
Inherited retinal dystrophies (IRDs) are a group of 
clinically and genetically heterogeneous disorders leading 
to vision loss because of degeneration of retinal cells [1-5]. 
Mutations in more than 250 genes have been reported to 
cause IRDs. Most identified mutations are inherited in an 
autosomal recessive fashion (50–60%) although some can be 
autosomal dominant (30–40%), X-linked (2–20%), or mito-
chondrial [6]. IRDs are divided into non-syndromic forms, 
such as retinitis pigmentosa (RP), cone-rod dystrophy (CRD), 
Leber congenital amaurosis (LCA), and Stargardt disease 
(STGD1), as well as syndromic forms [7]. These inherited 
retinal dystrophies have an estimated incidence of 1:2,000 
individuals [4].

The earliest clinical symptoms of RP (OMIM 268000) 
are night blindness and peripheral vision loss (tunnel vision) 
due to rod cell degeneration. In later stages of the disease, 
central vision can also be lost once cone cells degenerate, 
and eventually, patients with RP can become (legally) blind 
[6,8]. In CRD (OMIM 120970), the main manifestations are 
loss of visual acuity, color vision, and photophobia followed 

by night blindness and tunnel vision [9]. The rarest and most 
severe retinal dystrophy form is LCA (OMIM 204000), in 
which patients have severe visual impairment in the first year 
of life [10]. LCA appears with severe and early visual loss, 
nystagmus, and sluggish pupils [11]. STGD1 (OMIM 248200) 
is one of the most common macular degenerative disorders 
with the features of macular atrophy, impaired central vision, 
and decreased visual acuity. Color vision, especially a red-
green defect, is apparent in most affected individuals [12].

Because of the complexity of IRDs, it is often neces-
sary to reconcile the clinical diagnosis, family diagnosis, and 
molecular diagnosis. This can be done in a multidisciplinary 
team which ideally includes trained ophthalmologists, genetic 
counselors, and molecular geneticists. Thus, identification of 
the pathogenic DNA variants can help clinicians and health 
professionals to improve and expedite the diagnosis of the 
disease and provide patients and their families with more 
accurate genetic counseling. Moreover, increasing knowledge 
of the molecular mechanisms involved in IRD pathogenesis 
may also lead to the development of new treatment options 
for affected individuals in the future [13].

Since the introduction of next-generation sequencing 
(NGS), several different targeted gene panel tests that 
sequence a large set of disease-associated genes have been 
developed for specific inherited eye disorders [14]. In this 
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study, we applied a targeted gene panel–based NGS approach 
based on molecular inversion probes (MIPs) to obtain a 
molecular diagnosis for 50 patients who had been diagnosed 
with IRDs and for whom no genetic tests had been performed 
previously. Using this method, variants in 108 genes associ-
ated with non-syndromic IRDs were screened.

METHODS

Subjects: In this study, we included 50 IRD probands with 
Iranian origin and the clinical diagnosis of RP (n=31), CRD 
(n=5), LCA (n=11), or STGD1 (n=3) who had not been geneti-
cally investigated previously. The clinical diagnosis was 
established by a trained ophthalmologist including the patient 
pedigree and history of the disease, electroretinography 
(MonPack3; Metrovision, Perenchies, France), evaluation of 
visual acuity using slit-lamp biomicroscopy, and fundoscopy 
(TRC-50EX retinal camera; Topcon, Tokyo, Japan). Written 
informed consent was obtained from all study subjects. This 
study was approved by the institutional review board of the 
ethics committee of Isfahan Medical University, Iran. The 
study adhered to the tenets of the Declaration of Helsinki and 
the ARVO statement on human subjects was approved by the 
institutional review board of the ethics committee of Isfahan 
Medical University, Iran.

Targeted sequencing and genetic analysis: Five cc of periph-
eral blood samples of affected and unaffected members 
were collected and mixed with EDTA anticoagulant (Merck 
KGaA, Darmstadt, Germany). Genomic DNA of all samples 
was extracted using the phenol-chloroform method [15].

