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The journey towards obtaining a better understanding of mental health and disorder 

has a long history4. Some of the early attempts were dehumanizing and included for 

instance strict isolation in asylums. Vienna’s fool’s Tower is a very illustrative example of 

poor treatment conditions during this time. More humane approaches were later based 

on observations from psychoanalysis5, which had an impact on science, art, and culture 

lasting until today. While psychoanalysis was primarily based on phenomenological 

investigations into the mind, also biological accounts to improve our understanding of 

mental disorders emerged during the same time6. In the 50th of the last century, the first 

two attempts to describe mental disorders systematically emerged with the International 

Classification of Diseases (ICD-6) and the Diagnostic and Statistical Manual of Mental 

Disorders (DSM), which was introduced by the American Psychiatric Association (APA). 

These classification schemes became the two standard manuals, which were regularly 

revised. In particular, the third version of the DSM, published in 1980, constituted a 

substantial advance, because of systematized research and improved clinical practice 

introducing symptom-based algorithms. Today, the DSM is in its fifth edition and has 

had an immense impact on how we view mental health7,8. The inclusion of biological 

information in the most recent version of the DSM served as an important objective. 

However, there is not a single biological test available that is of sufficient quality which 

can enable us to make a diagnosis of any mental disorder9. It is worth noting that the 

biological variables, which mark the underlying pathophysiology, disease status, disease 

progression, or the course of a disease, do not even enter the picture when diagnosing 

and/or treating mental disorders. A biomarker is an objective biological measure that 

reports on the medical condition of an individual9 and can be categorized according 

to its purpose10. The most frequently investigated biomarkers are diagnostic markers 

(predicting diagnosis/disorder), and prognostic markers (predict course/outcome). The 

discovery of biological markers in medicine is an important challenge for the field in 

general. The availability of such biomarkers could be viewed as one of the major 

differences between medical disciplines – the ones that managed to improve the patients’ 

prognosis, such as oncology11,12, and the ones that lag behind, such as psychiatry. 

In psychiatry, the experimental design that is most widely-used to detect biological 

signatures linked to a specific mental disorder is called a simple case-control 

comparison. A healthy group is compared to a patient group based on a number of 

biological factors, which has two implications. First, it introduces the concept of an 

“average patient”, as group means are compared, which may or may not be beneficial 

for the understanding of a disease process that is dependent on how similar individuals 

in a specific group are. In a recent review, it was emphasized that we should indeed 

look at individual differences over development13. Second, the patient group is defined 

based on the standard criteria determined by the DSM/ICD and derived assessment 

instruments, such as structured interviews and questionnaires. Therefore, strictly 



speaking, biological research of DSM/ICD-based constructs is confirmatory in the 

sense that studies aiming to show a difference in regard to certain biological measures 

provide evidence that the psychiatric diagnosis has a biological validity. However, the 

underlying biology may be much more complex, and the group effects could partially 

disguise inter-individual differences between patients.  

Without considering any concrete scientific research, the etiological complexity of 

mental disorders becomes apparent by inspecting the physical organ in which our mind 

resides and its disorders as well. It can be said that the brain is the most complex organ 

of the human body. Biologically speaking, the human brain contains billions of neurons 

and supporting cells, and huge networks that interact in complex ways with the brain’s 

environment over time and as it develops. Due to this complexity, neuroscience has 

hardly been able to predict the working of a single neuron up to present day14, and 

there is an even greater knowledge gap in understanding and predicting the regulation 

of neuronal networks, brain states, the brain’s dynamic interaction with/modulation 

by the environment, and behavior. Whereas we may not need to fill all these gaps to 

appropriately treat a patient, it is clear that much more knowledge of the brain needs 

to be generated so as to improve our understanding of mental health. The picture 

painted by the body of literature during the past few decades, does indeed indicate that 

mental disorders are caused by numerous biological and environmental factors that 

interact dynamically9. Multiple studies and their meta-analyses show consistent, but 

nevertheless small case-control differences in some biological measures15–17. However, 

whereas genetics and neuroscience may provide novel information that could help us 

to further our understanding of mental disorders, these findings do not translate well 

when making predictions for individual patients.

Precision medicine refers to a general trend in medicine to individualize diagnosis and 

treatment. This principle was introduced in order to address inter-individual differences 

between patients who have the same medical condition. Individualized medicine 

is particularly important in psychiatry as all disorders are very heterogeneous. I 

have adapted the definition from a previous article18 and define precision medicine 

as the diagnosis and treatment of the individual using biological, behavioral and/or 

environmental characterizations that help to distinguish patients who have the same 

disorder from one another. In this way precision medicine is geared towards optimizing 

the treatment of individual patients. While this approach has already been successfully 

applied in other medical disciplines, precision medicine has not yet played a role in 

psychiatry.

