promoter (Figure 4A) into the sub-retinal space of adult Abca1flox/flox;Abcg1flox/flox

mice. Although expression levels of GFP were variable and difficult to detect in some individual cells,

LDs were specifically observed in GFP-positive (transduced) cells by LipidTOX staining 10 weeks

after AAV injection (Figure 4B). In addition, RPE cells in the transduced area appeared larger and

less regular than in the non-transduced area, similar to the morphological alterations detected in

RPEDAbca1;Abcg1 mice (Figure 2F). Lipid accumulation in GFP-positive RPE of Abca1flox/flox;Abcg1flox/

flox mice was further confirmed in retinal sections, which showed ORO-positive lipid staining specifi-

cally in the RPE of transduced areas, as well as co-localization of GFP and CRE signals (Figure 4C–

F). Contralateral eyes were injected with phosphate buffer saline (PBS, vehicle control) to check for

any injection-related effects and showed, as expected, no lipid accumulation (not shown). Taken

Figure 1 continued

Figure supplement 2. Gene expression in eyecups of Ctr and RPEDAbca1;Abcg1 mice.

DOI: https://doi.org/10.7554/eLife.45100.004

Table 1. Mice genotypes and nomenclature.

flox/-: detection of floxed and excised (KO) allele in ear biopsy.

Genotype Name

Abca1flox/flox;Abcg1flox/flox Cre-negative controls:
Ctr

Abca1flox/-;Abcg1flox/flox

Abca1flox/flox;Abcg1flox/-

Abca1flox/-;Abcg1flox/-

Abca1flox/flox;Abcg1flox/flox;BEST1Cre RPE-specific double KOs:
RPEDAbca1;Abcg1

Abca1flox/-;Abcg1flox/flox;BEST1Cre

Abca1flox/flox;Abcg1flox/-;BEST1Cre

Abca1flox/-;Abcg1flox/-;BEST1Cre

Abca1flox/flox;Abcg1+/+;BEST1Cre RPE-specific Abca1 single KOs:
RPEDAbca1

Abca1flox/-;Abcg1+/+;BEST1Cre

Abca1+/+;Abcg1flox/flox;BEST1Cre RPE-specific Abcg1 single KOs:
RPEDAbcg1

Abca1+/+;Abcg1flox/-;BEST1Cre

Abca1+/+;Abcg1+/+;BEST1Cre Cre-positive controls:
BEST1Cre

DOI: https://doi.org/10.7554/eLife.45100.005
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Figure 2. Early morphological alterations and intracellular lipid accumulation in RPEDAbca1;Abcg1 mice. (A) Fundus imaging of 2-months-old Ctr and

RPEDAbca1;Abcg1 mice showing altered pigmentation pattern in mutant mice. Corresponding retinal morphology analyzed by light (B) and electron (C)

microscopy revealed alterations of the RPE in RPEDAbca1;Abcg1 mice. Yellow lines in (B) indicate RPE borders. Yellow arrowheads in (C) indicate lipid

droplets. OS: outer segments; N: nucleus. (D) Retinal sections were stained with ORO (red, dye for neutral lipids); nuclei were counterstained with

Figure 2 continued on next page
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together, these data indicated altered morphology and intracellular lipid accumulation in adult RPE

cells lacking Abca1 and/or Abcg1. This phenotype is in agreement with the known function of

ABCA1/ABCG1 as mediators of lipid efflux in the RPE.

Lipid droplets in the RPE of RPEDAbca1;Abcg1 mice are composed mainly
of cholesteryl esters
We next characterized the lipid composition of eyecups from 2-months-old RPEDAbca1;Abcg1 and Ctr

mice. We performed the same analysis on the corresponding neural retinas in order to evaluate pos-

sible effects of impaired lipid transport in the RPE on lipid homeostasis of other retinal cells. Addi-

tionally, plasma samples from the same mice were included to check for presence of any systemic

changes on circulating lipid levels that could contribute to the eye phenotype. We used mass spec-

trometry-based approaches to measure a broad number of lipid classes and species. The analysis

revealed significantly increased concentration of CEs in eyecups of RPEDAbca1;Abcg1 mice. In contrast

UC, PLs, sphingolipids (SLs) including sphingomyelins (SMs) and ceramides (Cer), and glycerolipids

(GLs) including diacylglycerols (DAGs) and triglycerides (TGs) remained unchanged (Figure 5A). All

of the individual CE species analyzed were more abundant in the mutant mice compared to control

littermates. Some CE species were dramatically increased up to 100 fold (Figure 5B), including CEs

containing fatty acid chains typically found in the retina such as palmitic (16:0), oleic (18:1) and doco-

sahexaenoic (22:6) acid, which is the most abundant fatty acid of photoreceptor OS (Fliesler and

Anderson, 1983; Martin et al., 2005; Bretillon et al., 2008). No major difference in the lipid com-

position was detected in the neural retinas of the two strains (Figure 5C), apart from a modest but

significant increase in CE levels. However, the small extent of the increase and the low concentration

(2.7 ± 1.1 pmol/mg protein in the neural retina, 1239.9 ± 955.1 pmol/mg protein in the eyecup,

Supplementary file 1A) suggested a contamination from the RPE during tissue dissection rather

than a real increase in the neural retina. Systemic lipid levels measured in the plasma showed no dif-

ferences between RPEDAbca1;Abcg1 and Ctr mice in any of the considered classes (Figure 5D), sup-

porting a local effect of the lack of Abca1 and Abcg1 in the RPE. The high variability observed in

plasma lipid levels might be explained by the fact that the mice had access to food ad libitum, thus,

in our experiment, lipid intake was uncontrolled. Analysis of lipid composition therefore revealed

prominent accumulation of CEs in the RPE of RPEDAbca1;Abcg1 mice without major alterations of the

neural retina or plasma lipidomes. Absolute concentrations for all of the analyzed lipid classes can

be found in Supplementary file 1A. Finally, we also detected a significant increase in the relative

abundance of the visual cycle intermediates retinyl esters (REs) in eyecups of mutant mice

(Figure 5E).

Functional consequence of lipid accumulation in the RPE
Since RPEDAbca1;Abcg1 mice revealed alterations in RPE morphology and lipid composition, we tested

whether lack of Abca1 and Abcg1 affected function of the epithelium. For this purpose, we investi-

gated rhodopsin (RHO) regeneration kinetics after bleaching, a major task of the RPE in the classical

visual cycle (Strauss, 2005). 2-months-old RPEDAbca1;Abcg1 and Ctr mice had similar dark levels of

RHO, which were bleached with comparable efficiencies (Supplementary file 1B). However, RPE-
DAbca1;Abcg1 mice regenerated RHO slower within the first 30 min after bleaching. After this initial

phase, the amount of regenerated RHO was no longer different between the mice (Figure 6 and

Supplementary file 1B). This suggests an early delay in the visual cycle, probably due to difficulties

with handling the incoming all-trans retinol.

Figure 2 continued

hematoxylin (blue). RPE flat mounts were stained with LipidTOX (red, dye for neutral lipids) and anti-CRE (green) (E) or anti-CRE (red) and phalloidin

(green, staining actin filaments) (F). Nuclei were counterstained with Hoechst. White arrowheads indicate CRE-positive cells showing lipid accumulation

in mutant mice. Representative pictures of N � 3 animals per group. Abbreviations as in Figure 1.

DOI: https://doi.org/10.7554/eLife.45100.006
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Figure 3. Effect of lipid accumulation in the ageing mouse RPE. (A) RPE flat mounts from 4-months-old Ctr and RPEDAbca1;Abcg1 mice were stained for

ZO-1 (red) and b-cat (green). White arrowheads indicate loss of co-localization between ZO-1 and b-cat in mutant RPE. Nuclei were counterstained with

Hoechst. Shown are representative images of N = 3 animals per group. Quantification of cell area (B) and cell shape (C) was performed using ImageJ

on images from ZO-1 stained flat mounts. Corresponding measurements of single analyzed cell can be found in Figure 3—source data 1. Statistics:

Mann-Whitney test; **: p<0.01, ****: p<0.0001. Light microscopy was used to visualize outer retinas of control and RPEDAbca1;Abcg1 mice: shown are

panoramas (D) and RPE at higher magnification (E). Representative images of N � 3 animals per group. Cre (F) and Mct3 (G) mRNA levels were

measured by semi-quantitative real-time PCR in eyecups from Ctr and RPEDAbca1;Abcg1 mice at the indicated ages. Shown are data from individual

samples and means ± SD (N = 3–4). Statistics: one-way ANOVA vs ‘2 months’ of the respective genotype; *: p<0.05, ***: p<0.001. n.d.: not detected.

Abbreviations as in Figure 1.

DOI: https://doi.org/10.7554/eLife.45100.007

The following source data and figure supplements are available for figure 3:

Source data 1. RPE cell Area and shape of RPE cells in RPEDAbca1;Abcg1 and control mice.

DOI: https://doi.org/10.7554/eLife.45100.010

Figure supplement 1. Cre expression in RPEDAbca1;Abcg1 and BEST1Cre mice.

DOI: https://doi.org/10.7554/eLife.45100.008

Figure supplement 2. Absence of retinal phenotype in BEST1Cre mice up to 6 months of age.

