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A B S T R A C T

Deep brain stimulation (DBS) is a highly efficacious treatment option for movement disorders and a growing number of other indications are investigated in clinical
trials. To ensure optimal treatment outcome, exact electrode placement is required. Moreover, to analyze the relationship between electrode location and clinical
results, a precise reconstruction of electrode placement is required, posing specific challenges to the field of neuroimaging. Since 2014 the open source toolbox Lead-
DBS is available, which aims at facilitating this process. The tool has since become a popular platform for DBS imaging. With support of a broad community of re-
searchers worldwide, methods have been continuously updated and complemented by new tools for tasks such as multispectral nonlinear registration, structural/
functional connectivity analyses, brain shift correction, reconstruction of microelectrode recordings and orientation detection of segmented DBS leads. The rapid
development and emergence of these methods in DBS data analysis require us to revisit and revise the pipelines introduced in the original methods publication.

Here we demonstrate the updated DBS and connectome pipelines of Lead-DBS using a single patient example with state-of-the-art high-field imaging as well as a
retrospective cohort of patients scanned in a typical clinical setting at 1.5T. Imaging data of the 3T example patient is co-registered using five algorithms and
nonlinearly warped into template space using ten approaches for comparative purposes. After reconstruction of DBS electrodes (which is possible using three methods
and a specific refinement tool), the volume of tissue activated is calculated for two DBS settings using four distinct models and various parameters. Finally, four whole-
brain tractography algorithms are applied to the patient‘s preoperative diffusion MRI data and structural as well as functional connectivity between the stimulation
volume and other brain areas are estimated using a total of eight approaches and datasets. In addition, we demonstrate impact of selected preprocessing strategies on
the retrospective sample of 51 PD patients. We compare the amount of variance in clinical improvement that can be explained by the computer model depending on
the preprocessing method of choice.

This work represents a multi-institutional collaborative effort to develop a comprehensive, open source pipeline for DBS imaging and connectomics, which has
already empowered several studies, and may facilitate a variety of future studies in the field.
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List of abbreviations

ANTs Advanced Normalization Tools, see http://stnava.github.
io/ANTs/

BSpline-SyN ANTs normalization method; Explicit B-spline
regularization in symmetric diffeomorphic image
registration

CORE Algorithm for “reconstruction of electrode contact
positions” defined in Horn et al., 2014.

DARTEL SPM normalization method; A fast diffeomorphic image
registration algorithm

DiODe Directional Orientation Detection ()
dMRI Diffusion-weighted MRI – in the context of diffusion-

imaging based tractography
FA Fractional Anisotropy
FGATIR Fast Gray Matter Acquisition T1 Inversion Recovery
FLIRT FMRIB's Linear Image Registration Tool
FNIRT FSL normalization method; FMRIB's Nonlinear Image

Registration Tool
FSL FMRIB Software Library, see https://fsl.fmrib.ox.ac.uk/
GNU Recursive acronym for “GNU's Not Unix.”; GNU GPL is a

popular open license supported by the Free Software
Foundation (see http://www.gnu.org). The Free Software
Foundation (FSF) is a nonprofit with a worldwide mission
to promote computer user freedom

GPi internal segment of the globus pallidus
GPe external segment of the globus pallidus
GQI Generalized q-sampling imaging, dMRI processing method

implemented in DSI studio
HCP Human Connectome Project
LEDD Levodopa Equivalent Daily Dosage
MAGeT Brain Multiple Automatically Generated Templates brain

segmentation algorithm, see https://github.com/
CobraLab/MAGeTbrain

PaCER Precise and Convenient Electrode Reconstruction for DBS,
see https://adhusch.github.io/PaCER/

PCA Principal Component Analysis
PPMI Parkinson‘s Disease Progression Marker Initiative
PPN Pedunculopontine nucleus
RN red nucleus
ROI Region of Interest
RSME Root-mean-square error
QSM Quantitative Susceptibility Mapping
Rs-fMRI Resting-state functional MRI
SHOOT SPM normalization method; Diffeomorphic registration

using geodesic shooting and Gauss–Newton optimisation
SPM Statistic Parametric Mapping, see http://www.fil.ion.ucl.

ac.uk/spm/software/spm12/
STN subthalamic nucleus
SyN ANTs normalization method; Symmetric diffeomorphic

image registration/symmetric image normalization
TRAC Algorithm for “trajectory reconstruction” defined in Horn

and Kühn (2014)
UPDRS Unified Parkinson‘s Disease Rating Scale
VTA Volume of Tissue Activated
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1. Introduction

In the field of deep brain stimulation (DBS), precise electrode place-
ment is crucial for optimal treatment outcomes. Specifically, a direct
relationship between electrode localization and clinical outcome has
been shown in multiple studies (e.g. Butson et al., 2011; Dembek et al.,
2017; Eisenstein et al., 2014; Garcia-Garcia et al., 2016; Horn et al.,
2017c; Mosley et al., 2018b; also see Fig. 1 A). To characterize this
relationship in an objective manner, tools are required that facilitate the
reconstruction of electrode placement such that comparisons between
patients can be made. Group comparisons play a crucial role in identi-
fying optimal electrode placement, providing both direct clinical and
theoretical insights. Ideally, to fulfill reproducibility and transparency
criteria needed for good scientific practice, these tools should be open
source and publicly available. Finally, a specific challenge that differ-
entiates the field of DBS imaging frommost other neuroimaging domains
is the need for absolute anatomical precision. A shift of two mm in
electrode placement may represent a major change in clinical outcome,
while in conventional fMRI studies, a change of an activity peak by two
mm has little if no impact at all (Fig. 1).

In 2014, the software toolbox Lead-DBS was published that aimed at
reconstructing DBS electrode placement based on pre- and postoperative
imaging (Horn and Kühn, 2015; www.lead-dbs.org; RRID:SCR_002915).
Using the toolbox, electrodes may be localized in relationship to sur-
rounding brain anatomy. Since its initial publication, development ef-
forts have continued at multiple institutions. Thus, over the years,
numerous progress has been made and better alternatives for most steps
described in the original pipeline are now provided (Ewert et al., 2018a,
2018b; Horn et al., 2017a, 2017b; 2017c). Moreover, several novel fea-
tures that were not mentioned (or available) in the original publication
have recently become crucial components of DBS imaging. These have
now been integrated in the latest release. While other tools with similar
aims have been introduced after publication of Lead-DBS (Bonmassar
et al., 2014; da Silva et al., 2015; D'Albis et al., 2014; Husch et al., 2017,
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2018; Lauro et al., 2015), the tool was recently described as the most
established toolbox for electrode localizations (Husch et al., 2017) with
over 7000 downloads and 75 citations. The aim of the project is to
develop a scientific platform in a multi-institutional endeavor that is and
remains available under an open license (GNU general public license v. 3)
to ensure reproducibility and version control.

The growing user base of Lead-DBS as an academic toolbox and the
divergence of the current methods and those described in the initial
publication raise the need of an updated methodological pipeline
description. In addition, we also use the opportunity to emphasize the
latest default analysis options, pitfalls and methods throughout the
pipeline.

Given the complexity of multiple processing stages (see Fig. 2 &
Tables 1–4), a thorough empirical evaluation of each stage exceeds the
scope of this work. For instance, it would represent a study in itself to
empirically probe which normalization method, which stimulation vol-
ume model or which fiber tracking approach could yield best results.
Such studies have been conducted (Åstr€om et al., 2014; Dembek et al.,
2017; Fillard et al., 2011; Klein et al., 2009; Maier-Hein et al., 2017;
McIntyre et al., 2004) and are currently underway in context of the
Lead-DBS environment, as well (Ewert et al., 2018a). Instead, the aim of
the present article is to give an overview of methods available in
Lead-DBS. To make the processing stages concrete, the pipeline is
described using a single patient example with state-of-the art high-field
(3T) imaging as well as a retrospective sample of 51 PD patients
imaged at 1.5T. The result is a focus on the methods section and a
descriptive results section covering co-registration, normalization, elec-
trode localization, VTA estimation, and structural-functional connectiv-
ity analyses. Finally, we demonstrate that more variance in clinical
outcome may be explained when using the default pipeline in compari-
son to a more “standard neuroimaging” approach. The manuscript has a
narrative prose with the aim of maximizing understandability while
omitting unnecessary details where possible. Moreover, while the
manuscript is still structured into conventional sections, the methods

http://www.lead-dbs.org
rridsoftware:SCR_002915
http://stnava.github.io/ANTs/
http://stnava.github.io/ANTs/
https://fsl.fmrib.ox.ac.uk
http://www.gnu.org
https://github.com/CobraLab/MAGeTbrain
https://github.com/CobraLab/MAGeTbrain
https://adhusch.github.io/PaCER/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/


Fig. 1. In DBS imaging, “millimeters matter”, which poses specific methodological challenges. A) Re-analysis of the Berlin cohort described in (Horn et al., 2017c)
shows that proximity of active contact centers to an optimal target is predictive of %-UPDRS-III improvement (left). The target was defined in a meta-analysis (Caire
et al., 2013) and transformed to MNI space in a probabilistic fashion (Horn et al., 2017a). Active contacts between electrodes of patients 51 and 21 are a mere two mm
away from each other, but result in largely different clinical outcomes (right). The same distance (two mm) corresponds to the average image resolution of functional
MRI for which many neuroimaging tools were initially developed. Thus, in the field of DBS imaging, the distance of two mm plays a crucial role, whereas it is often
considered insignificant in common neuroimaging studies. B) Coronal polarized light imaging section of the human subthalamic nucleus with surrounding tracts.
Image courtesy by Prof. Karl Zilles and Dr. Markus Axer, Forschungszentrum Jülich, INM-1. C) Coronal section of the BigBrain dataset (Amunts et al., 2013) as
visualized in the microdraw online application (http://microdraw.pasteur.fr/). Cell sparser and denser subregions are discernible, potentially corresponding to
functional zones of the nucleus (Marani et al., 2008). B) and C) demonstrate the tightly-packed anatomical complexity of the STN-DBS target region that is similarly
reflected in clinical outcome (A). Of note, only a subregion of this small nucleus is considered an optimal DBS target. The combination of such small and complex DBS
targets with a potentially huge impact by small misplacements poses extreme challenges to the field of DBS imaging and raises the need for high-precision pipelines.
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descriptions exceed the actual processing of the study with the aim of
illustrating the multiple approaches implemented in Lead-DBS and
providing notes about motivation and potential limitations.