Targeted NGS was performed to identify the genetic 
etiology of IRDs in 50 patients with different types of IRDs. 
The 108 gene panel MIP analysis designed at the Department 
of Human Genetics at Radboud University Medical Center 
(Nijmegen, The Netherlands) consisted of genes implicated 
in non-syndromic achromatopsia, cone dystrophy (CD) 
and CRD (autosomal dominant, autosomal recessive, and 
X-linked), congenital stationary night blindness (autosomal 
recessive and X-linked), macular degeneration (autosomal 
recessive and autosomal dominant), LCA (autosomal domi-
nant and autosomal recessive), RP (autosomal recessive, 
autosomal dominant, and X-linked), and choroideremia. MIPs 
with 5-bp molecular tags were used to perform targeted NGS 
of 108 genes associated with IRD (Appendix 1). The 1,524 
coding exons and at least 10 bp flanking each exon were 
targeted using 6,129 MIPs for an overall target size of 647,574 
bp. On average, four to six MIPs cover one exon. When 
known single nucleotide polymorphisms (SNPs) resided 
in the genomic regions complementary to the annealing or 

ligation arm, SNP-specific MIPs were designed. The panel 
also included the frequent LCA-associated pathogenic 
intronic variant c.2992+1655A>G in CEP290 (Gene ID 80184, 
OMIM 610142) [16], as well as five deep-intronic variants 
in ABCA4 (Gene ID 496442, OMIM 248200) [17]. Pooled 
and phosphorylated probes were added to the capture reac-
tions with 100 ng of genomic DNA from each individual to 
produce a sequence library for each individual. The libraries 
were amplified with 21 cycles of PCR (first denaturation step 
at 95 ºC for 4 min, followed by 21 cycles at 94 ºC for 30 s, 57 
ºC for 30 s, 72 ºC for 1 min and then a final extension step 
at 72 ºC for 5 min), during which an 8-bp sample barcode 
was introduced. The barcoded libraries were then pooled 
and purified with AMPPureXP beads (Beckman-Coulter, 
Indianapolis, IN). Sequencing was performed on an Illumina 
NextSeq 500 system (San Diego, CA). Demultiplexed BAM 
files were aligned to a human reference sequence (UCSC 
Genome Browser hg19) via the Burrows-Wheeler Aligner 
(BWA) v.0.6.2 [18]. In-house automated data analysis pipe-
line and variant interpretation tools were used for variant 
calling. Only non-synonymous single nucleotide variants 
(nsSNVs), nonsense variants, putative splice site (±10 bps) 
variants, insertions, duplications, and deletions represented 
by more than 20 sequence reads were considered for further 
analysis. In addition, variants with a minor allele frequency 
(MAF) >0.5% in the Exome Aggregation Consortium Data-
base (ExAC) Version 0.3.1 [19] were excluded from further 
investigation, with the exception of a few frequent variants 
in ABCA4 (i.e., c.2588G>C, c.5882G>A, and c.5603A>T 
[20-25]) that were selected separately.

In silico predictions: Several criteria were taken into account 
to evaluate the potential pathogenicity of variants: 1) The 
variants had previously been reported to be pathogenic, 2) 
the variants were absent in the ExAC database or showed a 
low MAF (<0.5%), 3) the variants caused a loss-of-function 
(LOF) of the encoded protein, such as nonsense, canonical 
splice site, and frameshift mutations, and 4) missense vari-
ants were predicted to be damaging by in silico prediction 
algorithms. The pathogenicity prediction tools used for 
missense variants were PolyPhen-2, Sorting Intolerant From 
Tolerant (SIFT), PhyloP score, the Grantham score, Muta-
tion Taster, and Combined Annotation Dependent Depletion 
(CADD) score assessment. For the selection of non-canonical 
splice site variants, in silico predictions were performed by 
using five algorithms (SpliceSiteFinder-like, MaxEntScan, 
NNSPLICE, GeneSplicer, and Human Splicing Finder) via 
Alamut Visual software version 2.7 [26–30], and Biosoftware 
(Interactive Biosoftware, Rouen, France), by comparing the 
splicing scores for wild-type and variant nucleotides.
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Segregation analysis: Candidate variants were validated and 
tested for cosegregation within the families using Sanger 
sequencing. For this purpose, specific primers were designed 
for PCR amplification of fragments containing the identified 
candidate causal mutations in each patient. PCR amplicons 
were sequenced using Sanger sequencing on an ABI 3730 
DNA analyzer (Cologne, Germany) with BigDye chemistry 
v3.1.

RESULTS

Study population: Fifty unrelated Iranian patients with non-
syndromic IRD were included in this study, and their parents 
were first (34 families) or second cousins (16 families). All 
clinical information for the 50 families is summarized in 
Table 1. Among the 50 patients, 31 have RP, five have CRD, 
11 have LCA, and three have STGD1.