DOI: https://doi.org/10.7554/eLife.45100.009
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Lack of Abca1 and Abcg1 in the RPE results in age-dependent retinal
degeneration
Loss of ABCA1 and ABCG1 from mouse RPE resulted in early lipid accumulation, morphological

alterations and atrophy of this cellular layer. To understand the consequences of such diseased RPE

for the neural retina, we imaged the mutant mice at different ages (2, 4 and 6 months) by fundus

photography and optical coherence tomography (OCT). The pigmentation changes observed in

Figure 4. Lipid accumulation after AAV-mediated excision of Abca1 and Abcg1 in adult RPE. (A) Schematic representation of the vector packaged into

AAV4 capsid in order to express Cre and GFP specifically in the RPE of Abca1flox/flox;Abcg1flox/flox mice. Length of the construct in base pairs is shown

below the map. ITR: inverted terminal repeat; SV40 SD/SA: simian virus 40 splice donor/splice acceptor site; P2A: porcine teschovirus 2A; bGH polyA:

bovine growth hormone polyadenylation tail. 10 weeks after sub-retinal injections, co-localization of AAV-mediated Cre/GFP expression and lipid

accumulation was analyzed by IF in RPE flat mounts (B) and retinal sections (C–F). (B) RPE flat mounts were stained with LipidTOX (red); shown are

representative images of a non-transduced and a transduced area. Dorsal-ventral retinal sections were stained with ORO: retina panorama is shown in

(C) and magnified images of a non-transduced and a transduced area (corresponding to yellow and red rectangles in the panorama) are shown in (D).

Yellow arrowhead indicates LDs in the transduced RPE. Nuclei were counterstained with hematoxylin (blue). Consecutive retinal sections were analyzed

for AAV transduction by IF: retinal panorama is shown in (E) and magnified pictures of a non-transduced and a transduced area (corresponding to

yellow and red rectangles in the panorama) are shown in (F), together with CRE staining. White arrowheads indicate CRE-positive nuclei in the

transduced RPE. Nuclei were counterstained with DAPI (blue). Black (C) and white (E) arrows indicate the injection site. Representative pictures of N � 3

animals per group. Abbreviations as in Figure 1.

DOI: https://doi.org/10.7554/eLife.45100.011
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Figure 5. Cholesteryl esters as main components of LDs in the RPE of RPEDAbca1;Abcg1 mice. Lipid composition of eyecups (A), neural retinas (C) and

plasma (D) from 2-months-old Ctr and mutant mice was measured by mass spectrometry-based methods. The following lipid classes were analyzed:

cholesterol (un-esterified cholesterol, UC, and cholesteryl esters, CEs), phospholipids (PLs: sum of phosphatidylcholine, phosphatidylethanolamine,

phosphatidylserine, phosphatidylinositol and phosphatidylglycerol), sphingolipids (SLs: ceramides, Cer, and sphingomyelins, SMs) and glycerolipids

(GLs: diacylglycerols, DAGs, and triglycerides, TGs). (B) Cholesteryl esters species containing the indicated fatty acids were quantified in eyecups from

the same animals. (E) Relative quantification of retinyl esters was performed in eyecups from 2-months-old Ctr and RPEDAbca1;Abcg1 mice. Shown are box

plots of folds on respective Ctr average, whiskers correspond to min and max values (N = 4–10). Lipid concentration values corresponding to fold

changes in (A), (C) and (D) as well as single PL classes can be found in Supplementary file 1A. Please note that UC, CEs and REs were determined in

RPE-enriched eyecups whereas PLs, SLs and GLs were determined in whole eyecups. Also, tissues from both eyes of the same animals were used for

analysis of UC, CEs and REs, whereas tissues from single eyes were used for PLs, SLs and GLs (see ‘Materials and methods’). Statistics: Student’s t-test

vs ‘Ctr’; *: p<0.05, **: p<0.01, ***: p<0.001.

DOI: https://doi.org/10.7554/eLife.45100.012
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RPEDAbca1;Abcg1 mice at two months of age (Figure 2A) worsened at older ages (Figure 7A). OCT

scans revealed sub-retinal hyper-reflective foci in mutant mice starting at 4 months of age

(Figure 7A). These foci were accompanied by irregular RPE/outer nuclear layer (ONL) borders and

retinal thinning, suggesting ongoing degeneration. Analysis of the respective retinal morphologies

(Figure 7B) confirmed degenerative processes in the RPE/photoreceptor layers in ageing RPEDAbca1;

Abcg1 mice. Retinal degeneration was further supported by a significant reduction of the ONL thick-

ness in mutant vs control mice at 6 months of age (Figure 7C). The high variability in ONL measure-

ments was likely owed to the patchy expression of the Cre transgene resulting in areas with intact

RPE/ONL and areas with RPE cell death and consequent photoreceptor degeneration within the

same retinal section. In some regions, both RPE and ONL were completely lost (see also Figure 3D).

The inner retina was instead not affected by ABCA1/ABCG1 knockout in the RPE, as revealed by the

determination of the INL thickness and staining for ganglion cells in 6-months-old animals (Figure 7—

figure supplement 1).

Progressing photoreceptor degeneration was also reflected by the retinal function measured by

electroretinography (ERG). Scotopic and photopic wave amplitudes gradually decreased in ageing

RPEDAbca1;Abcg1 mice starting already at 4 months of age (Figure 8). In conclusion, lack of Abca1 and

Abcg1 in the RPE had a strong impact on neural retinal morphology and function, with progressive

photoreceptor degeneration.

Inflammatory response in RPEDAbca1;Abcg1 mice
Retinal sections analyzed by light microscopy suggested the presence of immune cells in aged

mutant mice (Figure 3D and E) and infiltration of inflammatory cells in the retina is one of the key

events in AMD pathogenesis (Kauppinen et al., 2016). We thus stained RPE flat mounts and retinal

sections of RPEDAbca1;Abcg1 mice for macrophages/activated microglia markers. At 4 months of age,

up to about 100 ionized calcium-binding adapter molecule 1 (IBA-1)-positive cells were detected in

flat mounts of all mutant RPE at the sites of morphological alterations, but not in non-affected areas

(not shown) or Ctr mice. Confocal microscopy showed that IBA-1-positive signals were located within

Figure 6. Delayed RHO regeneration in RPEDAbca1;Abcg1 mice. Dark-adapted 2-months-old Ctr and RPEDAbca1;Abcg1 mice were exposed to 5’000 lux for

10 min and the RHO content was measured in each retina. Dark controls were kept in darkness for the entire procedure. RHO levels were measured in

dark controls, immediately after bleach (0 min) and after 30, 60 and 120 min of recovery in darkness. (A) ‘Total’ amount of regenerated RHO after 120

min was calculated by subtracting the corresponding averaged RHO amount at ‘0 min’ from the RHO levels at ‘120 min’. (B) Amount of regenerated

RHO during the indicated time intervals after bleaching were calculated by subtracting the corresponding averaged RHO amount at the early time

point from the RHO levels measured at the later time point. Shown are data from individual samples and means ± SD (N = 4–8 eyes, corresponding to

2–4 mice). Statistics: Student’s t-test vs ‘Ctr’; *: p<0.05. Averages and SD of RHO content measurements can be found in Supplementary file 1B; single

measurements per eye can be found in Figure 6—source data 1.

DOI: https://doi.org/10.7554/eLife.45100.013

The following source data is available for figure 6:

Source data 1. Rhodopsin regeneration in RPEDAbca1;Abcg1 and control mice.

DOI: https://doi.org/10.7554/eLife.45100.014
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Figure 7. Age-dependent retinal degeneration in RPEDAbca1;Abcg1 mice. (A) Fundus images (upper panels) and OCT scans (lower panels, corresponding

to red lines in fundus) of Ctr and RPEDAbca1;Abcg1 mice at the indicated age. White arrowheads indicate sub-retinal hyper-reflective foci. Retinal

morphology of the same animals was analyzed by light microscopy (B). Representative pictures of N � 3 animals per group. ONL thickness was

quantified from nasal-temporal panorama images at 2 and 6 months of age and presented as spidergrams (C): significant ONL thinning was detected

in 6-months-old RPEDAbca1;Abcg1 mice. Shown are means ± SD (N � 3). Statistics: two-way ANOVA with Sidak’s multiple comparison test; *: p<0.05, **:

p<0.01, ****: p<0.0001. Abbreviations as in Figure 1.

DOI: https://doi.org/10.7554/eLife.45100.015

The following figure supplement is available for figure 7:

Figure supplement 1. Absence of a phenotype in the inner retina of RPEDAbca1;Abcg1 mice at 6 months of age.