The lack of progress made in developing biomarkers and precision medicine in 

psychiatry has allowed criticism of the biological validity of the DSM/ICD nosologies 
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to enter the arena. As a consequence, the National Institute of Mental Health (NIMH) 

has proposed a system which shifts the research focus away from the familiar DSM/

ICD umbrella. The ‘Research Domain Criteria’ (RDoC;19 provide a conceptual framework 

that rests on three foundations: i) RDoC calls for making studies of disease processes 

across different cognitive domains, including all levels of analysis from molecule 

through brain systems to the social context (the RDoC matrix), ii) it shifts the focus 

from purely symptom based classifications towards multiple domains, and iii) it 

encourages researchers to study disease processes independently of their diagnostic 

labels. Although the RDoC has implied that conventional diagnostic labels need to be 

revised, this is not essential to the approach. RDoC has been criticized based on its 

embedding in NIMH, as it has imposed research constraints on scientists, thus hindering 

creativity. Moreover, it has been criticized for the huge financial investment that was 

pledged for an uncertain, and yet to be scientifically supported path of research. This 

includes not having lucid ideas on how to integrate the different levels of biological 

and behavioral functioning, as well as not knowing whether or not the RDoC-based 

research will eventually improve clinical practice20,21. Having said this, the neglect of 

biological readouts and the fundamental reliance on symptom-based diagnostics in 

psychiatry may need to take a new perspective of mental health and disorder, other 

than the one currently being imposed on research, thus forcing the implementation of 

novel approaches in order to move in the direction of precision medicine.

In this thesis, we have addressed the etiological complexity of mental disorders in two 

ways. We aimed to integrate biological information across different brain readouts 

to find more informative biomarkers for a specific disorder, on the one hand, and 

we shifted the focus of research from group comparisons, in other words from ‘the 

average patient’, to inter-individual differences between patients with the same DSM/

ICD-defined disorder, on the other hand. These two ways describe the path we have 

taken towards implementing precision medicine in psychiatry, which without a doubt, 

after four years of work on this thesis, appears to still be an extremely long way down 

the road.

Towards precision medicine in psychiatry

The etiological complexity of a mental disorder may be addressed by integrating all 

of the factors that have contributed towards the manifestation of this specific mental 

health problem to a small extent. Large samples, which include a vast number of 

measurements22 in combination with the development of methods that effectively 

integrate them23, may contribute towards developing novel, informative biomarkers 

for describing a mental disorder. The combination of big-data with effective means 
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to integrate this information allows us to inspect a biological and/or environmental 

process from various angles of measurement, simultaneously. This has led to novel 

insights into different mental disorders3,24,25 and in the first three chapters of this 

thesis, these insights will be reviewed and expanded on. We refer to this development 

as refinement by integration.

Given the large differences between individual patients who have a specific disorder 

and in view of the possibility that group differences may disguise inter-individual 

variability, we have also adopted a second, fundamentally different approach that 

moves away from ‘the average patient’. Trajectories that lead to the development of a 

mental disorder are very complex and individual. Although individuals with the same 

disorder may show similar symptoms, as assessed by current diagnostic standards, 

biologically they can be quite different and these individuals may have grown up in 

entirely different environments. Consequentially, two distinct forms of heterogeneity 

characterize mental disorders which are driven by biological or environmental factors. 

First, different biological predispositions can be present across individuals with the 

same disorder (biological heterogeneity). Second, distinct environmental factors 

may lead to the development or prevention of the same mental health problem 

(environmental heterogeneity). A third, source of heterogeneity is implicit to the 

diagnostic process, as individuals with the same diagnosis can show different profiles 

of symptoms (clinical heterogeneity). Typically, all these forms of heterogeneity are 

entirely ignored by case-control analyses. They can be addressed by mapping inter-

individual differences of patients with the same diagnosis, as we will show in two other 

chapters included in this thesis. We term this development refinement by heterogeneity 

mapping.

In this thesis we addressed both, the refinement by integration and the refinement 

by heterogeneity mapping, through the application and development of pattern 

recognition methods. Pattern recognition was introduced to neuroimaging roughly two 

decades ago26,27. In simple terms, these algorithms find regularities in data, which can 

be used to predict measures, such as a particular psychiatric diagnosis or outcome28,29. 