2. Methods

2.1. Patient characteristics, surgery & imaging

2.1.1. Example patient
A male patient (65y) suffering from Parkinson‘s Disease received two

octopolar segmented DBS leads (Boston Scientific Vercise; BSci, Marl-
borough, Massachusetts, United States) targeting the subthalamic nu-
cleus (STN). Surgery was done under general anaesthesia with two
wakeful phases in which microelectrode recordings were obtained using
a Neuro Omega drive (Alpha Omega Engineering, Nazareth, Israel) with
a 45� rotated Ben Gun array. In the same session, test stimulations were
performed. Recordings started 7.5mm before reaching the target and
were acquired in 15 consecutive steps of 0.5 mm distance. Recordings of
cells with typical STN firing patterns were later transferred to the Lead-
DBS session. Test stimulations were made at three mm dorsal to and at
the surgical target. In a second surgery five days afterwards, a Boston
Scientific Vercise Gevia Impulse Generator was implanted in the chest.
295
Detailed imaging parameters can be found in supplementary material.

2.1.2. Retrospective patient cohort
Data from the patient described above embodies a state-of-the-art

example dataset acquired at 3T including a specialized basal ganglia
MR sequence and patient-specific diffusion MRI. To further illustrate the
impact that different processing streams may have on typical clinical MRI
data, we included data from a priorly published retrospective cohort that
is described in detail elsewhere (Berlin cohort in Horn et al., 2017c). In
brief, 51 patients received quadropolar electrodes (Medtronic type 3389)
to the STN region to treat Parkinson‘s Disease. Pre- and postoperative
imaging was performed on a 1.5T MRI and included a preoperative T1
and T2 sequence as well as postoperative axial, coronal and sagittal T2
slabs of the basal ganglia. Six of 51 patients received a postoperative CT
instead (for detailed imaging parameters see supplementary material and
Horn et al., 2017c).

2.2. Linear (whitin-patient) Co-Registrations

When a patient folder is loaded in Lead-DBS, a bias-field correction
step based on the N4 algorithm is automatically applied to all pre-
operative MRI sequences (Tustison et al., 2010). Based on

http://microdraw.pasteur.fr/


Fig. 2. A “default pathway” through Lead-DBS.
Processing stages are visualized in consecutive
order, general choices are displayed for each step
while default selections are marked with red
arrow and bold text. For the normalization step, a
larger evaluation showed both the ANTs SyN and
SPM Segment approaches to perform equally
optimal (Ewert et al., 2018a). The DBS and con-
nectome pipelines work in parallel but seamlessly
integrate via the order marked by the blue dashed
line. After calculating results with Lead Con-
nectome Mapper (last box), results may be used
to predict clinical outcome using the Lead Predict
tool (not shown) based on a model described in
(Horn et al., 2017c).
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configuration preferences, Lead-DBS chooses one of the preoperative
sequences as the anchor modality, i.e. the stationary sequence to which
all other (preoperative and postoperative volumes) sequences are
co-registered. By default, the T1-weighted sequence is used or if un-
available the T2-weighted sequence is substituted. This anchor modality
is upsampled to isotropic 0.7mm resolution to maintain high resolution
in following steps. This step is common in similar pipelines (e.g. Gunalan
et al., 2017). A reason is that (e.g. T2 weighted) acquisitions acquired in
clinical routine often come in high in-plane resolution (e.g. 0.5mm) but
296
poor slice thickness (2–3mm). If these images are resliced to a 1mm
isotropic MP-RAGE, much in-plane resolution is lost. Thus, our pipeline
compromises on a 0.7 mm isotropic working space to which the anchor
modality is resliced (images need to be resliced for multispectral nor-
malizations). Several linear registration algorithms are included in
Lead-DBS (see Table 1). In the present example patient and retrospective
cohort, all available preoperative acquisitions (i.e. T2, PD, FGATIR as
well as the FA volume derived from the dMRI scan) were co-registered
and resliced to the upsampled T1 using SPM 12 (https://www.fil.ion.

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/


Table 3
VTA models included in Lead-DBS.

Method Publication Type

Horn, 2017 FEM Based, 4-Compartment Model, Tetrahedral Mesh
M€adler and Coenen 2012 Heuristic
Kuncel et al., 2008 Heuristic
Dembek et al., 2017 Heuristic

Table 1
Linear registration methods implemented in Lead-DBS.

Software/Method Name Used for MR
to MR

Used for CT
to MR

Publication(s)

ANTs Rigid/Affine þ þ Ashburner, 2007
BRAINSFIT þ þ Johnson et al., 2007
SPM Co-register þ – Friston et al., 2004
FSL FLIRT þ – Jenkinson et al., 2002
Hybrid SPM & ANTs,
Hybrid SPM & FSL,
Hybrid SPM & BRAINSFIT

þ – see above
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ucl.ac.uk/spm/software/spm12/). Similarly, the postoperative CT was
co-registered using Advanced Normalization Tools (ANTs; http://stnava.
github.io/ANTs/). Co-registration results were then manually checked
using built-in tools that facilitate visual inspection which may be
enhanced by automatic edge detection based wire-frame generation of
the anchor modality, and false-color overlays.

Co-registration is a crucial step to achieve precise results since the
preoperative data is used to define anatomy and the postoperative to
define electrode locations. Thus, imprecise registrations lead to erro-
neous results in the end. In clinical settings, especially on MRI, post-
operative volumes are often slabs (i.e. don‘t cover the whole brain).
Accurately registering these to preoperative data is especially chal-
lenging for registration algorithms and at times, postoperative data must
be registered manually (e.g. using tools as 3D Slicer; www.slicer.org).

2.3. Nonlinear (patient-to-template) Co-Registrations

To relate electrode placement to anatomy and to make them com-
parable across patients and centers, it is useful to register individual
patient anatomy to a template space. These template spaces often allow
the most likely location of anatomical structures to be better defined, and
can then be used to project subcortical atlases (Table 5) or whole-brain
parcellations (Table 6) onto regions of interest.

In the original Lead-DBS publication, all registrations between patient
and template space were performed in a linear way following the
approach introduced by Sch€onecker and colleagues (Sch€onecker et al.,
Table 2
Normalization Methods implemented in Lead-DBS.

Software/Method Name Adaptations in Lead-DBS

Statistic Parametric Mapping (SPM)
Unified Segmentation Based on Tissue Probability Maps calculated from

2009b NLIN ASYM Space templates
DARTEL Pair-wise instead of group-wise workflow (mappin

into template space) based on similarly generated
SHOOT See DARTEL

SUIT based DARTEL Specialized method if area of interest is in the brain
SUIT Toolbox based registration to a brainstem/cer
was registered to ICBM 2009b

FMRIB Software Library (FSL)
FNIRT Standard presets

Advanced Normalization Tools (ANTs)
SyN Four-Stage preset with subcortical refinement, mult

for use in DBS
BSpline-SyN See SyN
Other/Specialized
Linear Three-Step Normalization Suited for use directly on postoperative MRI (or on

Implemented using ANTs whereas original code w
use of FSL

MAGeT Brain-like Segmentation/
Normalization

Multi-Subject/Template implementation inspired b
approach but with strong differences.

MAGeT Brain-like Normalization Inversing the idea of MAGeT-Brain by directly ave
fields learned from multiple indirect warps
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2009). This approach was especially developed for DBS and followed a
three-step registration with incremental focus on the subcortical region
of interest. In the revised version of Lead-DBS, multiple nonlinear options
have been added (Table 2). Most of the included approaches were
adapted with their parameters tuned for optimal results in the DBS
context. Most refinements were performed based on experience in the
daily use of the pipeline across multiple institutions. Recently, a study
systematically analyzed results of various methods in which over 11,000
nonlinear deformations were solved and compared (Ewert et al., 2018a).
Results of this study led to the present default presets implemented in
Lead-DBS (Fig. 2). It is beyond the scope of the present work to describe
every modification in each method in detail but the ability to explain
clinical improvement using some examples was estimated for the retro-
spective cohort analyzed here and some details about modifications in
regard to subcortical optimisation are mentioned in the supplementary
material.
2.4. Brain shift correction

During surgery, air may enter the skull after it is opened. This leads to
a nonlinear deformation of the brain in relation to the bone which is
called brain shift and typically pushes the forebrain into occipital di-
rection (due to supine position of the patient). Especially when the
pneumocephalus is still present during postoperative imaging, it in-
troduces a bias between electrode (postoperative image) placement and
anatomical structures on preoperative acquisitions. Whilst brain-shift
introduces non-linear transforms, applying non-linear registration tech-
niques to correct this would also deform the electrodes projections and
corrupt the corresponding anatomical overlap. To avoid this, our brain-
Supports Multispectral
Warps

Publication(s)

multispectral ICBM þ Ashburner and Friston
2005

g directly from patient
DARTEL templates

þ Ashburner, 2007

þ Ashburner and Friston
2011

stem (e.g. PPN); Use of
ebellum template that

þ Diedrichsen, 2006,
Ashburner, 2007

– Andersson and Smith
2010

iple presets developed þ Avants et al., 2008

þ Tustison and Avants 2013

preoperative MRI);
as implemented with

þ Schonecker et al., 2009

y the MAGeT-Brain þ Present/see Chakravarty
et al., 2012 for
MAGeT-Brain approach

raging deformation þ Present/see Chakravarty
et al., 2012 for
MAGeT-Brain approach

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://stnava.github.io/ANTs/
http://stnava.github.io/ANTs/
http://www.slicer.org


Table 4
Whole-Brain fiber tracking methods implemented in Lead-DBS. Of note, the tensor based method is implemented for debugging purposes and not recommended for
actual use.