DOI: https://doi.org/10.7554/eLife.45100.016
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the RPE layer as well as on its basal side (Figure 9A, lower cross-sections). Whether they represent

cells infiltrating the RPE from the choroidal (basal) side or leaving the retina through the RPE from

the apical side was not determined. IBA-1 positive inflammatory cells were also detected in the outer

retinal layers including the sub-retinal space of 6 months old RPEDAbca1;Abcg1 but not control mice

(Figure 9B). At this later time point, such cells were not only present in regions of strong photore-

ceptor and RPE atrophy (not shown, but see Figure 3D,E and Figure 7B for retinal morphologies

showing large, presumably inflammatory cells in the sub-retinal space) but also in retinal regions that

were mildly affected (Figure 9B). It is conceivable that damaged RPE cells facilitated the movement

Figure 8. Decreased retinal function in aged RPEDAbca1;Abcg1 mice. Scotopic and photopic ERGs were recorded with increasing light intensities from

dark-adapted Ctr and RPEDAbca1;Abcg1 mice at the indicated ages. Shown are mean ± SD (N = 3–6) of scotopic a- (A) and b-wave (B) amplitudes as well

as photopic b-wave (C) amplitudes. Average scotopic and photopic traces of 6-months-old animals are shown in (D) and (E), respectively. Statistics:

two-way ANOVA with Sidak’s multiple comparison test; *: p<0.05, +: p<0.01, #: p<0.001, §: p<0.0001.

DOI: https://doi.org/10.7554/eLife.45100.017
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of IBA-1 positive cells across the RPE layer. Pigmentation of these cells could be due to phagocytosis

of melanin granules-rich debris of RPE cells. Increased expression of interleukin 1b (Il1b), caspase 1

(Casp1) and glial fibrillary acidic protein (Gfap) in neural retinas of RPEDAbca1;Abcg1 mice confirmed a

time-dependent inflammatory/stress response upon deletion of Abca1 and Abcg1 in the RPE

(Figure 9C–E).

Figure 9. Inflammatory response in RPEDAbca1;Abcg1 mice. (A) RPE flat mounts from 4-months-old Ctr and RPEDAbca1;Abcg1 mice were stained with

phalloidin (green, staining actin filaments) and anti-IBA-1 (red). Shown are representative top-view images and cross-sections (A = apical side, B = basal

side). White arrowheads indicate IBA-1-positive cells located inside or at the choroidal (basal) side of the mutant RPE. Nuclei were counterstained with

Hoechst. (B) Retinal sections from 6-months-old mice were stained for IBA-1 (red): increased signal intensity and presence of sub-retinal macrophages/

microglia was detected in RPEDAbca1;Abcg1 mice (higher magnification images of the outer retina are shown in right panels). Nuclei were counterstained

with DAPI. Representative images of N = 3 animals per group. Il1b (C), Casp1 (D) and Gfap (E) mRNA levels were measured by semi-quantitative real-

time PCR in neural retinas from Ctr and RPEDAbca1;Abcg1 mice. Shown are data from individual samples and means ± SD (N = 3–4). Statistics: one-way

ANOVA vs ‘2 months’ of the respective genotype; *: p<0.05, ****: p<0.0001. Abbreviations as in Figure 1.

DOI: https://doi.org/10.7554/eLife.45100.018
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Single Abca1, but not Abcg1, KO is sufficient to cause early lipid
accumulation in the RPE
We initially generated double Abca1;Abcg1 KO mice in order to completely block the active choles-

terol efflux pathway in the RPE. To investigate the individual contribution of each gene to the pheno-

type, we generated RPE-specific Abca1 (RPEDAbca1) and Abcg1 (RPEDAbcg1) single mutant mice

(Table 1). Analysis at 2 months of age showed that the RPE morphology of single RPEDAbca1 mice

was similar to the double RPEDAbca1;Abcg1 mutants (Figure 10A). On the other hand, single RPEDAbcg1

mice were undistinguishable from the Ctr animals (Figure 10A). Furthermore, ORO staining con-

firmed accumulation of neutral lipids in RPEDAbca1 but not in RPEDAbcg1 mice (Figure 10B), even

though CRE was similarly expressed in the RPE layer of all mutant mice (Figure 10C). Thus Abca1

was the main driver of early morphological alterations and lipid accumulation in the RPE.

Decreased ABCA1 expression in human-derived cells carrying the AMD
risk-conferring allele of ABCA1
Two SNPs in intron 2 of the human ABCA1 gene (rs1883025 and rs2740488), which are in high link-

age disequilibrium (r2 = 0.941), have been associated with AMD (Chen et al., 2010; Fauser et al.,

2011; Peter et al., 2011; Yu et al., 2011; Fritsche et al., 2016). The major ‘C’ allele of rs1883025

and ‘A’ allele of rs2740488 have been described to confer increased risk for AMD, while the minor

‘T’ allele of rs1883025 and ‘C’ allele of 2740488 were associated with a decreased risk of AMD. How-

ever, the effect of these SNPs on ABCA1 expression and/or function remains unknown. To study the

potential effect of the AMD-associated SNPs on ABCA1 expression, we generated lymphoblastoid

Figure 10. Early lipid accumulation in the RPE of single Abca1, but not Abcg1, KO mice. 2-months-old Ctr, double KO and single KO retinal sections

were analyzed by light microscopy (A), ORO staining (B) and CRE IF (C). Single Abca1 mutant mice (RPEDAbca1) showed an RPE phenotype comparable

to double mutants (RPEDAbca1;Abcg1), while single Abcg1 KO mice (RPEDAbcg1) were undistinguishable from controls. Yellow lines in (A) indicate RPE

borders. Nuclei were counterstained with hematoxylin (B) or DAPI (C). Representative pictures of N � 3 animals per group. Abbreviations as in

Figure 1.

DOI: https://doi.org/10.7554/eLife.45100.019
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cell lines (LCLs) from healthy individuals carrying homozygous decreased (N = 3) and increased risk

(N = 3) genotypes for the SNPs (Table 2). ABCA1 expression in LCLs was induced by LXR agonist

stimulation and mRNA and protein levels were compared between LCLs carrying the different

alleles. LCLs derived from subjects homozygous for the AMD increased risk allele of ABCA1 showed

significantly decreased ABCA1 mRNA expression compared to reduced risk carriers (Figure 11A). A

trend towards decreased ABCA1 expression was observed also at the protein level in carriers of the

AMD increased risk genotype (Figure 11B and C). Even though the difference did not reach signifi-

cance (p=0.14), probably due to the low sample numbers and intrinsic variability, these data provide

the first indication of a potential correlation between AMD risk-associated genotypes and decreased

ABCA1 expression, which may impair cholesterol efflux from RPE cells in patients. This finding might

be significant for a potential therapy aiming at ABCA1 gene augmentation (see discussion).

Discussion
Given the link between lipid metabolism and AMD, we generated and characterized a novel RPE-

specific Abca1;Abcg1 KO mouse model (RPEDAbca1;Abcg1). Although inactivation of the two genes

was patchy due to variable Cre expression, genetic ablation of Abca1 and Abcg1 resulted in strong

lipid accumulation in RPE cells (Figures 2 and 5). This is in agreement with the known function of

ABCA1 and ABCG1 in mediating lipid efflux (Cavelier et al., 2006). Lipid accumulation was accom-

panied by morphological alterations and, at older ages, loss of RPE cells. Increased size and irregular

shape of RPE cells in mutant mice (Figure 3) suggested that the healthy cells expanded in order to

fill gaps in the epithelium that were generated by the drop out of CRE-positive cells and keep an

intact barrier between neural retina and choroid, as previously described (Nagai and Kalnins, 1996;

Jiang et al., 2014). Nevertheless, discontinuities in the RPE were observed in 6-months-old RPE-
DAbca1;Abcg1 mice, together with degeneration of photoreceptors in the affected areas (Figures 3

and 7). We hypothesize that these were areas where numerous RPE cells were affected by CRE-

mediated Abca1;Abcg1 deletion, resulting in cell death and, therefore, in gaps too large to be filled

by expanding neighboring cells. Abca1 was the main responsible gene for maintaining lipid homeo-

stasis and survival of RPE cells at 2 months of age, since lack of Abca1, but not Abcg1, was sufficient

to cause strong lipid accumulation (Figure 10). This is in marked contrast to macrophages where

both Abca1 and Abcg1 needed to be inactivated to observe a phenotype in non-stressed retinas

(Ban et al., 2018a). Abcg1 may thus be capable to compensate for the loss of Abca1 in macro-

phages but may only have a limited ability to do so in the RPE. The reason for this is still unclear but

a potential difference in transport substrate specificity between the two cell types can be postulated.

Thus, additional experiments are required to conclusively dissect the individual contribution of the

two genes to lipid accumulation and impairment of RPE function. Importantly, photoreceptor- and

macrophage-specific Abca1 and/or Abcg1 KO mice showed a weaker retinal phenotype compared

to RPEDAbca1;Abcg1 (Sene et al., 2013; Ban et al., 2018a; Ban et al., 2018b), suggesting that the

lipid efflux pathway regulated by Abca1 and Abcg1 is of particular importance for the RPE. Further-

more, RPE cells may not be able to easily compensate for the absence of Abca1 and Abcg1 by activ-

ating alternative mechanisms. RNAseq data for example revealed only very minor alterations in the

RPE- and retina-specific transcriptomes of 2-months-old RPEDAbca1;Abcg1 mice (data not shown). This

suggests that absence of ABCA1 and ABCG1 in the RPE did not cause strong secondary gene

expression changes that could balance the impaired lipid efflux pathway in RPEDAbca1;Abcg1 mice.