Variant prioritization to identify causal variants: One 
affected individual from each of the 50 families was subjected 
to targeted NGS of 108 known IRD-associated genes 
(Appendix 1). The averages of 1.2 million reads on target per 
sample were obtained using our capture panel technology, 
with an average coverage of 213 reads per MIP. Moreover, 
an average of 88% of targeted regions had 10X coverage or 
more, which was sufficient for accurate variant calling. The 
pipeline initially called an average of 532 single nucleotide 
variants and 64 insertions or deletions for each sample. In 
this study, putative pathogenic variants were identified in 36 
index cases (Table 2), and we could not find the pathogenic 
variants for the remaining 14 families. All putative disease-
associated variants were validated with conventional Sanger 
sequencing, and segregation analysis was performed for all 36 

families with identified pathogenic variants. Homozygosity 
was observed for 32/36 patients (88%), and four patients were 
compound heterozygous.

Overall, we identified 36 unique pathogenic variants 
based on the low allele frequency or absence of variants in 
ExAC, their high evolutionary conservation, the type of the 
amino acid substitutions, and the high predicted impacts of 
an amino acid substitution on the structure and function of 
a human protein in 19 genes. Of these, 20 were novel with 
the remaining 16 previously reported as IRD-causing vari-
ants [31-45]. Furthermore, 14 out of the 50 families remained 
genetically unexplained (Figure 1). Thus, the sensitivity 
of the gene panel for detection rate was 72%. The unique 
variants comprised 15 missense variants, nine nonsense 
variants, three deletions or insertions leading to a frameshift, 
six canonical splice site variants, two in-frame deletion and 
duplications, and one start loss. Pathogenicity was interpreted 
in accordance with different predictions (Table 3). According 
to the prediction tools in this study, all variants were anno-
tated as pathogenic except one missense variant in ABCA4 
(c.6385A>G; p.(Ser2129Gly)) that is predicted to be benign by 
PolyPhen-2 and tolerated by SIFT. However, this variant was 
predicted to be disease causing by MutationTaster and a high 
CADD score. As shown in Appendix 1, this variant is situ-
ated at the penultimate position of exon 46 and is part of the 
splice donor site consensus sequence. The canonical splice 
site nucleotides are GC, and therefore, the corresponding 
splice site was recognized only by SpliceSiteFinder-like. It 
predicted a strength of 91.8 (on a scale from 0 to 100) for 
the wild-type sequence and 80.3 for the mutant c.6385A>G, 
which is considered a large decrease in splice strength. 
Accordingly, we included the p.? in the predicted protein 

Table 1. CliniCal informaTion overview for 50 iranian families wiTh inheriTed reTinal dysTrophies.

Diagnosis 
 

Symptoms 
 

Number of 
patients 
 

Sex  
Mean age of 
onset (±SD) 
 

Mean age 
(±SD) 
 

Family 
history of 
IRDs

Male Female Yes No

RP NB, Tunnel vision, near blindness 31 15 16
11.6±4.2 
years

31.5±6.3 
years 21 10

CRD Photophobia, defect in color 
vision, near blindness 5 1 4 11.7± 4.2 

years
31.7±6.3 
years 4 1

LCA Nystagmus and total blindness 11 7 4 9.6±2.08 
months

31.3±6.7 
years 7 4

STGD1

Photophobia, defect in color 
vision, difficulty in adaption to 
the dark after sunlight exposure, 
central vision loss

3 0 3 11.2±5.1 
years

30.6±2.5 
years 2 1

NB: Night blindness, RP: Retinitis pigmentosa, CRD: Cone-rod dystrophy, LCA: Leber congenital amaurosis, STGD1: Stargardt disease, 
IRD: Inherited retinal dystrophies, SD: Standard deviation
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change. In addition, this homozygous variant has not been 
reported in ExAC.

DISCUSSION

Although consanguineous marriages are common in the 
Iranian population [46], which makes the Iranian gene pool a 
valuable asset for genetic studies, little is known about inher-
ited retinal degeneration in the Iranian community. Overall, 
37.4% of Iranian marriages are consanguineous. Among 
them, 19.3% are first cousins and 18.1% second cousins [47]. 
Thus far, three small studies on genetic causes of Iranian 
patients with IRD have been reported [41,48,49].

Compared to the multiple targeted gene panel tests for 
different subtypes of IRDs that have been developed in the 
past few years with a detection rate of approximately 50–70% 
[50], we found similar percentages of pathogenic variants 
using our panel testing. Haer-Wigman et al. showed that using 

an in silico gene panel (based on whole exome sequencing) 
that was performed for 266 Dutch patients with visual impair-
ment, in 52% of the cases, the genetic cause was identified 
[51]. However, in some studies the detection rate using panel 
testing was low. For instance, Fu et al. recruited 31 families 
with autosomal recessive RP and identified the pathogenic 
variant through a gene panel comprising 163 retinal disease 
genes. The authors achieved a detection rate of approximately 
40% [52].