Tool name Software Approach Support of Single/Multishell Data Publication(s)

Gibbs' Tracker DTI & Fibertools for SPM Global Tractography Single-Shell Kreher et al., 2008, Reisert et al., 2011
Model-Free Mesotracker DTI & Fibertools for SPM Mesoscopic Global Tractography Both Reisert et al., 2014, Konopleva et al., 2018
Generalized q-Sampling
Imaging

DSI Studio Deterministic Tractography Both Yeh et al., 2010

DTI/FACT Tracking DTI & Fiber Tracking
for Matlab

Tensor based Deterministic
Tractography

Single-Shell Dirk-Jan Kroon/Matlab File Exchange

Table 5
Subcortical Atlases suitable for/available within Lead-DBS.

Atlas Name Pre-installed
in Lead-DBS

Source(s) of
Information

Structures of Focus/Specialities Publication(s)

“Made for” Lead-DBS
DISTAL Atlas þ Histology, MRI,

Tractography
STN, GPi Ewert et al. 2018a,b, Chakravarty

et al., 2006, Chakravarty et al., 2008
Human Motor Thalamus þ Histology Motor domains of thalamus, projection from

Cb, SN, BG
Ilinski et al., 2018

Focus on DBS Relevant Structures
CIT168 Reinforcement Learning Atlas þ MRI Based on High Precision MRI Pauli et al., 2017
ATAG-Atlas þ MRI 7T MRI based segmentations Keuken et al., 2014
MNI PD25 Atlas þ MRI, Histology Multimodal MR sequences, histology Xiao et al., 2017, Chakravarty et al.,

2008, Chakravarty et al., 2006
Ultra-high Field Atlas for DBS Planning þ MRI 7T MRI based segmentations Wang et al., 2016
DBS targets Atlas þ Literature results Literature informed DBS targets mapped to MNI

space
Horn, 2017

BGHAT Atlas þ MRI Basal Ganglia Segmentations Prodoehl et al., 2008
Basal Ganglia Atlas – MRI Basal Ganglia Segmentations Ahsan et al., 2007
PPN Histological Atlas þ Histology Definition of the PPN based on histology Alho et al., 2017a,b
GPi Probabilistic Parcellation Atlas þ Tractography Tractography based parcellation of the GPi da Silva et al., 2016
Nigral Organization Atlas þ Tractography, rs-fMRI Functional zones of substantia nigra segmented

by connectivity
Zhang et al., 2017

STN Only
STN Functional Zones Atlas þ Tractography Tractography-based segmentation of STN into

functional zones
Accolla et al., 2016

ATAG-Atlas: STN Young–Middle-
Aged–Elderly

þ MRI 7T MRI based segmentations, Three age groups Keuken et al., 2013

Also see DISTAL, Human Motor Thalamus, CIT168, Ultra-High Field DBS, BGHAT & MNI PD25 atlases for definitions of the STN
Focus on Thalamus
Morel Atlas – Histology Precise histological atlas of the subcortex Jakab et al., 2012, Krauth et al., 2010,

Morel, 2013
Thalamic DBS Connectivity Atlas þ Tractography Tractography based parcellation of the

thalamus
Akram et al., 2018

Oxford Thalamic Connectivity Atlas þ Tractography Tractography based parcellation of the
thalamus

Behrens et al., 2003

Thalamic Connectivity Atlas þ Tractography Tractography based parcellation of the
thalamus

Horn and Blankenburg 2016

Thalamic Connectivity Atlas þ Tractography, rs-fMRI Structural-functional connectivity based
parcellation of the thalamus

Zhang et al., 2008

Also see DISTAL, Human Motor Thalamus & MNI PD25 atlases for thalamic structures
Electrophysiological Data
Electrophysiological Atlas of STN
Activity

þ Electrophysiology Beta Power mapped to STN Horn, 2017

Electrophysiological Atlas of GPi
Activity

þ Electrophysiology Theta Power mapped to GPi Neumann et al., 2017

Other/Brainstem
Brainstem Connectome þ Tractography Population based fiber tracts of brainstem (HCP

data)
Meola et al., 2016

Macroscale Human Connectome Atlas þ Tractography Population based fiber tracts of the whole brain
(HCP data)

Yeh et al., 2018

BigBrain – Histology Whole-Brain histological stacks registered to
MNI space

Amunts et al., 2013

Harvard Ascending Arousal Network
Atlas

þ Tractography, MRI Atlas of Brainstem Structures Edlow et al., 2012

Whole-Brain Parcellations with subcortical components useful for DBS
Functional Striatum Parcellation Atlas þ rs-fMRI Parcellation of the Striatum into functional

zones
Choi et al., 2012

AICHA subcortical regions þ rs-fMRI Parcellation of the subcortical structures into
functional zones

Joliot et al., 2015

Harvard-Oxford Atlas þ MRI Whole-Brain Atlas with subcortical definitions Frazier et al., 2005

A. Horn et al. NeuroImage 184 (2019) 293–316
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Table 6
Brain parcellations (of use for connectomic analyses) suitable for/available within Lead-DBS.

Atlas Name Pre-installed
in Lead-DBS

Source(s) of
Information

Structures of Focus/Specialities Publication(s)

Whole Brain
Harvard-Oxford cortical/subcortical atlases þ Manual

segmentations
Whole Brain Makris et al., 2006, Frazier et al., 2005, Desikan

et al., 2006, Goldstein et al., 2007
MICCAI 2012 Multi-Atlas Labeling
Workshop and Challenge
(Neuromorphometrics)

þ Manual
segmentations

Whole Brain neuromorphometrics.com

Brainnetome Atlas parcellation þ fMRI, dMRI Whole Brain Fan et al., 2016
Automated Anatomical Labeling (v2) þ MRI Whole Brain Tzourio-Mazoyer et al., 2002
AICHA: An atlas of intrinsic connectivity of
homotopic areas

þ fMRI Whole Brain Joliot et al., 2015

Hammers_mith Atlas þ MRI Whole Brain, special focus on
temporal lobe

Hammers et al., 2003, Gousias et al., 2008

PrAGMATiC – fMRI Functional atlas based on task fMRI Huth et al., 2016, Huth et al., 2015
fMRI-based random parcellations þ fMRI Fine-grained random parcellations

informed by rs-fMRI data
Craddock et al., 2012

Voxelwise parcellations þ MRI Whole Brain Horn and Kühn 2015
Cortex Focus
Mindboggle 101 þ Manual

segmentations
Cortex/Desikan protocol Klein et al., 2009

Yeo functional parcellations þ fMRI Cortex Yeo et al., 2011
Local-Global Parcellation of the Human
Cerebral Cortex

þ fMRI Cortex, refining Yeo et al., 2011
parcellations

Schaefer et al., 2017

Cortical Area Parcellation from Resting-
State Correlations

þ rs-fMRI Cortex Gordon et al., 2016

HCP MMP 1.0 – Multimodal Cortex, surface maps Glasser et al., 2016
Desikan-Killiany Atlas – Gyrification

related ROI
Cortex, surface maps Desikan et al., 2006

Destrieux Atlas – Gyrification
related ROI

Cortex, surface maps Destrieux et al., 2010, Fischl et al., 2004

MarsAtlas – Gyrification
related ROI

Cortex, surface maps Auzias et al., 2016, Auzias et al., 2013

Specific Subregions
JuBrain/Juelich histological atlas þ Histology Specific regions Zilles and Amunts, 2010, Amunts et al., 2007,

Eickhoff et al., 2005, Eickhoff et al., 2010, Eickhoff
et al., 2006

Human Motor Area Template þ fMRI/
Metaanalysis

(Pre-) motor cortex Mayka et al., 2006

Sensorimotor Area Tract Template þ dMRI Corticospinal tract subregions Archer et al., 2017
SUIT cerebellar parcellation þ MRI Cerebellum Diedrichsen, 2006, Diedrichsen et al., 2011
Buckner functional cerebellar parcellation þ fMRI Same networks as in Yeo et al., 2011)

cortical parcellations defined in
cerebellum

Buckner et al., 2011
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shift correction method uses the threefold linear registration described
above (see Sch€onecker et al., 2009 for validation), which is stored
internally and applied to DBS electrode placement afterwards (Fig. S1).
2.5. Electrode localization

In Lead-DBS, the process of reconstructing electrode placement is
divided into an automated (“pre-localization”) and a manual (“localiza-
tion”) step. A wide range of electrodes from five manufacturers are
readily implemented in Lead-DBS (Table 7) and it is straight forward to
implement custom models.

2.5.1. Automated pre-Localization
For the pre-localization part, four methods are available:

1. Manual click-and-point tool
2. Integration with 3D Slicer in which fiducial points are placed

manually.
3. TRAC/CORE approach (Horn and Kühn, 2015)
4. The PaCER toolbox (https://adhusch.github.io/PaCER/; Husch et al.,

2017).