Taken together, our data demonstrate that proper lipid handling by the RPE through active choles-

terol efflux is essential for maintenance of an intact and functional retina in vivo. Moreover, local

Table 2. LCLs and genotypes of the AMD-associated SNPs in human ABCA1 intron 2.

LCL SNP Genotype

Decreased risk (n = 3) rs1883025 TT

rs2740488 CC

Increased risk (n = 3) rs1883025 CC

rs2740488 AA

DOI: https://doi.org/10.7554/eLife.45100.021
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impairment of the ABCA1-mediated lipid transport activity in the RPE may provide the molecular

basis for the genetic link of ABCA1 to AMD and partially explain the contradictory association

between systemic lipid levels and the disease (van Leeuwen et al., 2018).

As mentioned above, prominent intracellular accumulation of LDs was observed in RPE lacking

ABCA1/ABCG1 (Figure 2). Biochemical analysis of these LDs showed specific accumulation of CEs

and, to a lesser extent, REs, while UC as well as PLs, SLs and GLs remained unchanged (Figure 5). It

is conceivable that the RPE continued to phagocytize lipid-rich OS also in the absence of functional

ABCA1/ABCG1 to support photoreceptors. This hypothesis is supported by increased presence of

fatty acids typical of OS membranes, such as docosahexaenoic acid (22:6), in the RPE of mutant

mice (Figure 5A and B). The specific accumulation of esterified cholesterol, which is very important

for retinal homeostasis (Fliesler and Bretillon, 2010; Pikuleva and Curcio, 2014), fits well with the

lipid composition of human drusen and SDDs (Haimovici et al., 2001; Wang et al., 2010;

Spaide et al., 2018) and with the high cholesterol content in rod OS (Fliesler and Schroepfer,

1982). The unchanged intracellular levels of UC in eyecups of 2-months-old mutant animals suggest

that RPE cells esterified UC and fatty acids from OS disks to generate neutral CEs and REs that can

be stored into LDs in an attempt to maintain intracellular UC levels below a toxic threshold

(Tabas, 2002; Lakkaraju et al., 2007). Eventually, however, lipid concentration may become too

high in the absence of a functional efflux pathway and lead to cell death. In contrast to the RPE,

deletion of Abca1 alone or in combination with Abcg1 in hepatocytes, the main contributors to sys-

temic lipid levels, not only affected plasma concentrations of UC and CEs, but also those of PLs, TGs

and SLs (Timmins et al., 2005; Chung et al., 2010; Iqbal et al., 2018). This difference compared to

the RPE suggests once more a cell-type dependent substrate specificity for the lipid efflux pathway

or a remodeling of HDLs in the bloodstream, a process that does not occur within cells. Indeed,

intracellular lipidomic changes in macrophages and endothelial cells that lacked Abca1 and Abcg1

were more similar to the changes identified in RPE cells of RPEDAbca1;Abcg1 mice, including an accu-

mulation of cholesterol, both in its un-esterified and esterified forms (Westerterp et al., 2013;

Westerterp et al., 2016).

In addition to CEs, the abundance of REs was increased in our model, suggesting that lack of

Abca1 and Abcg1 not only reduced lipid efflux but also affected intracellular handling of REs as

intermediates of the visual cycle (Kiser and Palczewski, 2016). An increase in REs and fatty acids

Figure 11. ABCA1 expression in human LCLs. LCLs derived from healthy individuals carrying the AMD decreased or increased risk ABCA1 genotypes

were stimulated with an LXR agonist (1 mM) or DMSO vehicle control for 24 hr. (A) ABCA1 mRNA levels were measured by semi-quantitative real-time

PCR. Shown are data from individual samples and means ± SD (N = 3, three technical replicates per cell line). Statistics: two-way ANOVA with Sidak’s

multiple comparison test; *: p<0.05. ABCA1 protein levels were measured in LXR-stimulated cells by WB and normalized on ACTB levels. Shown are a

representative WB (B) and the means ± SD of the band intensity quantification (N = 3, five technical replicates per cell line) (C). Statistics: Student’s

t-test vs ‘decreased risk’.
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may change the kinetics of the enzymes involved in the initial phases of the visual cycle (Saari, 2012).

Moreover, altered RPE apical morphology (Figure 2B) could affect the physical interaction between

RPE cells and photoreceptor OS, resulting in impaired internalization of incoming all-trans retinol

intermediates. Once this step is achieved, however, the visual cycle seemed less affected as shown

by similar amounts of regenerated RHO at later intervals after bleaching (Figure 6). Interestingly,

AMD patients show delayed rod-mediated dark adaptation, suggesting visual cycle disturbance,

already at early stages of the disease (Owsley et al., 2001; Owsley et al., 2007).

A ‘cholesterol-recycling’ mechanism involving transport of OS-derived cholesterol from the RPE

back to the photoreceptors was proposed for the retina (Tserentsoodol et al., 2006). It is rather sur-

prising that retinal function (Figure 8), localization of rod and cone markers (not shown), and lipid

composition of the neural retina (Figure 5C) were not or not strongly affected in young RPEDAbca1;

Abcg1 mice. Thus, photoreceptors seem capable to cope with an impaired lipid supply from RPE.

Rods and cones could get enough cholesterol from the healthy CRE-negative RPE cells or they could

re-direct towards a different lipid source like the intra-retinal circulation. Since retinal cells are able

to synthesize cholesterol (Fliesler and Bretillon, 2010), functional cholesterol efflux from the RPE

may not be absolutely required for photoreceptor survival. We therefore propose that photorecep-

tor loss in RPEDAbca1;Abcg1 mice is a secondary effect to dysfunctional RPE.

In summary, our model recapitulates some important features of dry AMD. i) Impaired lipid efflux

in the RPE primarily affects RPE function and survival resulting in secondary photoreceptor degener-

ation and decreased retinal function in our mice. In both its dry and wet forms, AMD affects RPE

cells while many photoreceptors in the macula may be lost secondarily (Rattner and Nathans, 2006;

Lim et al., 2012). ii) The phenotype of RPEDAbca1;Abcg1 mice is age-related and slowly progressing,

similar to AMD. iii) The photoreceptor/RPE layer of mutant mice at 4–6 months of age is infiltrated

with inflammatory cells, an important hallmark of AMD pathology (Kauppinen et al., 2016).

In addition to the characterization of the mouse model, we present novel preliminary data on the

effect of AMD risk-associated SNPs in ABCA1 on its expression level. No variants in ABCG1 have so

far been associated with the disease, suggesting a predominant role of ABCA1 in the RPE/retina, an

interpretation that fits to the early phenotype of single KO mice in this study (Figure 10). Our data

from human cells (Figure 11) suggest that the AMD increased risk allele correlates with lower

ABCA1 expression, at least upon LXR stimulation. The limited effect of the SNPs on ABCA1 expres-

sion may not be surprising given their intronic location and the relatively small effect size of the

SNPs on the disease (odds ratio 0.9 (Fritsche et al., 2016)). Variants in non-coding regions of the

genome, including in the ABCA1 locus (Rhyne et al., 2009), may directly change gene expression

by affecting splicing, chromatin accessibility or binding of transcription factors (Cooper, 2010). On

the other hand, we cannot exclude the possibility of an indirect effect due to regions inherited in cis

with the SNPs or a difference between cell lines in their responsiveness to LXR stimulation. Clearly

however, the potential effect of the SNPs on ABCA1 expression should be confirmed in a larger

study, ideally using RPE cells derived from induced pluripotent stem cells (iPSCs) (Leach et al.,

2016; Brandl, 2019). Independently of the genotype, it has been reported that expression and func-

tion of ABCA1 is reduced in aged mouse and human monocytes, including in the eye (Sene et al.,

2013). Likewise, own preliminary data suggested a tendency of reduced expression of ABCA1 in

eyecups of old human donors (data not shown). It was also shown that cholesterol efflux was less

efficient in old compared to young mouse RPE cells (Biswas et al., 2017), further suggesting an

age-dependent physiological decline in ABCA1 expression and function. In the presence of the risk-

conferring ABCA1 allele, expression of the gene may decrease below a critical threshold needed to

prevent disease development. If so, this age-dependent decline could be targeted by the pharmaco-

logical activation of ABCA1 gene expression, for example through treatment with an LXR agonist

(Koldamova et al., 2014).

Besides the intronic variants being associated with AMD, biallelic mutations in the coding region

of ABCA1 are known to cause the very rare Tangier disease, a systemic condition characterized by

virtual absence of plasma HDLs, cholesterol accumulation in several tissues and, in some instances,

peripheral neuropathy and increased risk of developing cardiovascular disease (Schaefer et al.,

2016). However and in contrast to our mouse data, Tangier patients are not known to have any oph-

thalmological phenotype, including AMD, except mild corneal opacities (Winder et al., 1996). RPE

of Tangier patients might be healthier compared to AMD-affected RPE, making the impact of dys-

functional ABCA1 weaker in Tangier disease. This might be due to additional impaired mechanisms
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present in aged/AMD RPE cells, such as oxidative stress, accumulation of bis-retinoids, genetic fac-

tors and others.