In supervised methods, the labels (e.g. diagnosis) applied to the predictions are 

used for learning the algorithm, in unsupervised learning, with regularities in data 

being exploited to identify structure based on, for example, a clustering algorithm30. 

Concretely, we utilized pattern recognition methods, such as the Gaussian process 

regression/classification31, linked independent component analysis23 and normative 

modeling32. These methods will be discussed in the respective chapters in more 

detail. All of this research was conducted on legacy datasets of those participants 

with schizophrenia, bipolar disorder3, and attention-deficit/hyperactivity disorder 

(ADHD)1,2.  In other words, in our research we applied novel methods to legacy data in 
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order to establish interesting and innovative ideas, thus allowing us to identify novel 

biological signatures for various mental disorders and, more importantly, to shift the 

focus from the ‘average’ to the individual patient.

With this thesis, we aim to address the overarching question: how can refinement by 

integration and/or refinement by heterogeneity mapping contribute to the development 

of precision medicine in psychiatry? We began evaluating this question by conducting 

an extensive literature review, and afterwards we followed this procedure by writing 

four empirical chapters which all address different parts of this same question. 

DSM-V of mental disorders7 

Schizophrenia

A  Two (or more) of the following, each present for a significant portion of time during 

1-month period (or less if successfully treated). At least one of these must be (1), (2), 

or (3):

 1 Delusions 

 2 Hallucinations 

 3 Disorganized speech (e.g. frequent derailment or incoherence)

 4 Grossly disorganized or catatonic behavior 

 5 Negative symptoms (i.e., diminished emotional expression or avolition)

B  For a significant portion of the time since the onset of the disturbance, level of 

functioning in one or more major areas, such as work, interpersonal relations, or self-

care, is markedly below the level achieved prior to the onset (or when the onset is in 

childhood or adolescence, there is failure to achieve expected level of interpersonal, 

academic, or occupational functioning)

C  Continuous signs of the disturbance persist for at least 6 months. This 6-month period 

must include at least 1 month of symptoms (or less if successfully treated) that meet 

criterion A (i.e. active phase symptoms) and may include periods of prodromal or 

residual periods, the signs of the disturbance may be manifested by only negative 

symptoms or by two or more symptoms listed in Criterion A presented in an 

attenuated form (e.g., odd beliefs, unusual perceptual experiences

D  Schizoaffective disorder and depressive or bipolar disorder with psychotic features 

have been ruled out because either 1) no major depressive or manic episodes have 

occurred concurrently with the active-phase symptoms, or 2) if mood episodes have 

occurred during active-phase symptoms, they have been present for a minority of the 

total duration of the active and residual periods of the illness.

E.  The disturbance is not attributable to the physiological effects of a substance (e.g., a 

drug of abuse, a medication) or another medical condition
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F  If there is a history of autism spectrum disorder or a communication disorder 

of childhood onset, the additional diagnosis of schizophrenia is made only if 

prominent delusions or hallucinations, in addition to the other required symptoms of 

schizophrenia, are also present for at least 1 month (or less if successfully treated). 

Bipolar disorder 

Type I

A Criteria have been for at least one manic episode

B  The occurrence of a manic and a major depressive episode(s) is not better explained 

by schizoaffective disorder, schizophrenia, schizophreniform disorder, delusional 

disorder, or other specified or unspecified schizophrenia spectrum and other psychotic 

disorders.

Type II

A  Criteria have been met for at least one hypomanic episode and at least one major 

depressive episode.

B There has never been a manic episode

C  The occurrence of a manic and a major depressive episode(s) is not better explained 

by schizoaffective disorder, schizophrenia, schizophreniform disorder, delusional 

disorder, or other specified or unspecified schizophrenia spectrum and other psychotic 

disorders

Attention-deficit/hyperactivity disorder 

A  A persistent pattern of inattention and/or hyperactivity-impulsivity that interferes 

with functioning or development, as characterized by (1) and/or (2):

 1 Inattention: Six (or more) symptoms have persisted for at least 6 months

 2  Hyperactivity and impulsivity: Six (or more) symptoms have persisted for at least 6 

months

B  Several inattentive and hyperactive-impulsive symptoms were present prior to age 

12 years 

C  Several inattentive or hyperactive-impulsive symptoms are present in two or more 

settings (e.g., at home, school, or work; with friends or relatives; in other activities)

D  There is clear evidence that the symptoms interfere with, or reduce the quality of, 

social, academic, or occupational functioning.