In practice, PaCER usually requires very little to no manual refine-
ment compared to the TRAC/CORE algorithm, but requires a post-
operative CT acquisition in contrast to the other methods.
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2.5.2. Manual localization
The user-interface of this crucial processing step was specifically

designed to allow for highly precise electrode reconstructions. At all
times, the postoperative volume is visualized along planes that are cut
orthogonally to the electrode (when moving the lead reconstruction in
space, these cuts are updated in real time). A specialized “x-ray mode”
can be activated in which the same view is enhanced by averaged stacks
of orthogonal slices surrounding the lead. This visualization mode is
helpful to reconstruct electrodes in poor resolution acquisitions where
partial volume effects may blur or shift the electrode artifact in space.
2.6. Estimating the local volume of tissue activated

The Volume of Tissue Activated (VTA) is a conceptual volume that is
thought to elicit additional action potentials due to the electrical stim-
ulations of axons (McIntyre and Grill, 2002). Much work has been done
in this regard and models with increasing sophistication were introduced
over the years (e.g. Åstr€om et al., 2014; Butson and McIntyre, 2008;
Chaturvedi et al., 2013). In contrast, some more clinically oriented pa-
pers aimed at finding fast heuristics to determine the rough extent of the
VTA based on the stimulation parameters without actually creating a
spatial model (Dembek et al., 2017; Kuncel et al., 2008; Lauro et al.,
2015; M€adler and Coenen, 2012). Three such simple heuristic models are
included in Lead-DBS (Dembek et al., 2017; Kuncel et al., 2008; M€adler
and Coenen, 2012), and a more sophisticated, finite element method

https://adhusch.github.io/PaCER/
http://www.neuromorphometrics.com


Table 7
Electrode models included in Lead-DBS.

Manufacturer Type # Contacts Contact Spacing Omnidirectional/Segmented

DBS
Medtronic 3389 4 2mm O

3387 4 3mm O
3391 4 7mm O

Boston Scientific Vercise 8 2mm O
Vercise Cartesia 8 2 mm/Segmented S

Abbott/St. Jude Medical Active Tip 6146-6149 4 2mm O
Active Tip 6142-6145 4 3mm O
Infinity Directional 6172 8 2 mm/Segmented S
Infinity Directional 6173 8 2 mm/Segmented S

PINS Medical L301 4 2mm O
L302 4 3mm O
L303 4 6mm O

iEEG
SDE 08 S8 8 3.5mm O

08 S10 10 3.5mm O
08 S12 12 3.5mm O
08 S16 16 3.5mm O
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based approach was added in 2017 (Horn et al., 2017c, Table 3). On a
spectrum between simple heuristical and highly sophisticated models, it
falls in the middle. This model was briefly described in the aforemen-
tioned publication and follows the overall concept described in (Åstr€om
et al., 2014). However, a full methods description of the specific model
has not been published and can be found in the supplementary material.

2.7. Connectivity estimation

Several possibilities to estimate structural and functional connectivity
exist. These are accessible via the submodules Lead Connectome, Lead
Group and Lead Connectome Mapper. Moreover, single-patient connec-
tivity metrics may be visually explored in the general 3D viewer module
of the software (ElVis).

Methods may be divided into approaches that utilize patient-specific
vs. normative/group-level resting-state functional MRI (rs-fMRI) or
diffusion-weighted imaging based tractography (dMRI). Moreover, they
can be subdivided in voxel-wise/data-driven or parcellation-/ROI-based
methods.

2.7.1. Patient specific connectivity estimates
A structural-functional pre-processing pipeline was implemented into

the Lead Connectome submodule based on the pipeline described in
(Horn, 2015; Horn and Blankenburg, 2016; Horn et al., 2014). For
rs-fMRI, the pipeline follows the recommendations given in (Weissen-
bacher et al., 2009). Briefly, this includes motion-correction (SPM
based), detrending, regression of white matter and CSF-signals as well as
motion parameters and bandpass-filtering (cutoff-values: 0.009–0.08 Hz)
of time series. In dMRI, a Gibbs’ ringing removal step (Kellner et al.,
2015) is performed before passing the diffusion data into either of four
tools subsequently used to estimate a whole-brain tractogram (for a list
see Table 4). The Gibbs' tracking algorithm was superior to nine
competing algorithms in the 2009 Fiber Cup (Fillard et al., 2011) and was
added as the first method. Its successor, a model-free version (Konopleva
et al., 2018) of the Mesotracker algorithm (Reisert et al., 2014) was
subsequently added to equally investigate mesoscopic properties of fiber
tracts and support multi-shell diffusion data. Recently, the Generalized
q-Sampling Imaging approach (Yeh et al., 2010) implemented in DSI
Studio (http://dsi-studio.labsolver.org/) achieved the highest “valid
connection” score in an open competition among 96 methods submitted
from 20 different research groups around the world (Maier-Hein et al.,
2017). As a result, this method was included into Lead-DBS as well.
Finally, a dated simple tensor based deterministic method is also avail-
able for debugging or testing purposes.
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2.7.2. Normative or population based connectomes
In the DBS field, large cohorts exist in which patient-specific con-

nectivity data is lacking. In such datasets, a novel technique that com-
bines normative group connectome data with single-patient imaging
results may be used. These group connectomes were informed by large
cohorts of subjects or patients (e.g. N¼ 1000 in case of the Yeo et al.,
2011 normative connectome) that were often acquired on specializedMR
hardware (such as the human connectome scanner at the Athinoula A.
Martinos Center, Boston, MA; Setsompop et al., 2013). The utility of such
normative connectomes in a clinical context was first demonstrated by
mapping various neurological or psychiatric symptoms to networks
influenced by stroke lesions (Boes et al., 2015; Darby et al., 2016, 2017;
Fasano et al., 2017; Fischer et al., 2016; Laganiere et al., 2016). Recently,
the approach was adapted to the field of DBS in first studies (Horn et al.,
2017c, 2017b; 2017a) and, in order, to predict clinical outcome of
transcranial magnetic stimulation treatment (Weigand et al., 2017).

A natural limitation of the approach is that the normative connectome
data does not account for patient-specific differences in brain connec-
tivity. However, despite its potential shortcomings in individualized
connectivity, the use of normative connectomes has a major practical
advantage, since larger cohorts of DBS patients with individualized
connectivity data are not available and connectivity sequences in DBS
patients are difficult to acquire postoperatively. As such, this approach is
able to utilize large DBS cohorts collected across different centers, while
studies using patient-specific connectivity are based on small cohorts
(typically N< 25; e.g. Accolla et al., 2016; Akram et al., 2017; Vanegas
Arroyave et al., 2016). Along the same lines, the approach may prove
particularly valuable for emerging DBS indications in which only a
limited number of patients are implanted world-wide. Thus, the ability to
retrospectively analyze such DBS datasets despite the lack of
patient-specific connectivity data represents a genuine window into un-
derstanding the role of brain connectivity in mediating DBS outcome.

The methods utilizing normative connectomes are implemented in
the Lead ConnectomeMapper, Lead Group and ElVis tools (Fig. 2). For an
overview of normative connectomes available within Lead-DBS, see
Table 8.
2.8. Explaining variance in clinical outcome within the retrospective 1.5T
cohort

DBS-Electrodes of the retrospective cohort were localized using Lead-
DBS (see Fig. 2) after several normalization and registration strategies
were performed. Specifically, preoperative acquisitions were registered
into template space using the two default approaches (SPMNew Segment
and ANTs SyN) identified in (Ewert et al., 2018a). In addition, the ANTs

http://dsi-studio.labsolver.org/


Table 8
Normative Connectomes available in Lead-DBS format.

Name Repository N Population Publication – Dataset Processing Methods Publication – Processing

rs-fMRI based “functional connectivity”
Functional group connectome
1000 healthy subjects GSP

Harvard Genomic Superstruct
Project (GSP)

1000 Controls Yeo et al., 2011 Lead Connectome fMRI
pipeline

Horn, 2017

Functional group connectome
74 PPMI PD-patients, 15
controls

Parkinson‘s Disease
Progression Marker Initiative
(PPMI)

74/15 PD patients,
controls

Marek et al., 2011 Lead Connectome fMRI
pipeline

Horn, 2017

dMRI based “structural connectivity”
Structural group connectome
20 subjects Gibbs-tracker

Horn et al., 2014 study 20 Controls Horn et al., 2014 Lead Connectome, Gibbs’
tracker

Horn et al., 2014

Structural group connectome
169 NKI subjects Gibbs-
tracker

Enhanced NKI Rockland
Sample

169 Controls Nooner et al., 2012 Lead Connectome, Gibbs'
tracker

Horn, 2016

Structural group connectome
32 Adult Diffusion HCP
subjects GQI

HCP MGH Adult Diffusion
dataset

30 Controls Setsompop et al., 2013 Lead Connectome, DSI
Studio (GQI)

Horn, 2017

Structural group connectome
90 PPMI PD-patients GQI

Parkinson‘s Disease
Progression Marker Initiative
(PPMI)

90 PD patients Marek et al., 2011 Lead Connectome, DSI
Studio (GQI)

Ewert et al. 2018a,b
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SyN approach without the subcortical refinement step was applied.
Finally, a T1-only monospectral approach (FSL FNIRT) was added to
compare results with a more typical “standard procedure” often used in
the neuroimaging field. Electrode localizations (performed in native
space) where then registered to template space using the deformation
fields obtained by all approaches and VTAs were calculated using default
parameters in template space. Overlaps between VTAs and the sub-
thalamic nucleus as defined by the DISTAL atlas (Ewert et al., 2018b)
were calculated for both hemispheres and summed up. In addition,
overlap between the E-field and the STN were calculated in a weighted
fashion by multiplying the binary STN image with the non-binary E-Field
Table 9
Interfaces between Lead-DBS and other neuroimaging tools. Except for FreeSurfer, all t
were adapted to work on Windows although there is no official Windows FSL release