In conclusion, this study supports an essential role of the ABCA1/ABCG1 lipid efflux pathway for

mouse RPE survival in vivo and suggests that an impaired lipid metabolism via ABCA1 may contrib-

ute to the pathology of AMD, most likely in combination with additional mechanisms. If the link

between ABCA1 and AMD is confirmed, activation of ABCA1-mediated lipid efflux will be an attrac-

tive target for AMD therapies.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Gene
(Mus musculus)

Abca1 NCBI gene
ID: 11303

Gene
(Mus musculus)

Abcg1 NCBI gene
ID: 11307

Strain, strain
background
(Mus musculus)

C57BL/6J (wt) The Jackson
Laboratory

RRID:
IMSR_JAX:000664;
The Jackson
Laboratory: 000664

Strain, strain
background
(Mus musculus)

BEST1Cre Iacovelli et al., 2011 RRID:IMSR_JAX:017557 Name at the Jackson
Laboratory: C57BL/6-Tg
(BEST1-cre)1Jdun/J

Strain, strain
background
(Mus musculus)

Abca1flox/flox;
Abcg1flox/flox

The Jackson
Laboratory

RRID:IMSR_JAX:021067 Name at the Jackson
Laboratory: B6.Cg-Abca1
tm1Jp Abcg1tm1Tall/J

Antibody anti-ABCA1
(rabbit polyclonal)

Novus Biologicals RRID:AB_10000630;
Novus Biologicals:
NB400-105

(1:250 for IF, 1:200 for WB)

Antibody anti-ABCG1
(rabbit monoclonal)

Abcam RRID:AB_867471;
Abcam: ab52617

(1:100)

Antibody anti-EZR
(mouse monoclonal)

Santa Cruz
Biotechnology

RRID:AB_783303;
Santa Cruz: sc-58758

(1:500)

Antibody anti-CRE
(rabbit polyclonal)

Merck RRID:AB_10806983;
Merck: 69050–3

(1:300)

Antibody anti-IBA1
(rabbit polyclonal)

Wako Fujifilm RRID:AB_839504;
Wako Fujifilm: 019–19741

(1:500)

Antibody anti-ZO1
(rabbit polyclonal)

Thermo Fisher
Scientific

RRID:AB_2533456;
Thermo Fisher
Scientific: 40–2200

(1:100)

Antibody anti-bcatenin
(mouse monoclonal)

BD Biosciences RRID:AB_397554;
BD Biosciences: 610153

(1:300)

Antibody anti-POU4F1
(mouse monoclonal)

Merck RRID:AB_94166;
Merck: MAB1585

(1:100)

Recombinant
DNA reagent

pTR-BEST1-Cre-P2A-GFP
(AAV vector plasmid)

This paper Constructed from AAV
plasmid materials at the
University of Florida,
laboratory of S. Boye

Sequence-based
reagent

Random Primers Promega Promega: C1181

Peptide,
recombinant protein

Phalloidin-Alexa488 Thermo Fisher
Scientific

RRID:AB_2315147;
Thermo Fisher
Scientific: A12379

(1:100)

Commercial
assay or kit

LipidTOX Red
Neutral Lipid Stain

Thermo Fisher
Scientific

Thermo Fisher
Scientific: H34476

(1:200)

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Commercial
assay or kit

Protease Inhibitos
Cocktail

Sigma-Aldrich Sigma-Aldrich: P2417

Commercial
assay or kit

PowerUp Syber
Green Master Mix

Thermo Fisher
Scientific

Thermo Fishe
rScientific: A25742

Commercial
assay or kit

NucleoSpin RNA
isolation kit

Macherey-Nagel Macherey-Nagel:
740949.250

Chemical
compound, drug

OilRedO (ORO) Sigma-Aldrich Sigma-Aldrich:
O9755-25G

Chemical
compound, drug

Oxalic Acid Sigma-Aldrich Sigma-Aldrich: 75688

Chemical
compound, drug

LXR agonist Roche, Panday et al., 2006 Roche: T0901317

Chemical
compound, drug

SPLASH Avanti Polar Lipids Avanti Polar
Lipids: 330707

Chemical
compound, drug

d7-sphinganine
(SPH d18:0)

Avanti Polar Lipids Avanti Polar
Lipids: 860658

D-erythro-sphinganine-d7

Chemical
compound, drug

d7-sphingosine
(SPH d18:1)

Avanti Polar Lipids Avanti Polar
Lipids: 860657

D-erythro-sphingosine-d7

Chemical
compound, drug

Dihydroceramide
(Cer d18:0/12:0)

Avanti Polar Lipids Avanti Polar
Lipids: 860635

N-lauroyl-D-erythro
-sphinganine

Chemical
compound, drug

Ceramide
(Cer d18:1/12:0)

Avanti Polar Lipids Avanti Polar
Lipids: 860512

N-lauroyl-D-erythro-
sphingosine

Chemical
compound, drug

Glucosylceramide
(GluCer d18:1/8:0)

Avanti Polar Lipids Avanti Polar
Lipids: 860540

D-glucosyl-ß�1,1’-N
-octanoyl-D-erythro
-sphingosine

Chemical
compound, drug

Sphingomyelin
(SM d18:1/12:0)

Avanti Polar Lipids Avanti Polar
Lipids: 860583

N-lauroyl-D-erythro
-sphingosylphosphorylcholine

Chemical
compound, drug

d7-sphingosine-1-
phosphate (S1P d18:1)

Avanti Polar Lipids Avanti Polar
Lipids: 860659

D-erythro-sphingosine
-d7-1-phosphate

Chemical
compound, drug

Methanol Honeywell Honeywell:
34860 Riedel-de
Haen

Chemical
compound, drug

MTBE Sigma-Aldrich Sigma-Aldrich:
20256

tert-Butyl methyl ether

Chemical
compound, drug

Chloroform Sigma-Aldrich Sigma-Aldrich:
650498

Chemical
compound, drug

Acetonitrile Sigma-Aldrich Sigma-Aldrich:
534851

Chemical
compound, drug

Isopropanol Sigma-Aldrich Sigma-Aldrich:
59300

Software,
algorithm

ImageJ Tissue
Cell Geometry
macro

Institute for Research
in Biomedicine,
Barcelona, Spain

http://adm.irbbarcelona.
org/image-j-fiji

Software,
algorithm

Relative
Quantification
Software

Thermo Fisher Cloud https://www.
thermofisher.com/uk
/en/home/digital-science/
thermo-fisher-connect/
all-analysis-modules.html

Software,
algorithm

GraphPad Prism,
version 7

GraphPad RRID:SCR_002798

Software,
algorithm

Tracefinder
Clinical 4.1

Thermo Fisher
Scientific

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Other transcend TLX I
eluting pump

Thermo Fisher
Scientific

Other Q-Exactive Thermo Fisher
Scientific

Other Mini-PROTEAN
Precast Gels,
4–15% polyacrylamide

BioRad BioRad:
4561086DC

Other C30 Accucore LC
column

Thermo Fisher
Scientific

Thermo Fisher
Scientific:
7826–152130

150 mm * 2.1 mm * 2.6 mm

Mice and genotyping
All animal experiments adhered to the ARVO Statement for the Use of Animals in Ophthalmic and

Vision Research and the regulations of the Veterinary Authorities of Kanton Zurich, Switzerland

(study approval reference numbers: ZH141/2016 and ZH216/2015). Mice were maintained as breed-

ing colonies at the Laboratory Animal Services Center (LASC) of the University of Zurich in a 14 hr:

10 hr light-dark cycle with lights on at six am and lights off at eight pm. Mice had access to food and

water ad libitum. Average light intensity at cage levels was 60–150 lux, depending on the position in

the rack. C57BL/6J (Bl6) were used as wild type controls. BEST1Cre mice were described earlier

(Iacovelli et al., 2011). Abca1;Abcg1 double floxed mice (Abca1flox/flox;Abcg1flox/flox) were pur-

chased from The Jackson Laboratory (Bar Harbor, ME, USA). Founder mice were on a Bl6 back-

ground and were genotyped for absence of known spontaneous mutations leading to retinal

degeneration (rd1, rd8, rd10, Cpfl1 and Gpr179). Mice were crossed in order to generate double-

and single-floxed Cre-positive mice and Cre-negative littermate controls. All breeding pairs were

heterozygous for BEST1Cre. Primers listed in Supplementary file 1C were used to genotype the

mice by conventional PCR using genomic DNA extracted from ear biopsies or eye tissues. Although

ocular expression of the BEST1Cre transgene is restricted to post-natal RPE (Iacovelli et al., 2011

and Figure 1C), BEST1Cre can be expressed in other cell types, such as melanocytes

(Sundermeier et al., 2017) and Sertoli cells of the testis (Masuda and Esumi, 2010;

Milenkovic et al., 2015). Probably due to ectopic expression of the transgene in germ-line cells, we

occasionally observed systemic or mosaic heterozygous KO animals for Abca1 and/or Abcg1 (Fig-

ure 1—figure supplement 1A). We controlled for presence of the excised allele in ear biopsies to

avoid generation of full KO animals and defined our mice as shown in Table 1.