Variant c.6385A>G, apart from a predicted amino acid 
exchange, p.(Ser2129Gly), lowers the strength of a splice 
donor site of exon 46. A splice assay can shed light on its 
effect. Moreover, most of the variants detected in the patients 
are homozygous except four families that we identified as 
carrying compound heterozygous variants in RP1 (Gene 
ID 19888, OMIM 180100), ABCA4, and BBS2 (Gene ID 
67378, OMIM 615981). The most frequently mutated gene 

Figure 1. Relative involvement of 19 inherited retinal disease-associated genes among the 50 probands.
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was RPE65 (Gene ID 6121, OMIM 180069), mutated in 4/50 
(8%) of the families (Figure 1). Sundaresan et al. reported 
that although the mutations in some genes such as RPE65 
are a common cause of LCA in North America, they are rare 
in southern India [53]. To determine whether mutations in 
RPE65 are a common cause of RP in the Iranian popula-
tion, we need to screen a larger cohort of RP probands in the 
future.

Our genetic findings, in particular the recurrence 
for variants in CERKL (Gene ID 375298, OMIM 608381), 
RPE65, and RPGRIP1 (Gene ID 57096, OMIM 605446) will 
aid genetic testing for IRD in the Iranian population. Further-
more, different variants in one gene can cause the same 
phenotype as, for example, different homozygous missense 
variants in GUCY2D (Gene ID 3000, OMIM 600179) in two 
unrelated patients cause LCA. Similarly, various pathogenic 
variants in LRAT (Gene ID 9227, OMIM 604863) and CRB1 
(Gene ID 23418, OMIM 604210 ) in unrelated patients 
cause RP. However, the same variant in one gene can cause 
different phenotypes, such as a homozygous frameshift 
variant in the CERKL gene that led to CRD and RP in two 
unrelated families. Another example of this category is a 
homozygous missense variant in RPGRIP1 that caused LCA 
in two unrelated patients and CRD in one patient. In addition, 
different variants in one gene can cause different phenotypes 
as exemplified by ABCA4 that causes STGD1 and autosomal 
recessive (arRP).

Mutations in genes associated with Bardet-Biedl 
syndrome (BBS), such as BBS1 (Gene ID 582, OMIM 
209900) and BBS2, can also be found in non-syndromic arRP 
[54-56]. The variants within these two genes identified in this 
study are associated with non-syndromic RP as the probands 
did not show extraocular features.

We identified homozygous CRB1 variants in two RP 
probands. One of these missense mutations, p.(Thr745Met), 
was previously detected in three Iranian RP cases by 
Ghofrani et al. [41]. Mutations in CRB1 have been shown to 
be responsible for 10% of LCA cases in northwestern Europe 
and 2.5% of arRP cases in the French population [10,57].

Although finding known and new mutations in known 
IRD-associated genes through cost-effective gene panel 
testing is important for patients who cannot afford the price 
of whole exome sequencing (WES) and whole genome 
sequencing (WGS), WES and WGS provide the opportunity 
to discover novel genes, as well as copy number variations 
(CNVs) and noncoding variants in IRD-associated genes 
[58-60]. The sequencing costs for this gene panel testing 
(MIP analysis), excluding the MIP synthesis costs and Sanger 

sequencing validation, were about €40 per sample, which is 
10–20 times lower than the commercial price for WES.

Despite the high yield in this study, for 28% of the 
patients with IRDs, we still do not know the causal gene 
defects. The MIP design was based on the non-syndromic 
IRD-associated genes known in October 2013. In the mean-
time, another 60 non-syndromic IRD genes have been discov-
ered that together may well explain another 10–15% of IRD 
cases. In conclusion, we demonstrated that this panel testing, 
employing MIPs, is a cost-effective targeted NGS-based 
method with a high detection rate for pathogenic variants in 
patients with IRDs.

APPENDIX 1. SPLICE SITE PREDICTION SCORES 
FOR THE ABCA4 C.6385A AND C.6385G VARIANTS 
ACCORDING TO FIVE ALGORITHMS IN ALAMUT 
VISUAL.

The splice donor site predictions (in blue; 5’) show a decrease 
from 91.8 to 80.3 for SpliceSiteFinder-like. There are no 
scores for the other programs as the ‘GC’ canonical splice 
site sequence only is recognized by SpliceSiteFinder-like. 
A strong cryptic splice donor site at c.6386+27 in intron 47 
possibly could be activated in the ABCA4 gene carrying 
c.6385A>G. To access the data, click or select the words 
“Appendix 1.”
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