Tool Name Tool Website Tool Task

Statistic Parametric Mapping
(SPM)

http://www.fil.ion.ucl.ac.uk/
spm/software/spm12/

Image Registr
Manipulation

FMRIB Software Library (FSL) https://fsl.fmrib.ox.ac.uk/ Image Registr
Advanced Normalization Tools
(ANTs)

http://stnava.github.io/ANTs/ Image Registr

3D Slicer https://www.slicer.org/ Image Visual

SurfIce https://www.nitrc.org/projects/
surfice/

Surface Visua

BRAINSFit https://www.nitrc.org/projects/
multimodereg/

Image Registr

FieldTrip http://www.fieldtriptoolbox.org/ Mesh Genera

SimBio https://www.mrt.uni-jena.de/
simbio/

FEM Modelin

SUIT http://www.diedrichsenlab.org/
imaging/suit.htm

Specialized R
(Brainstem)

FreeSurfer https://surfer.nmr.mgh.harvard.
edu/

Surface Recon
Electrodes)

Computational Anatomy Toolbox
(CAT)

http://www.neuro.uni-jena.de/
cat/

Surface Recon
Electrodes)

PaCER https://adhusch.github.io/
PaCER/

Electrode Loc

dcm2nii, dcm2niix, dicm2nii https://www.nitrc.org/projects/
dcm2nii/

DICOM impo

Gibbs’ Tracker https://www.uniklinik-freiburg.
de/mr-en/research-groups/
diffperf/fibertools.html

Fiber tracking

Model-Free Mesotracker https://bitbucket.org/reisert/
mesoft_v1

Fiber tracking

DSI Studio http://dsi-studio.labsolver.org Fiber tracking
Gibbs‘ Ringing Artifact Removal
Tool

https://bitbucket.org/reisert/
unring

dMRI preproc

Network Based Statistics (NBS) https://sites.google.com/site/
bctnet/comparison/nbs

Graph-Theory
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and summing up voxels. Finally, streamlines were isolated from a priorly
published normative connectome based on the Parkinson‘s Progression
Marker Inititative (PPMI) data (Marek et al., 2011; Ewert et al. 2018a,b)
using the E-Field of the SPM New Segment method as a weighted seed.

These imaging based metrics (VTA-STN overlap, E-Field-STN
weighted overlap, weighted streamlines seeding from E-Field connected
to SMA) were correlated with empirical percent improvement on the
Unified Parkinson‘s Disease Rating Scale (UPDRS) III. In a second step,
they were fed into general linear models (GLM) that additionally
included seven additional clinical covariates of the sample (age, sex,
percent improvement in Levodopa response, disease duration until
ools are available onWindows, macOS and Linux. Necessary binaries for FSL tools
.

Type of Interface Main Tool Publication

ation & Dependency (Matlab Path) Friston et al., 2004

ation Necessary tools included Woolrich et al., 2009
ation Included Avants et al., 2008

ization Dependency, direct uplink via
Python calls (System Path)

Fedorov et al., 2012

lization Included –

ation Included Johnson et al., 2007

tion Necessary tools adapted/
included

Oostenveld et al., 2010

g Necessary tools adapted/
included

Vorwerk et al., 2018

egistration Dependency (Matlab Path) Diedrichsen, 2006

struction (ECoG Dependency (system calls) Dale et al., 1999

struction (ECoG Dependency (Matlab Path) Gaser, 2016

alization Included Husch et al., 2017

rt Included Li et al., 2016

Included Reisert et al., 2011

Included Konopleva et al., 2018

Included Yeh et al., 2010
essing Included Kellner et al., 2015

Level Statistics Included Zalesky et al., 2010

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://fsl.fmrib.ox.ac.uk
http://stnava.github.io/ANTs/
https://www.slicer.org/
https://www.nitrc.org/projects/surfice/
https://www.nitrc.org/projects/surfice/
https://www.nitrc.org/projects/multimodereg/
https://www.nitrc.org/projects/multimodereg/
http://www.fieldtriptoolbox.org/
https://www.mrt.uni-jena.de/simbio/
https://www.mrt.uni-jena.de/simbio/
http://www.diedrichsenlab.org/imaging/suit.htm
http://www.diedrichsenlab.org/imaging/suit.htm
https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
http://www.neuro.uni-jena.de/cat/
http://www.neuro.uni-jena.de/cat/
https://adhusch.github.io/PaCER/
https://adhusch.github.io/PaCER/
https://www.nitrc.org/projects/dcm2nii/
https://www.nitrc.org/projects/dcm2nii/
https://www.uniklinik-freiburg.de/mr-en/research-groups/diffperf/fibertools.html
https://www.uniklinik-freiburg.de/mr-en/research-groups/diffperf/fibertools.html
https://www.uniklinik-freiburg.de/mr-en/research-groups/diffperf/fibertools.html
https://bitbucket.org/reisert/mesoft_v1
https://bitbucket.org/reisert/mesoft_v1
http://dsi-studio.labsolver.org
https://bitbucket.org/reisert/unring
https://bitbucket.org/reisert/unring
https://sites.google.com/site/bctnet/comparison/nbs
https://sites.google.com/site/bctnet/comparison/nbs
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surgery, Levodopa Equivalent Daily Dosage (LEDD) ON and OFF DBS as
well as %LEDD reduction by DBS). From these GLMs, root-mean-square
error (RSME), R2-Statistic and p-value of the F-statistic as well as sig-
nificance predictors are reported.
2.9. Methods summary

A list of tools to which interfaces exist or that form a native (prein-
stalled) part of Lead-DBS is given in Table 9. To make deliberate choices
regarding which option to choose for each processing step, users require
a high methodological level of understanding. To account for this, Fig. 2
gives an overview of the “default pathway” through Lead-DBS which is
further demonstrated in detail in a walkthrough-video available online
(http://www.lead-dbs.org/?page_id¼192).

3. Results

3.1. Patient outcome

3T example patient: Before surgery, the 64 year old male patient had
an UPDRS-III score of 72 points (OFF dopamine replacement therapy;
Hoehn-Yahr stage IV). Under dopaminergic medication, the score
improved to 46 points. Seven days post-surgery, the patient was
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discharged with an appreciable stun effect and a subjective improvement
of gait. Without stimulation but under medication, the UPDRS-III scored
11 points, with added stimulation 4 points (0.5mA bilateral on the lower
segmented contacts in ring mode). At the time of writing, no post-
operative score under dopaminergic withdrawal and under stimulation
was available.

Retrospective 1.5T cohort: The 51 (18 female) patients were 60� 7.9
years old at time of surgery and UPRDS-III improved by 45.3� 23.0%
from a baseline points (postoperative OFF at 12months) of 38.6� 12.9 to
21.1� 8.8 (DBS ON, Med OFF at same day). Disease duration at time of
surgery was 10.4� 3.9 years and LEDD reduction was 52.8% (1072.72 in
baseline vs. 484.57 at 12 months post surgery).

Preoperative baseline of the sample had been 32� 11 UPRDS-III
points in Med OFF vs. 12� 5 points in Med ON conditions
(53.5� 17.2% percent improvement in levodopa response).
3.2. Image registration

Co-registration results of T2-and if available PD- and FGATIR se-
quences as well as postoperative MR/CT to the anchor-modality (T1)
were done using default presets (Fig. 2) and were accurate upon visual
inspection. Results of the 3T example patient are shown in Fig. 3A.
Similarly, fractional anisotropy (FA) computed from the preoperative
Fig. 3. A) Co-registration results of the 3T
example patient. Lead-DBS linearly registers
preoperative T2, PD, FGATIR and FA vol-
umes to the T1 anchor modality (visualized
as red edge contours) using SPM. Similarly,
by default, postoperative CT is linearly
mapped to T1 using ANTs. A tone mapped
version of the CT is shown (equally display-
ing brain- and bone-windows). B) In the
following ANTs-based normalization step,
the T1 volume will be registered to the T1-
weighted MNI template (2009b NLIN Asym
space; not shown). Likewise, T2 and PD vol-
umes will be mapped to T2-/PD-templates.
FGATIR volume by default is mapped to a
synthetic PCA template while FA to a regis-
tered version of the FMRIB58_FA template.
These five transforms result in a joint
nonlinear deformation field that is equally
applied to pre- and postoperative
acquisitions.

http://www.lead-dbs.org/?page_id=192
http://www.lead-dbs.org/?page_id=192


Fig. 4. Normalization results of the 3T example patient.
Based on the preoperative multimodal MRI (T1, T2, PD,
FGATIR) of the patient, individual anatomy was regis-
tered into ICBM 2009b NLIN Asym (“MNI”) space using
various methods. Left column: MNI space (red wire-
frames) overlaid to normalized T1 acquisition. Right
column: DISTAL atlas STN (red wireframes) overlaid to
normalized T2 acquisition. Note that the SUIT registra-
tion uses SPM methods too, but is based on a toolbox
focusing on brainstem and cerebellum anatomy. Thus,
normalizing the STN region with this preset is not
possible, the method is still displayed for the sake of
completeness. It is better applicable for brainstem targets
such as the Pedunculopontine Nucleus (PPN).
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dMRI acquisition in the 3T example patient was registered to T1. All
preoperative sequences (including FA if available) were used for
nonlinear registrations to template space in the ANTs-based approaches
(shown in rows 1–3 in Fig. 4 for the 3T example). In these multispectral
warps, the T1-scan was mapped to the T1 template, T2 to T2, PD to PD
(Fig. 3B). The FA volume was instead paired with the FMRIB58 FA
template (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FMRIB58_FA) that had
been registered to 2009b space using anMNI-152 6th-gen to 2009b space
transform (Horn, 2016). Since no FGATIR-template exists in 2009b
space, Lead-DBS automatically paired this scan with an aggregated PCA
template (Horn, 2017). The linear three-step registration was included
mainly for reproducibility purposes (Sch€onecker et al., 2009) but equally
supports multispectral registrations. In the MAGeT Brain-like approaches
(rows 4–5 in Fig. 4), only T1-, T2- and PD-weighted acquisitions were
used given these sequences were available in the IXI database of
age-matched peer-brains (i.e. “templates” in MAGeT nomenclature).
SPM-based approaches (rows 6–7 in Fig. 4) used all preoperative acqui-
sitions except the FA volume. Here, volumes were not paired with a
specific template as in the ANTs-based registrations. Instead, tissue priors
were used to learn posterior segmentations using voxel intensities across
image modalities (Ashburner and Friston, 2005). All methods except the
FNIRT and Linear Three-Step registrations were able to precisely segment
the STN target region based on manual inspection. Note that the FNIRT
method does not support multispectral warps and estimated the warp
based on the T1 volume only (on which the STN is not visible). This may
explain the mismatch in template vs. subject STN target regions.