Since a heterozygous flox/- genotype resulted in a 50% reduction of the Abca1 and Abcg1 tran-

scripts in non Cre-expressing tissues (Figure 1—figure supplement 1B), we excluded the possibility

that systemic lack of one functional Abca1 and/or Abcg1 allele had an impact on the observed phe-

notype. To this aim, eyes of Cre-negative heterozygous animals (Abca1flox/-;Abcg1flox/flox, Abca1flox/

flox;Abcg1flox/-, or Abca1flox/-;Abcg1flox/-) were analyzed up to 6 months of age. No difference to

Abca1flox/flox;Abcg1flox/flox controls were found (retinal morphology in Figure 1—figure supplement

1C and ERG data not shown). All BEST1Cre-negative mice were therefore used as control animals.

AAV generation and injection
A Cre-expression cassette was fused to GFP via a porcine teschovirus 2A (P2A) sequence and cloned

downstream of the RPE-specific human BEST1 promoter into the pTR vector. pTR-BEST1-Cre-P2A-

GFP was packaged into AAV4 capsid at the Viral Vector Facility of the Neuroscience Center Zurich

(ZNZ), University of Zurich, Switzerland. 7.3 � 109 viral genomes/eye (1 mL volume) were injected

into the sub-retinal space of Abca1flox/flox;Abcg1flox/flox mice as previously described (Barben et al.,

2018a). Mice were injected at 4–15 weeks of age and sacrificed 10 weeks post-injection. Eyes were

marked nasally by cauterization and fixed for subsequent IF/lipid staining as described below.

Morphology, light microscopy and transmission electron microscopy
Eyes were marked dorsally by cauterization and prepared as described (Barben et al., 2018a). 500

nm nasal-temporal sections were analyzed by light microscopy (Zeiss Axioplan, Feldbach,
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Switzerland) and Adobe Photoshop CS6 (Adobe Systems Inc, San Jose, CA, USA) was used to pho-

tomerge high magnification images of the outer and inner retina as well as to create retina panora-

mas. Images at higher magnification were always acquired from the central region close to the optic

nerve head. The ruler tool of Adobe Photoshop CS6 was used to measure ONL and INL thickness at

the indicated distance from optic nerve head in retinal panoramas. For transmission electron micros-

copy, ultrathin sections (50 nm) were cut, stained with uranyl acetate and lead citrate and analyzed

using a Philips CM100 transmission electron microscope (Philips, Amsterdam, The Netherlands).

IF on retinal sections, ORO staining and RPE flat mounts
Eyes were marked dorsally by cauterization and retinal 12 mm nasal-temporal cryosections were pre-

pared as described (Barben et al., 2018b). For AAV-injected animals, eyes were marked nasally and

dorsal-ventral sections were cut. Sections were blocked in blocking solution (3% normal goat serum,

0.3% Triton X-100 in 0.1 M phosphate buffer (PB)) for 1 hr at room temperature (RT), followed by

overnight incubation at 4˚C with the following primary antibodies: rabbit anti-ABCA1 (1:250, NB400-

105, Novus Biologicals, Littleton, CO, USA), rabbit anti-ABCG1 (1:100, ab52617, Abcam, Cam-

bridge, UK), mouse anti-EZR (1:500, sc-58758, Santa Cruz Biotechnology, Dallas, TX, USA), rabbit

anti-CRE (1:300, 69050–3, Merck, Darmstadt, Germany), rabbit anti-IBA-1 (1:500, 019–19741, Wako

Fujifilm, Neuss, Germany) or mouse anti-POU4F1 (1:100, MAB1585, Merck). After three washing

steps in PB salt (0.1 M PB with the addition of 0.8% NaCl and 0.02% KCl), samples were incubated

at RT for 2 hr with appropriate secondary antibodies conjugated to Cy2, Cy3 or AlexaFluor555 fluo-

rophores (Jackson ImmunoResearch, Suffolk, UK and Thermo Fisher Scientific, Reinach, Switzerland).

Nuclei were counterstained with 4’,6-Diamidine-2’-phenylindole di-hydrochloride (DAPI, Thermo

Fisher Scientific), sections were mounted with Mowiol and imaged using a fluorescent microscope

(Zeiss Axioplan). Sections stained with secondary antibody only were used as negative controls.

For neutral lipid ORO staining, cryosections were washed with distilled H2O and incubated in

0.2% KMnO4 for 40 min at RT, followed by neutralization with fresh 1% oxalic acid for 1–2 min to

bleach the melanin pigment in the RPE/choroid. After two washing steps in H2O, sections were

rinsed with 60% isopropanol and incubated for 10 min at RT in 0.42% ORO working solution (Sigma-

Aldrich, Merck, Buchs SG, Switzerland; 0.7% ORO stock solution in isopropanol diluted 3:2 in H2O

to generate the working solution). Sections were rinsed with 60% isopropanol, washed twice with

H2O and nuclei were counterstained with enhanced Meyer’s hematoxylin (Artechemis, Zofingen,

Switzerland) for 1–2 min. Sections were mounted with Mowiol and imaged using light microscopy

within 15 days (Leica Microsystems, Heerbrugg, Switzerland).

RPE flat mounts were prepared as described (Oczos et al., 2014). After washing, samples were

incubated for 1 hr at RT in blocking solution (see above), followed by overnight incubation at 4˚C
with primary antibodies: rabbit anti-CRE (see above), rabbit anti-ZO-1 (1:100, 40–2200, Thermo

Fisher Scientific), mouse anti-b-cat (1:300, 610153, BD Biosciences, Allschwil, Switzerland) or rabbit

anti-IBA-1 (see above). After three washing steps in PB salt, samples were incubated at RT for 2 hr

with appropriate secondary antibodies as described above or phalloidin-AlexaFluor488 to stain

F-actin (1:100, A12379, Thermo Fisher Scientific). Nuclei were counterstained with Hoechst (2 mg/ml,

Sigma-Aldrich) and lipids with LipidTOX (1:200, H34476, Thermo Fisher Scientific) for 30 min at RT.

Samples were mounted on glass slides with Mowiol and imaged using a fluorescent microscope

(Zeiss Axioplan) or an SP8 inverted confocal microscope (Leica Microsystems). Three ZO-1-stained

images per RPE flat mount quadrant (dorsal, ventral, nasal and temporal of the optic nerve head)

were used for quantification with the Tissue Cell Geometry macro in ImageJ (developed by the Insti-

tute for Research in Biomedicine, Barcelona, Spain, http://adm.irbbarcelona.org/image-j-fiji). At least

N = 998 RPE cells per group (N = 3–4 mice) were examined. The ratio between the major and minor

axis of the fitted ellipse was used as a readout of cell shape.

Plasma and eye tissue collection for lipid analysis
After a lethal dose of anesthesia, blood was collected by cardiac puncture using a 1 ml syringe and

26G needle into Microtainer K2-EDTA-coated tubes (BD Biosciences). Tubes were inverted 20 times,

plasma was separated by centrifugation at 2’500 g for 10 min at RT and snap-frozen in liquid nitro-

gen (N2). Neural retinas were isolated through a slit in the cornea and snap-frozen in liquid N2; corre-

sponding eyecups (containing RPE) were isolated and dissected from contaminating cornea, optic
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nerve or adipose tissue left overs. For analysis of UC, CEs and REs, tissues from both eyes of the

same animal were pooled; whereas for analysis of PLs, SLs and GLs, tissues from single eyes were

analyzed. For analysis of UC, CEs and REs, eyecup samples were enriched for RPE cells by incubating

the tissues in 100 ml of PBS for 20 min at RT followed by flicking of the tubes 50 times to release pig-

mented cells into the PBS, similar to a procedure previously used for protein isolation (Wei et al.,

2016). Remaining posterior eyecups were removed and samples snap-frozen in liquid N2. These

samples were labelled as ‘RPE-enriched eyecup’ (Figure 5). For analysis of PLs, SLs and GLs, com-

plete eyecups were snap-frozen in liquid N2. These samples were labelled as ‘whole eyecup’ (Fig-

ure 5). After thawing, 100 ml of PBS were added to each tissue. All samples were then homogenized

by sonication, 20 ml of 0.6% Triton in PBS were added to each tube (final concentration: 0.1% Triton)

and samples were incubated on a rotating wheel for 1 hr at 4˚C. Samples were centrifuged at 1’000

g for 3 min at RT and supernatant used for protein quantification using the bicinchoninic acid assay

(BCA, Thermo Fisher Scientific) followed by lipid extraction.

Lipid extraction
Lipid extraction was performed as described previously (Pellegrino et al., 2014) with some modifi-

cations. For UC, CEs and REs, 1 ml of a methanol:MTBE:chloroform (MMC) mixture 4:3:3 (v/v/v) was

added to 20 ml plasma or 50 mg protein of tissue homogenate. The MMC mix was fortified with 100

pmoles of d7-cholesterol and d7-CE 16:0 (Avanti Lipids, Alabaster, AL, USA). Samples were briefly

vortexed and mixed on a shaker at 37˚C (1’400 rpm, 20 min). Protein precipitation was obtained

after centrifugation for 5 min, 16’000 g, 25˚C. The single-phase supernatant was collected, dried

under N2 and stored at �20˚C until analysis. Dried lipids were dissolved in 100 ml methanol. For PLs,

SLs and GLs, 1 ml of MMC mixture 1.33:1:1 was added to 20 ml of plasma or tissue homogenate.