E  The symptoms do not occur exclusively during the course of schizophrenia or another 

psychotic disorder and are not better explained by another mental disorder (e.g. 

mood disorder, anxiety disorder, dissociative disorder, personality disorder, substance 

intoxication or withdrawal)  
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Outline of the thesis

Every successful journey begins with a good plan. Therefore, having introduced the 

thesis’ subject in this Chapter 1, we provide a survey of the past two decades of pattern 

recognition research on case-control studies in psychiatry in Chapter 2 of this thesis. 

These studies had the aim to utilize brain imaging data for the prediction of diagnostic 

status of different mental disorders. When the work on this thesis started, the field 

was in a period of consolidation, two decades of research using pattern recognition on 

brain imaging data in psychiatry had delivered no translations for clinical practice. In 

this chapter, we identified factors that led to this lack of translation. For instance, we 

identified an over-representation of small studies with unreliable predictive accuracies. 

In Chapter 3, we performed a pattern recognition study on ADHD using a functional 

magnetic resonance imaging (MRI) task. The sample used, NeuroIMAGE1, was an order of 

magnitude larger than those reported in previous studies. The predictions in this study 

were slightly lower than those observed for previously reported, smaller samples, 

thus confirming our expectations based on the literature survey. In order to identify 

refined biological markers for mental disorders, we integrated information across 

different structural imaging modalities in Chapter 4. The results of this study conducted 

in the Dutch persistent ADHD IMpACT study2, suggested that, while integration is an 

important aspect for identifying novel biological signatures, it does not sufficiently 

increase predictions at an individual level. In the past two chapters, Chapter 5 and 

Chapter 6, we focused on refinement by heterogeneity mapping. A potential reason for 

low and/or unreliable predictions observed in the literature survey and in the previous 

chapters may stem from the large heterogeneity of mental disorders. Therefore, we 

systematically mapped the heterogeneity of schizophrenia and bipolar disorder 

by using the TOP study data on schizophrenia and bipolar disorder3 and persistent 

ADHD in the adults from IMpACT2 on the level of the individual patient, subsequently 

showing that inter-individual differences on structural brain measures are larger 

than anticipated. With these studies, we provide information that may move the 

field of psychiatry towards precision medicine. In the final Chapter 7, we answer the 

overarching question of the thesis and discuss the implications of these findings and 

how they relate to future challenges.





CHAPTER 2 

From estimating activation locality  
to predicting mental disorder:  
a review of pattern recognition for  
neuroimaging-based psychiatric  
diagnostics

.

This chapter is based on: Wolfers, T., Buitelaar, J.K, Beckmann C.F., Franke, B.,  

Marquand, A.F. (2015) From estimating activation locality to predicting 

disorder: a review of pattern recognition for neuroimaging-based psychiatric 

diagnostics. Neuroscience and Biobehavioral Reviews, 57, 328–349.
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Abstract

Mental disorders are increasingly being recognized as having a biological basis, but 

their diagnosis is made exclusively behaviorally. A promising approach for ‘biomarker’ 

discovery has been based on pattern recognition methods applied to neuroimaging 

data, which could yield clinical utility in future. In this review, we survey the literature 

on pattern recognition for making diagnostic predictions in mental disorders, and 

evaluate progress made in translating such findings towards clinical application. 

We evaluate studies on many criteria, including data modalities used, the types of 

features extracted and algorithm applied. We identify problems common to many 

studies, such as a relatively small sample size and a primary focus on estimating 

generalizability within a single study. Furthermore, we highlight challenges that are 

not widely acknowledged in the field including the importance of accommodating 

disease prevalence, the necessity of more extensive validation using large carefully 

acquired samples, the need for methodological innovations to improve accuracy and to 

discriminate between multiple disorders simultaneously. Finally, we identify specific 

clinical contexts in which pattern recognition can add value in the short to medium 

term.
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Diagnostic manuals, such as the Diagnostic Statistical Manual (DSM)33 determine 

criteria, which are the basis for the diagnosis of mental disorders. Over recent years, a 

rapidly growing number of studies have been published that aim to complement and 

improve clinical decision making on the basis of biological measures (‘biomarkers’) 

derived from different types of data, such as magnetic resonance imaging (MRI) and 

genetics. For some neurological diseases, as for example Huntington disease, genetic 

markers can predict the diagnosis with nearly perfect certainty34. However, biomarkers 

that accurately predict disease state remain to be found for mental disorders. 