Finally, in the 3T example patient, brain shift correction led to a
refined registration between postoperative CT and preoperative anchor
modality (T1). A shift of 0.17mm to the left, 0.9 mm to anterior and
1.66mm in dorsal direction was introduced (Fig. 5). In the present case,
not much pneumocephalus was present and the example may rather
demonstrate the introduction of higher robustness and precision with an
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additional subcortical refinement transform. An example of the tool in
case of prevalent pneumocephalus may be seen in the methods Fig. S1.
3.3. Electrode reconstructions

In the 3T example patient, the PaCER method found an optimal so-
lution including location of electrode contacts in a fully automated
manner whereas the TRAC/CORE method robustly reconstructed the
trajectory but contacts had to be adjusted manually. Final fully automatic
PaCER reconstruction is shown in Fig. 6. In the subsequent step, orien-
tation of the segmented electrode was reconstructed using the Direc-
tional Orientation Detection (DiODe) algorithm, an updated version of
the approach described in (Sitz et al., 2017). Relative to amarker position
pointing strictly to anterior, rotation of the electrodes was corrected by
65� (right lead) and 30� (left lead) clockwise as seen from the tip,
respectively. Final MNI coordinates of planning (lowermost) contacts
were x¼ 11.6, y¼�16.2, z¼�9.1 on the right and x¼�12.7,
y¼�15.1, z¼�10.7mm on the left. Relative to the midcommissural
point, in stereotactic coordinates, these corresponded to x¼ 11.5,
y¼�4.4, z¼�5.9 (right) and x¼�12.7, y¼�3.9, z¼�7.0mm (left).
3.4. Microelectrode recordings

After electrode reconstruction, classifications (no cell activity, un-
specific cell activity, clear STN typic activity pattern) recorded in the 3T
patient were mapped to the subcortex and are shown in Fig. 7 for the
right hemisphere. On both sides, boundaries of firing patterns on the top
and bottom of the STN corresponded well to the atlas-/imaging-defined
STN. For instance, in the left lateral trajectory, no clear STN activity was
reported and in agreement to that, the trajectory traverses outside
(lateral) to the imaging-defined STN throughout its whole course.
Fig. 5. Brain shift correction results of the
3T example patient. The approach serves as a
refinement registration step between post-
and preoperative acquisitions and is able to
minimize nonlinear registration errors due to
pneumocephalus (Fig. S1). In the present
example, the postoperative CT was shifted by
1.66mm in z-, 0.9 mm in y- and 0.17mm in
x-direction. A better registration can best be
seen in the area of the ventricles (white
arrow). Postoperative CT was tone mapped
to show contrast in both brain and skull
windows.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FMRIB58_FA


Fig. 6. Fully automated electrode
reconstruction results (PaCER method
contributed by Husch and colleagues) of
the 3T example patient. Orientation of
lead reconstructed using the method by
Sitz and colleagues. A) Postoperative CT
is shown orthogonal to reconstructed
trajectory (right hemisphere, blue line)
in anterior, lateral and dorsal views.
Ventral- and dorsalmost contacts
marked by red and green asterisks,
respectively. Using this view, users can
fine-tune electrode reconstructions in a
very precise way. B) Final 3D rendering
of results in synopsis with key structures
defined by the DISTAL atlas. Both elec-
trodes placed in dorsolateral STN which
corresponds to the sensorimotor func-
tional zone of the STN. Right lead re-
sides minimally more medial than left
(in respect to atlas STN) which can be
accounted for by field steering (Fig. 8).

Fig. 7. Left-Hemispheric microelectrode recording results of the 3T example patient. A) oblique view orthogonal to the lateral surface of the STN (white wireframes).
B) view from posterior and C) dorsal. Markers in blue (no cell activity), yellow (cell activity), red (typical STN firing pattern) placed on 45� rotated Ben Gun (X-) array
of microelectrodes between 7.5 and �1.5mm distance to surgical target in 0.5 mm steps. Trajectories: central (red), lateral (magenta), medial (cyan), posterior (green)
and anterior (yellow) trajectories.
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3.5. VTA calculation

Stimulation parameters of 2 mA on the planning contact (ventral
segmented level in ring mode) were calculated using the FEM-model and
standard vs. frequency adapted conductivity values (Fig. 8 A, B). Here,
the “heuristic” electric-field (E-field) threshold of 0.2 V/mm was used.
The E-Field is the first derivative of the voltage distribution across the
tissue surrounding the electrode. To demonstrate the possibilities of
segmented electrodes, an additional unidirectional setting was calculated
(Fig. 8C, F). Finally, to allow for comparison with heuristic VTA models
implemented in Lead-DBS, 2 V estimates on a ring electrode (Medtronic
model 3389) are shown in Fig. 8 D, E using the M€adler or Kuncel models,
respectively.

3.6. Connectivity from VTA to other brain regions

Top row of Fig. 9 shows results of the (3T patient‘s) patient-specific
deterministic DTI tractography, Gibbs‘-tracking (GT), Mesotracking
(MF-GT) and Generalized Q-sampling Imaging (GQI) approaches (whole
connectome) as well as Human Connectome Project (HCP; Setsompop
Fig. 8. VTA modeling (right hemispheric lead) in the 3T example patient. Left two
demonstrates the strong impact on standard conductivities vs. frequency-adapted co
voltage driven models implemented in Lead-DBS. These models are not validated for
column: The “optimal” segment on the top (K13) is used as cathode, steering the fie
marked with Stim A and B are used as connectivity seeds in subsequent figures.
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et al., 2013; Horn et al., 2017a) and PPMI (Marek et al., 2011; Ewert et al.
2018b) based normative connectomes. In the bottom row of Fig. 9, fiber
tracts running through the VTA defined in Fig. 8A and C are shown.
Fig. 10 shows connectivity profiles from the VTA defined in Fig. 8A
projected to the cortex using various structural and functional
connectomes.

3.7. Explaining clinical improvement in retrospective cohort

Results are summarized in Table 10. Briefly, volumes of overlap
correlated significantly with the empirical clinical outcome (FSL FNIRT:
R¼ 0.38 at p¼ 0.007, ANTs SyN without/with subcortical refinement:
R¼ 0.47/0.49 at p< 0.001; SPM New Segment: R¼ 0.52 at p< 0.001).
Weighted overlaps between E-Field and STN correlated higher with
clinical improvement for all normalization methods (FSL FNIRT:
R¼ 0.46 at p< 0.001, ANTs SyN without/with subcortical refinement:
R¼ 0.47/0.52 at p< 0.001/< 10�4, SPM New Segment: R¼ 0.54 at
p< 10�4). Mid column of Fig. 11 summarizes these findings. When
adding additional clinical co-variates to a GLM to explain motor
improvement (right column in Fig. 11), RMSE was comparable between
columns: several omnidirectional stimulations at the default contact. Top row
nductivities in the resulting FEM-based VTA. Bottom row shows two heuristic
directional leads, thus, a Medtronic 3389 electrode is visualized instead. Right

ld anterolaterally to reach a good coverage of the dorsolateral STN. Simulations



Fig. 9. Fiber tracking results of the 3T example patient. First four columns show results of the patient-specific DTI, Gibbs’-tracking, Modelfree Meso global tracker and
GQI approaches (top: whole connectome, bottom, tracts seeding from STIM A & B; see Fig. 8). Last two columns show the same views on HCP and PPMI based
normative connectomes.
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methods (~14–16%) but explained variance was 8% higher between best
(SPM New Segment with E-Field) vs. worst (FSL FNIRT with binary VTA)
methods (Table 10).

Panel A of Fig. 11 shows the FNIRT method (which does not work
multispectrally and had only T1 MRIs as input, thus has poor if any in-
formation on the STN location) in combination with a binarized VTA.
This approach could be seen as a “common neuroimaging” approach
since most fMRI studies use T1 weighted images in their normalization
step and binarized VTAs are common in the field. Panels B and C show
the two multispectral Lead-DBS default pathways identified in (Ewert
et al., 2018a) and apply a weighted VTA (E-Field magnitude). Both yield
a similar outcome of ~R¼ 0.5, increasing the amount of variance
explained by imaging alone from ~14% (FNIRT T1) to ~26% (Lead-DBS
defaults). Their connectivity strength (number of weighted streamlines to
the SMA as defined by the 6ma entry – the medial and anterior parcel of
sensorimotor numbered results – of the Glasser et al., 2016 parcellation)
was calculated using Lead Connectome Mapper. Resulting values were
equally correlated with empirical motor improvement scores (Fig. 11
panel D).

First column of scatterplots shows direct correlation between VTA-
STN overlap (weighted E-field overlap or weighted streamlines to
SMA) with clinical improvement. Second column shows GLM with
additional clinical covariates. Table 10 shows results for additional pre-
processing strategies.

4. Discussion

We present a comprehensive and advanced processing pipeline to
reconstruct, visualize and analyze DBS electrode placement based on
neuroimaging data. Specific strengths in comparison to other tools are a
seamless integration with a wide array of neuroimaging tools (Table 11),
a strong focus on precise spatial normalization and connection to a
structural and functional connectome pipeline that facilitates connec-
tivity analyses within the DBS context (Figs. 9 and 10).