The MMC was fortified with the SPLASH mix of internal standards and 100 pmoles/ml of the follow-

ing internal standards (all from Avanti Lipids): d7-sphinganine (SPH d18:0), d7-sphingosine (SPH

d18:1), dihydroceramide (Cer d18:0/12:0), ceramide (Cer d18:1/12:0), glucosylceramide (GluCer

d18:1/8:0), sphingomyelin (SM d18:1/12:0) and 50 pmoles/ml d7-sphingosine-1-phosphate (S1P

d18:1). Samples were briefly vortexed and mixed on a shaker at 25˚C (950 rpm, 30 min). Protein pre-

cipitation was obtained after centrifugation for 10 min, 16’000 g, 25˚C. The single-phase supernatant

was collected, dried under N2 and stored at �20˚C until analysis. Dried lipids were dissolved in 100

mL methanol:isoproanol (1:1, v/v).

Lipid analysis
Liquid chromatography was done according to (Narváez-Rivas and Zhang, 2016) with some modifi-

cations. Lipids were separated using a C30 Accucore LC column (150 mm * 2.1 mm * 2.6 mm) and a

transcend TLX eluting pump (Thermo Fisher Scientific). UC, CEs and REs were separated with the fol-

lowing mobile phases: A) acetonitrile:water (2:8 v/v) with 10 mM ammonium acetate and 0.1% formic

acid, B) isopropanol:acetonitrile (9:1 v/v) with 10 mM ammonium acetate and 0.1% formic acid and

C) methanol at a flow rate of 0.3 ml/min. The following gradient was applied: 0.0–1.5 min (isocratic

70% A, 20% B and 10% C), 1.5–18.5 min (ramp 20–100% B), 18.5–25.5 min (isocratic 100% B) and

25.5–30.5 min (isocratic 70% A, 20% B and 10% C). PLs, SLs and GLs were separated with the follow-

ing mobile phases: A) acetonitrile:water (6:4 v/v) with10 mM ammonium acetate and 0.1% formic

acid and B) as above at a flow rate of 0.26 ml/min. The following gradient was applied: 0.0–0.5 min

(isocratic 30% B), 0.5–2 min (ramp 30–43% B), 10–12.0 min (ramp 43–55% B), 12.0–18.0 min (ramp

65–85% B), 18.0–20.0 min (ramp 85–100% B), 20–35 min (isocratic 100% B), 35–35.5 min (ramp 100–

30% B) and 35.5–40 min (isocratic 30% B).

The liquid chromatography was coupled to a hybrid quadrupole-orbitrap mass spectrometer

Q-Exactive (Thermo Fisher Scientific). For UC, CEs and REs, samples were analyzed in positive mode

using a heated electrospray ionization (HESI) interface. The following parameters were used: spray

voltage 3.5 kV, vaporizer temperature of 300˚C, sheath gas pressure 20 AU, aux gas 8 AU and capil-

lary temperature of 320˚C. The detector was set to an MS2 method using a data-dependent acquisi-

tion with top10 approach with stepped collision energy between 25 and 30. A 140’000 resolution

was used for the full spectrum and a 17’500 for MS2. A dynamic exclusion filter was applied which

excluded fragmentation of the same ions for 20 s. For PLs, SLs and GLs, a data-dependent acquisi-

tion with positive and negative polarity switching was used. A full scan was used from 220 to 3’000
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m/z at a resolution of 70’000 and AGC Target 3e6 while data-dependent scans (top10) were

acquired using normalized collision energies (NCE) of 25, 30 and a resolution of 17’500 and AGC tar-

get of 1e5.

Identification criteria for UC, CEs and REs were 1) resolution with an accuracy of 5 ppm from the

predicted mass at a resolving power of 140’000 at 200 m/z, 2) matching retention time on synthetic

available standards and 3) the specific fragmentation patterns ([M-H2O]+ and 369.3 for cholesterol

esters and 269.2 for retinyl esters). Identification criteria for PLs, SLs and GLs were 1) resolution with

an accuracy of 5 ppm from the predicted mass at a resolving power of 70’000 at 200 m/z, 2) isotopic

pattern fitting to expected isotopic distribution, 3) comparison of the expected retention time to an

in-house database and 4) fragmentation pattern matching to an in-house experimentally validated

lipid fragmentation database. Quantification was done using single point calibration or by compar-

ing the area under the peak of each species to the area under the peak of the internal standard.

Quality controls using a mixture of all samples were used in four concentration (1x, 0.5x, 0.25x and

0.125x). Triplicates on the quality controls were measured, and the CV% for each of the lipids

reported was below 20%. Mass spectrometric data analysis was performed in Treacefinder software

4.1 (Thermo Fisher Scientific) for peak picking, annotation and matching to the in-house fragmenta-

tion database.

Fundus imaging/OCT and ERG
Pupils were dilated using Cyclogyl 1% (Alcon Pharmaceuticals, Fribourg, Switzerland) and Neosy-

nephrine 5% (Ursapharm Schweiz GmbH, Roggwil, Switzerland) 20 min prior to anesthesia. Mice

were anesthetized by subcutaneous injection of ketamine (85 mg/kg, Parke-Davis, Berlin, Germany)

and Xylazine (4 mg/kg, Bayer AG, Leverkusen, Germany) and a drop of 2% Methocel (OmniVision

AG, Neuhausen, Switzerland) was applied to keep the eyes moist. Mice were placed on a heated

pad and fundus images and OCT scans were acquired using the Micron IV system (Phoenix Research

Labs, Pleasanton, CA, USA).

ERG recordings were performed as described (Kast et al., 2016). Briefly, mice were dark-

adapted overnight, pupils dilated and animals anesthetized as described above. A drop of Mydriati-

cum Dispersa (OmniVision AG) was applied to induce mydriasis and to keep the tissue moist. A ref-

erence electrode was inserted subcutaneously between the eyes, a ground electrode was inserted

subcutaneously at tail base and recording gold electrodes were placed onto mouse corneas. Mice

were placed on a heated pad in front of a Ganzfeld chamber. Responses to 14 different light intensi-

ties ranging from �50 db (0.000025 cd*s/m2) to 15 db (79 cd*s/m2) for scotopic and eight different

light intensities ranging from �10 db (25 cd*s/m2) to 25 db (790 cd*s/m2) for photopic conditions

were recorded using an LKC UTAS Bigshot recording unit (LKC Technologies Inc, Gaithersburg, MD,

USA). Mice were light-adapted for 5 min before photopic recordings. Ten recordings were averaged

per light intensity; responses from the left and right eye of the same animal were averaged for sub-

sequent analysis.

Measurement of rhodopsin regeneration kinetics
All mice used for this experiment were homozygous for the Rpe65450Met variant. RHO regeneration

was measured as previously described (Wenzel et al., 2005; Samardzija et al., 2008). Briefly, mice

were dark-adapted overnight. After pupil dilation, mice were exposed to 5’000 lux of white light for

10 min, a light intensity and exposure duration that does not induce retinal damage in these mice.

Mice were returned to darkness for the indicated time points (30, 60 or 120 min) or euthanized

immediately. After euthanasia, retinas were isolated in darkness through a slit in the cornea and

snap-frozen in N2. RHO content was measured as described (Wenzel et al., 2005).

Human subject recruitment, LCL generation and culture
The study was approved by the local ethical committee at the Radboud University Medical Center

and was performed in accordance with the tenets of the Declaration of Helsinki. Individuals were

selected from the European Genetic Database (EUGENDA, https://www.eugenda.org/), a large mul-

ticenter database for clinical and molecular analysis of AMD, and provided written informed consent

before participation. Disease status was determined based on classification of color fundus photo-

graphs and, if available, spectral domain OCT and fluorescein angiography by certified graders as
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previously described (Ristau et al., 2014). LCLs were generated for six control subjects, defined as

individuals having only pigmentary changes, less than 10 small drusen or without macular abnormali-

ties. Human B-lymphocytes were immortalized by transformation with the Epstein-Barr virus accord-

ing to established procedures (Wall et al., 1995). LCLs were generated for three control individuals

who were homozygous for ABCA1 genotypes conferring decreased risk for AMD (rs1883025 TT and

rs2740488 CC) and for three control individuals who were homozygous for ABCA1 genotypes con-

ferring increased risk for AMD (rs1883025 CC and rs2740488 AA), as shown in Table 2. DNA sam-

ples were genotyped with a custom-modified Illumina HumanCoreExome array (Illumina, Eindhoven,

Netherlands) at the Center for Inherited Disease Research (CIDR, Baltimore, MD, USA) and quality

control and genotype imputation using the 1000 Genomes Project reference panel (Abecasis et al.,

2012) were performed by the International AMD Genomic Consortium as previously described

(Fritsche et al., 2016). ABCA1 rs1883025 genotypes were additionally confirmed by sequencing of

a PCR fragment flanking the SNP on genomic DNA extracted from 1 � 106 cells. Sequencing results

matched the human ABCA1 locus, proving the human origin of the cell lines (data not shown). LCLs

were also checked for absence of mycoplasma contamination via PCR using primers specific for the

mycoplasma genome in the medium of confluent cultures (data not shown).