Contributions of the present paper are three-fold. First, an overview is
provided regarding the novel neuroimaging methods that were added or
updated over the course of four years since the initial publication of Lead-
DBS. Second, a default pathway navigating through the multiple options
in both DBS and connectome pipelines is outlined (Fig. 2). This pathway
is motivated by both empirical data (Ewert et al., 2018a; Fillard et al.,
2011; Klein et al., 2009; Maier-Hein et al., 2017) and by the experience of
the Berlin DBS center where Lead-DBS or similar applications were used
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to localize roughly three thousand DBS electrodes since 2008. Third,
results of various processing steps are visualized for a single patient and
quantitatively analyzed in a retrospective analysis of 51 patients. In the
latter, we do not only demonstrate that overlap between stimulation
volumes and the subthalamic nucleus may explain clinical motor
improvement, but we also show that the amount of variance explained
may depend on the applied preprocessing strategy. Specifically, in the
cohort investigated here, the advanced multispectral normalization
pipelines implemented as defaults in Lead-DBS are able to explain more
variance in clinical outcome than a “typical neuroimaging” pipeline.

In total, Lead-DBS includes five methods for linear co-registrations
(Table 1), ten normalization approaches (Table 3), four approaches for
electrode reconstructions, four VTA models (Table 4) and four whole-
brain tractography pipelines (Table 6). Twenty-four subcortical atlases
(Table 2) and 17 brain parcellations (Table 7) are pre-installed. Finally,
two functional and four structural connectomes were converted into a
format suitable for use in Lead-DBS (Table 8). Taken together, these re-
sources build a comprehensive toolset for DBS electrode localization and
the analysis of local (coordinate- or VTA-based) and global (structural
and functional connectivity) features. While the number of these
methods may introduce complexity, a user-friendly “default pathway”
(Fig. 2) was established which works robustly and well for most appli-
cations. This pathway was established while working on several studies
that were empowered by Lead-DBS with a variety of clinical and scien-
tific aims. Some of these used Lead-DBS to integrate population based
neural activity with anatomical structures (“Subcortical Electrophysi-
ology Mapping” approach; Accolla et al., 2017; Geng et al., 2018; Horn
et al., 2017b; Lofredi et al., 2018; Neumann et al., 2017; van Wijk et al.,
2017). Other studies used connectivity profiles from DBS electrodes to
predict clinical outcome (Horn et al., 2017c) or combined electrophysi-
ological measures with DBS contact connectivity profiles (Accolla et al.,
2016; Neumann et al., 2018a). In an effort to improve the safety profile of
DBS implantations, some aimed at determining the relationship between
electrode positions and clinical side effects or non-motor symptoms
(Mosley et al., 2018b, 2018a). Finally, in other publications, the main
aimwas to ensure that the analyzed electrodes were indeed placedwithin
the target region (Barow et al., 2014; Brücke et al., 2014; Ehlen et al.,
2017; Hohlefeld et al., 2015, 2017; 2013; Krause et al., 2015, 2016;
Kroneberg et al., 2017; Merkl et al., 2016; Neumann et al., 2015, 2016;
Schroll et al., 2015; Tiedt et al., 2016); Neumann et al., 2018b).



Fig. 10. Connectivity from VTA defined by “STIM A” (Fig. 8)
projected on the right hemispheric surface as defined by
various connectomes. Top row: Patient specific structural
connectivity using DTI, Gibbs‘ Tracking and GQI methods.
Mid row: Connections defined by the structural Gibbscon-
nectome, HCP Adult Diffusion and PPMI PD connectomes.
Bottom row: Functional connectivity between VTA and other
brain regions as defined by normative GSP 1000 and PPMI 74
PD connectomes. This figure demonstrates a multitude of
options to analyze VTA connectivity in Lead-DBS, but also
highlights challenges of the process, since different methods/
datasets yield different results.
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4.1. The precision of Lead-DBS

Quantifying the precision of the processing pipeline is a difficult task
but a frequently asked question and crucial to the widespread use of the
tool. Unfortunately, without postmortem histological examination, no
real ground truth exists. However, some indirect measures may help to
address the question. First, it should be mentioned that errors may
originate from several sources including i) MR-distortion artifacts, ii)
within-patient co-registration including brain shift, iii) patient-to-
template normalization and iv) electrode localization. Quantifying the
first source falls under the domain of MR physics research and goes
beyond the present scope. Still, it is advisable to apply distortion
correction steps in each MR sequence if possible – even more so when
high field magnets are involved. Second, errors in linear co-registration
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can be minimized by care- and skillful inspection of the data. The
check co-registation and brain shift correction modules were specifically
designed for this task and iteratively improved to suit the needs and
precision of DBS imaging. For instance, the brain shift correction step
often sensibly corrects registrations on a submillimeter scale (Fig. 5 and
Fig S1). Normalization procedures were recently addressed in a
comparative study (Ewert et al., 2018a). The study defined the default
normalization pipeline which, depending on data quality, resulted in an
average surface distance of STN/GPi boundaries between 0.38 and
0.75mm, while inter-rater distance was between 0.41 and 0.82mm.
Based on these results, the present pipeline is able to segment STN and
GPi nuclei equally well as human experts. In this context, an ante-
roposterior iron gradient in the STN poses an additional problem for this
specific target. The posterolateral sensorimotor part of the nucleus that is



Table 10
Preprocessing strategies used to explain variance in clinical outcome of 1.5T retrospective cohort.

VTA strategy MR volumes
used

Shown in
Fig. 11

Correlation
(image metric
vs. motor
improvement)

GLM (þadditional covariates)

Normalization strategy R p RSME [%j R2 Overall p Significant predictors
(p< 0.05)

Binary VTA overlap
Monospectral FSL FNIRT T1 Panel A 0.38 <0.007 15.1 0.43 <0.005 Sex
Multispectral ANTs SyN w/o subcortical refine T1 & T2 – 0.46 <0.001 15.3 0.45 <0.005 Sex

with subcortical refine T1 & T2 – 0.49 <0.001 14.8 0.48 <0.005 Sex, VTA overlap
Multispectral SPM New Segment T1 & T2 – 0.51 <10�4 14.7 0.49 <0.001 Sex, VTA overlap
Weighted E-field VTA/STN overlap
Monospectral FSL FNIRT T1 – 0.46 <0.001 15.1 0.46 <0.005 Sex
Multispectral ANTs SyN w/o subcortical refine T1 & T2 – 0.47 <0.001 15.3 0.46 <0.005 Sex

with subcortical refine T1 & T2 Panel B 0.52 <10�4 14.9 0.48 <0.005 Sex, E-Field overlap
Multispectral SPM New Segment T1 & T2 Panel C 0.54 <10�4 14.5 0.51 <0.001 Sex, E-Field overlap
Weighted streamline counts to SMA
Weighted streamline counts to SMA
seeding from E-Field (based method
one row above)

T1 & T2 Panel D 0.53 <10�4 14.8 0.49 <0.005 Sex, Streamlines to SMA
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targeted to treat movement disorders contains less iron than its ante-
riomedial parts, often rendering it smaller on MRI than it actually is
(Dormont et al., 2010; Richter et al., 2004, Sch€afer et al., 2012; de Hol-
lander et al., 2014, Massey et al., 2012). This makes the registration of
this specific nucleus to a template space more error-prone than other
targets and yet again raises the need for ultra high-field multispectral
preoperative imaging (e.g. see Forstmann et al., 2017, Keuken et al.,
2014). Fourth, in the electrode reconstruction step, prior studies have
used phantoms to verify that electrode artifact centers in MRI (Pollo
et al., 2004; Yelnik et al., 2003) and CT (Hemm et al., 2009; Husch et al.,
2017) indeed correspond to electrode centers in the brain. To this end,
the PaCER algorithm as the default reconstruction algorithm for post-
operative CT yielded an average reconstruction error below 0.2mm –

again depending on data quality. On the other end of the spectrum, the
“x-ray mode” of Lead-DBS was specifically designed to reduce errors
introduced by partial volume effects in imaging data of suboptimal res-
olution. In summary, all sources of error can be minimized by using
high-quality imaging data, distortion correction and careful inspection or
registration and localization results. Based on the retrospective cohort
analyzed in the present study, we demonstrate that the specialized and
elaborate default pipeline of Lead-DBS may add to the amount of vari-
ance explained in DBS imaging data.

4.2. Reproducibility, open science & experimental features

As stated above, a key mission of Lead-DBS development is to provide
a platform for DBS imaging that is and remains i) free of use, ii) repro-
ducible, open source & transparent, and iii) independent from commer-
cial manufacturers. While this hinders the application in a clinical
context (see below), within research, it has several advantages. First, the
free software nature offers excellent worldwide accessibility, the possi-
bility of fast skill dissemination in open workshops or courses within the
academic field. Similarly, it is easy to script, automate and modify as
permitted by the open source license while this is tedious or impossible in
closed environments of clinical software. Second, transparent and open
source code that is developed in a version controlled fashion (https://
github.com/leaddbs/leaddbs) permits reproducibility required for good
scientific practice. In contrast, undocumented changes or discontinuity in
the commercial applications may impose risks for producing consistent
results. Discontinuation of commercial products has happened on mul-
tiple occasions in the field of DBS (Table 9). Consequently, published
studies that used discontinued software exist and are now hard if not
impossible to reproduce or build upon. A slightly less obvious advantage
of academic software is that its development is much more flexible.
Commercial applications undergo highly involved and time-consuming
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certification processes to achieve CE-marks or FDA-approvals for safe
use in clinical context. Needless to say, this is a great advantage or even
requirement for clinicians but may drastically slow down software
development. Furthermore, new research tools may not be easily inte-
grated into commercial pipelines since these would require re-
certification. In contrast, new tools can be integrated into academic
software from idea and concept to end-user deployment within days. For
instance, in 2009, the global fiber tracking approach (Reisert et al., 2011)
won the Neurospin Fiber Cup evaluated as the best fiber tracking soft-
ware compared to nine competitors (Fillard et al., 2011). With help from
its developers, the Gibbs‘ Tracker was integrated into the Lead Con-
nectome pipeline within weeks. Recently, a newer comparative study
found that the generalized q-sampling algorithm implemented in DSI
studio yielded the highest “valid connection” score (Maier-Hein et al.,
2017). Again, with kind support and permission of the developer, this
method was integrated into Lead-DBS. A last example is the brain shift
correction feature that was developed from idea to published code during
a three day “brainhack global” event in 2017 at MIT (Cameron Craddock
et al., 2016). Finally, a strong focus of clinical applications lies on their
usability and processing speed. This is important since tools are used by
medical personnel working under stressful circumstances where intro-
duction into various complex software tools and long processing times
are not tolerable. In contrast, in a research setting, search for innovative
application, and development of new features outweighs the burden of
computational time. Often, high performance compute clusters are
available or jobs are run overnight. Thus, processes with high compu-
tational cost will be optimized for speed and standard applications in the
former and for development and precision in the latter context. These
thoughts illustrate that both types of tools – i.e. clinical vs. academic
software – are needed. Given contradictory demands, a one-stop solution
serving all purposes is hard if not impossible to create.

4.3. Limitations and future directions

In comparison to the first release, version 2 represents a major update
and a drastically enhanced pipeline for DBS imaging. However, further
development is planned to address remaining limitations and further
maximize precision of the pipeline. To this end, the pipeline and resulting
models may be broken down into four layers, each of which could be
further improved as technology and methodology advance (Fig. 12).
First, an anatomy layer describes the local surroundings of the electrode
and helps to define electrode placement initially. This layer is presently
defined by imaging and brain atlases (of which some may be informed by
histology or other sources of information, Table 2). It was mentioned
multiple times that naturally, overall precision drastically depends on

https://github.com/leaddbs/leaddbs
https://github.com/leaddbs/leaddbs


Fig. 11. Amount of variance in clinical outcome explained when applying various preprocessing options (retrospective 1.5T cohort). A) an exemplary “standard
neuroimaging” approach with a monospectral (T1 only) FSL FNIRT based registration and a binary VTA. B & C) Default pathways of Lead-DBS, registering preop-
erative data into template space in multispectral fashion according to the most optimal method as delineated in (Ewert et al., 2018a). In these approaches, the overlap
sum between the E-Field gradient magnitude inside the STN was calculated. D) Using results from C as weighted seeds to isolate fibers from the normative PPMI
connectome (Table 8), correlating weighted numbers of streamlines to SMA to explain clinical motor improvement.
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imaging quality (Ewert et al., 2018a; Husch et al., 2017). Crucially, the
MR protocol of the 3T example patient represents a state-of-the art
pipeline achievable in typical hospital settings and comprises a special-
ized basal ganglia sequence (FGATIR; Sudhyadhom et al., 2009). How-
ever, the diffusion-MRI acquired here may not be optimally suited to
investigate the fine and complex details around DBS targets but was
possible to scan within clinical routine. An example of a more optimal
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scan protocol can be found in (Akram et al., 2017). Moreover, as dis-
cussed in our original article (Horn and Kühn, 2015), the use of post-
operative CT or MRI each has specific advantages (higher signal to noise
of the electrode on CT but direct visibility of surrounding anatomical
structures on MRI, no radiation). It is hard to tell on empirical grounds
which is better but the visibility of structures on the MRI generates a
strong argument in favor for postoperative MRI – with the possibility to



Table 11
Software with aims comparable to Lead-DBS. Entries based on publicly available information at the time of writing.

Name Institution/Company Publicly
available

Open Source Free of cost CE/FDA Website Citation

Scientific Applications
DBSproc NIH þ þ þ – afni.nimh.nih.gov Lauro et al., 2015
PyDBS Univ. Rennes, Univ.

Descartes Paris
– N/A N/A – acoustic.univ-rennes1.fr/

doku.php/software
D’Albis et al., 2014

PaCER Universit�e du
Luxembourg

þ þ þ – adhusch.github.io/PaCER Husch et al., 2017

DBSmapping INESC TEC Porto – N/A N/A – – Da Silva et al., 2015
“Virtual Patient” MGH/HMS – N/A N/A – – Bonmassar et al., 2014
CiceroneDBS Case Western Reserve

University
discont. N/A N/A – – Miocinovic et al., 2007

Lead-DBS Charit�e – University
Medicine Berlin

þ þ þ – lead-dbs.org Horn and Kühn 2015

Commercial Applications
GUIDE Boston Scientific discont. N/A N/A N/A – N/A
GUIDE XT Brainlab/Boston

Scientific
þ/planned – – filed brainlab.com N/A

Optivize Medtronic discont. N/A N/A N/A medtonic.com N/A
SureTune Sapiens Steering Brain

Stimulation
discont. N/A N/A N/A – N/A

SureTune vs. 2 & 3 Medtronic þ/planned – – þ medtonic.com N/A
CranialCloud/CranialDrive Neurotargeting LLC þ – – þ app.cranialdrive.com D'Hasese et al., 2015

Fig. 12. Four layers in a DBS imaging pipeline that may need continuous refinement as technology and methodology advance.
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much more deliberately control for accuracy of post-to pre-co-registra-
tion around the target region. Similarly specialized methods like quan-
titative susceptibility mapping (Wang and Liu, 2015) or the use of
ultra-highfield MRI (Forstmann et al., 2017, 2014) are other potential
ways of increasing anatomical precision. As Fig. 1 illustrates, DBS target
regions are typically small in size and reside in complex surroundings
with a multitude of fiber tracts and functional segregations. Thus, sources
above and beyond MRI may be needed to refine definition on the anat-
omy layer. To this end, techniques like polarized light imaging (Axer
et al., 2011) or anisotropic scattering imaging (Shin et al., 2014) as well
as the registration of histological stacks into template space (Alho et al.,
2017a,b; Amunts et al., 2013; Chakravarty et al., 2006; Ewert et al.,
2018b; Forstmann et al., 2016; Jakab et al., 2012; Yelnik et al., 2007) are
already applied increasingly.

The second layer deals with modeling the local stimulation effects
which are often represented by an E-Field or VTA. The anatomy layer
directly informs these computations given distinct and even anisotropic
conductivity values present in gray or white matter (Butson et al., 2006;
Horn et al., 2017c). As mentioned above, to this end, other groups have
created much more elaborate models over the last twenty years. Among
others, pioneering work by the McIntyre, Butson, Grill, van Rienen and
Wårdell groups should be mentioned (e.g. Åstr€om et al., 2014, 2009;
Butson et al., 2006; Butson and McIntyre, 2008; Chaturvedi et al., 2013;
Gunalan et al., 2017; Schmidt et al., 2013; Schmidt and van Rienen,
2012). A practical disadvantage of these models is that they require
manual interventions at multiple stages and use of a multitude of soft-
ware applications (some of which are expensive commercial solutions;
e.g. see Gunalan et al., 2017). On the other end of the spectrum, even
simpler models exist that were successfully employed in clinical context
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(Dembek et al., 2017; Kuncel et al., 2008; Lauro et al., 2015; M€adler and
Coenen, 2012; Vanegas Arroyave et al., 2016). Still, while it remains to
be shown that more clinical variance may be explained when applying
more sophisticated models, the stimulation layer is definitely one where
Lead-DBS has yet much room for improvement.

The third layer deals with the transition from a local VTA to a global
volume of modulation by applying brain connectivity. Using tractog-
raphy or functional connectivity to estimate which other brain areas
could potentially be modulated by DBS is a powerful technique that was
already used to predict clinical outcome in PD patients (Horn et al.,
2017c). However, a big challenge is that both methods are highly indi-
rect. As recently demonstrated, tractography results are dominated by
false positive connections (Maier-Hein et al., 2017). On the other hand,
resting-state functional MRI is only able to give rough statistical de-
pendencies between an indirect measure of brain activity that operates
on a very slow temporal scale. Thus, the conclusions drawn from these
measures need careful interpretation and benefit from validation via
anatomical or electrophysiological work. For instance, the use of com-
bined LFP-MEG recordings (Litvak et al., 2011; Neumann et al., 2015;
Oswal et al., 2016) may validate fMRI findings and vice versa, while
animal, tracer or gross-dissection studies may be used to interpret trac-
tography results (e.g. Forel, 1877; Iwahori, 1978; T. Kita and H. Kita and
Kita, 2012; Marburg, 1904). With these limitations in mind, it should be
mentioned that the two main tractography algorithms included in
Lead-DBS were each best performers in large open competitions (Fillard
et al., 2011; Maier-Hein et al., 2017) and a specific advantage of the GQI
method in clinical context lies in its low false positive score (Maier-Hein
et al., 2017).

Finally, a fourth layer could be seen as modeling dynamics or

http://afni.nimh.nih.gov
http://acoustic.univ-rennes1.fr/doku.php/software
http://acoustic.univ-rennes1.fr/doku.php/software
https://adhusch.github.io/PaCER
http://lead-dbs.org
http://brainlab.com
http://medtonic.com
http://medtonic.com
http://app.cranialdrive.com
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connectivity changes induced by DBS. This layer is not touched upon
here, but computational modeling based on empirical data seems the
only way to investigate how brain activity and connectivity responds to
stimulation of a specific target. Already, Lead-DBS was used in such basal
ganglia modeling studies (Schroll et al., 2015) and an aim of future
versions is to incorporate or interface with modeling software – steadily
working toward a “virtual patient” model that facilitates a better un-
derstanding of DBS.

In conclusion, we present an updated, advanced and integrative
platform for DBS imaging research that is openly available with the aim
to further elucidate the mechanisms of DBS and improve therapeutic
outcome for DBS patients worldwide.
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