LCLs were cultured in a humid incubator at 37˚C and 5% CO2 in RPMI 1640 medium (Sigma-

Aldrich) supplemented with 15% heat-inactivated fetal bovine serum (Gibco, Thermo Fisher Scien-

tific), 20 mM HEPES buffer (Sigma-Aldrich) and 10’000 U/mL penicillin-streptomycin (Gibco). Cells

were seeded at a concentration of 0.5�1 � 106 cells/ml and split every 3–4 days. For experiments,

2�3 � 106 cells per condition were seeded in 6-well plates and stimulated with 1 mM LXR agonist

(T0901317; prepared at Roche as previously reported (Panday et al., 2006)) or DMSO vehicle con-

trol for 24 hr. LCLs were then washed with PBS and harvested for RNA or protein analysis (see

below).

Gene expression analysis
RNA was extracted from neural retina and eyecups (containing RPE and choroid) using an RNA isola-

tion kit (Macherey-Nagel, Oensingen, Switzerland) with on column DNaseI treatment and used for

cDNA synthesis with oligo-dT as previously described (Samardzija et al., 2006; Storti et al., 2017).

For human LCL samples, RNA was isolated as above but 0.5 mg random primers (Promega, Düben-

dorf, Switzerland) were used instead of oligo-dT for cDNA synthesis. Transcript levels in 10 ng of

cDNA were measured by semi-quantitative real-time PCR using an ABI QuantStudio3 machine

(Thermo Fisher Scientific) with the PowerUp Sybr Green master mix (Thermo Fisher Scientific) and

primer pairs specific for the genes of interest (Supplementary file 1D). Primers were designed to

span large introns and avoid known SNPs. Beta-actin (Actb) was used to normalize mouse gene

expression with the comparative threshold cycle method (DDCt) of the Relative Quantification soft-

ware of the Thermo Fisher Cloud. For LCL samples, ACTB and RPL28 levels were used for double

normalization with the same method. Note that in order to measure possible decrease in Abca1 and

Abcg1 transcripts in KO mice, primers were designed to amplify part of the excised region (exons

45 and 46 for Abca1 and exon 3 for Abcg1).

Protein isolation from LCLs and Western Blotting (WB)
Cells were collected, washed twice with ice-cold PBS and lysed in 50 ml of RIPA buffer supplemented

with protease inhibitor cocktail (P2417, Sigma-Aldrich) for 15 min on ice. After centrifugation at

16’000 g for 15 min at 4˚C, supernatant was collected and protein concentration measured by BCA.

50 mg of proteins were loaded on 4–15% polyacrylamide gradient gels (Bio-Rad, Cressier, Switzer-

land) for SDS-PAGE followed by semi-dry transfer to a nitrocellulose membrane. Membranes were

blocked in 5% non-fat blocking milk (Bio-Rad) for 1 hr at room temperature prior to incubation over-

night at 4˚C with primary antibodies: rabbit anti-ABCA1 (1:200, NB400-105, Novus Biologicals) and

mouse anti-ACTB (1:10’000, A5441, Sigma-Aldrich). After washing, membranes were incubated with

appropriate horseradish peroxidase (HRP)-conjugated secondary antibodies for 1–2 hr at RT. Signals

were developed using enhanced chemiluminescence (ECL) substrate (PerkinElmer, Schwerzenbach,

Switzerland) and visualized using X-ray films. Intensity of bands was quantified using ImageJ and nor-

malized to ACTB levels.
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Statistical analysis
The number of biological replicates is defined in figure legends as ‘N’ and refers to the number of

individual animals or cell lines analyzed in this study. The number of technical replicates may be indi-

cated in the corresponding figure legend as well, when appropriate. All statistical analysis, as indi-

cated in figure legends, were performed using GraphPad Prism 7 (San Diego, CA, USA).
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Narváez-Rivas M, Zhang Q. 2016. Comprehensive untargeted lipidomic analysis using core-shell C30 particle
column and high field orbitrap mass spectrometer. Journal of Chromatography A 1440:123–134. DOI: https://
doi.org/10.1016/j.chroma.2016.02.054, PMID: 26928874

Oczos J, Sutter I, Kloeckener-Gruissem B, Berger W, Riwanto M, Rentsch K, Hornemann T, von Eckardstein A,
Grimm C. 2014. Lack of paraoxonase 1 alters phospholipid composition, but not morphology and function of
the mouse retina. Investigative Opthalmology & Visual Science 55:4714–4727. DOI: https://doi.org/10.1167/
iovs.14-14332

Olofsson S-O, Boström P, Andersson L, Rutberg M, Perman J, Borén J. 2009. Lipid droplets as dynamic
organelles connecting storage and efflux of lipids. Biochimica Et Biophysica Acta (BBA) - Molecular and Cell
Biology of Lipids 1791:448–458. DOI: https://doi.org/10.1016/j.bbalip.2008.08.001

Owsley C, Jackson GR, White M, Feist R, Edwards D. 2001. Delays in rod-mediated dark adaptation in early age-
related maculopathy. Ophthalmology 108:1196–1202. DOI: https://doi.org/10.1016/S0161-6420(01)00580-2,
PMID: 11425675

Owsley C, McGwin G, Jackson GR, Kallies K, Clark M. 2007. Cone- and rod-mediated dark adaptation
impairment in age-related maculopathy. Ophthalmology 114:1728–1735. DOI: https://doi.org/10.1016/j.
ophtha.2006.12.023, PMID: 17822978

Panday N, Benz J, Blum-Kaelin D, Bourgeaux V, Dehmlow H, Hartman P, Kuhn B, Ratni H, Warot X, Wright MB.
2006. Synthesis and evaluation of anilinohexafluoroisopropanols as activators/modulators of LXRalpha and
beta. Bioorganic & Medicinal Chemistry Letters 16:5231–5237. DOI: https://doi.org/10.1016/j.bmcl.2006.06.
081, PMID: 16876993

Pauleikhoff D, Harper CA, Marshall J, Bird AC. 1990. Aging changes in Bruch’s Membrane. Ophthalmology 97:
171–178. DOI: https://doi.org/10.1016/S0161-6420(90)32619-2

Pellegrino RM, Di Veroli A, Valeri A, Goracci L, Cruciani G. 2014. LC/MS lipid profiling from human serum: a new
method for global lipid extraction. Analytical and Bioanalytical Chemistry 406:7937–7948. DOI: https://doi.org/
10.1007/s00216-014-8255-0, PMID: 25381612

Peter I, Huggins GS, Ordovas JM, Haan M, Seddon JM. 2011. Evaluation of new and established age-related
macular degeneration susceptibility genes in the women’s Health Initiative Sight Exam (WHI-SE) Study.
American Journal of Ophthalmology 152:1005–1013. DOI: https://doi.org/10.1016/j.ajo.2011.05.016, PMID: 21
906714

Pikuleva IA, Curcio CA. 2014. Cholesterol in the retina: the best is yet to come. Progress in Retinal and Eye
Research 41:64–89. DOI: https://doi.org/10.1016/j.preteyeres.2014.03.002, PMID: 24704580

Quazi F, Molday RS. 2011. Lipid transport by mammalian ABC proteins. Essays in Biochemistry 50:265–290.
DOI: https://doi.org/10.1042/bse0500265, PMID: 21967062

Rattner A, Nathans J. 2006. Macular degeneration: recent advances and therapeutic opportunities. Nature
Reviews Neuroscience 7:860–872. DOI: https://doi.org/10.1038/nrn2007, PMID: 17033682

Rhyne J, Mantaring MM, Gardner DF, Miller M. 2009. Multiple splice defects in ABCA1 cause low HDL-C in a
family with hypoalphalipoproteinemia and premature coronary disease. BMC Medical Genetics 10.
DOI: https://doi.org/10.1186/1471-2350-10-1, PMID: 19133158

Ristau T, Ersoy L, Lechanteur Y, den Hollander AI, Daha MR, Hahn M, Hoyng CB, Fauser S. 2014. Allergy is a
protective factor against Age-Related macular degeneration. Investigative Opthalmology & Visual Science 55:
210–214. DOI: https://doi.org/10.1167/iovs.13-13248

Roman D, Zhong H, Yaklichkin S, Chen R, Mardon G. 2018. Conditional loss of Kcnj13 in the retinal pigment
epithelium causes photoreceptor degeneration. Experimental Eye Research 176:219–226. DOI: https://doi.org/
10.1016/j.exer.2018.07.014

Rudolf M, Malek G, Messinger JD, Clark ME, Wang L, Curcio CA. 2008. Sub-retinal drusenoid deposits in human
retina: organization and composition. Experimental Eye Research 87:402–408. DOI: https://doi.org/10.1016/j.
exer.2008.07.010, PMID: 18721807

Saari JC. 2012. Vitamin A metabolism in rod and cone visual cycles. Annual Review of Nutrition 32:125–145.
DOI: https://doi.org/10.1146/annurev-nutr-071811-150748, PMID: 22809103

Samardzija M, Wenzel A, Aufenberg S, Thiersch M, Remé C, Grimm C. 2006. Differential role of Jak-STAT
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