Pattern recognition techniques have shown promise for detecting biomarkers from 

neuroimaging data and hold the potential to combine complementary information 

across different sources in an efficient way. This is important because mental disorders 

are unlikely to be linked to one specific biological process but rather multiple factors 

that act together. Therefore, it is essential to investigate various types of data, which 

might capture different aspects of biology, and investigate them jointly. Pattern 

recognition techniques were first applied to MRI data approximately a decade ago, 

with the goal of separating and thereby classifying psychiatric patients from controls35. 

However, despite many subsequent efforts those promising results have not, to date, 

translated beyond research settings.

In this review, we surveyed the literature on pattern recognition for making diagnostic 

predictions in psychiatric research and evaluate progress made in translating those 

techniques toward clinical applications. While previous reviews have focused on a 

particular machine learning technique36, a single imaging modality37, or a small subset 

of disorders and diseases38, we aim to provide a comprehensive review of all mental 

disorders. First, we provide a brief introduction to pattern recognition methods 

in psychiatric neuroimaging. Second, we survey the pattern recognition literature, 

comparing studies on the data modalities used, the types of features extracted and 

subsequently selected as well as the algorithm applied. We expose areas that require 

further investigation and outline problems that are common to many studies. We 

evaluate the progress made in translating pattern recognition techniques towards 

clinical domains and identify clinical as well as research applications for which these 

techniques are most likely to add value. We conclude by pointing out challenges that 

are not widely appreciated and that the field needs to overcome in order to translate 

pattern recognition methods to assist decision making in actual clinical practice.

Principles of pattern recognition

The first applications of pattern recognition in neuroimaging was reported about twenty 

years ago26,27, however it took some more time until this approach got recognized 
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more widely39,40. Pattern recognition aims to extract regularities in data which can 

be used to predict outcome measures such as a particular psychiatric diagnosis28,36. 

The outcome predictions, in the context of pattern recognition are usually learned in a 

supervised way, which means that the algorithm or classifier is provided with a set of 

predefined labels. However, in psychiatry the labels, that e.g. indicate the diagnoses of 

participants, are often uncertain which makes pattern leaning more difficult. A scheme 

which allows us to categorize the reviewed articles based on the methods that they 

applied and which illustrates the different aspects of pattern recognition is presented 

in FIGURE 1. Subsequent Figures and tables follow the logic developed in this scheme.

 

FIGURE 1  Depicted is a framework that shows the main components of a pattern recognition 
pipeline. Data, potentially from different modalities, is processed in such a way that features 
can be extracted, either on the voxel, regional or network level. The resulting features can 
subsequently be selected with the goal to enhance the signal to noise ration. This processed 
data is used to train and test a classifier on their performance in a validation procedure. 
Different types of classifiers are frequently encountered in particular a linear discriminant 
classifier (LDC), logistic regression classifier (LRC), support vector machine (SVM), Gaussian 
process classifier (GPC) and neural network classifiers (NNC).

Feature extraction

A feature (collectively a ‘feature set’) is any characteristic that can be extracted from 

the data and that is believed to be informative about the class labels. In neuroimaging, 

pattern recognition is sometimes referred to as multi-voxel analysis, as voxels are 

often used directly as features41. However, many other kinds of features can be derived, 
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which may vary in their ability to predict the class labels. One way we will categorize 

the articles reviewed here is according to the type of feature set they employ: voxel, 

region, or network-derived sets. In a voxel-based feature set all features are extracted 

on the voxel level. In a region-based feature set, features are derived by parcellating 

brain images into predefined regions, e.g. on the basis of an anatomical or functional 

brain atlas. In a network-based feature set, features are derived by combining voxels 

across networks; for example, derived from independent components analysis42. 

Importantly, this step is distinct from feature selection. 

Feature selection

The number of features in MRI is large and often many features do not contribute 

substantially to the prediction of the class labels. Therefore, feature selection, which 

aims to amplify the signal by restricting the prediction algorithm to only informative 

features, is an important (but not essential) step43,44. Many types of feature selection 

are possible and can in general be categorized into: 1. expert feature selection, which is 

based on prior knowledge and 2. automatic feature selection consists of for example a 

feature selection algorithm. Different varieties of those algorithms are used dependent 

on the type of learning problem and the properties of features45.  Finally, it is possible 

to combine those two approaches, for example by selecting a region of interest, which 

is implicated in a particular disorder and subsequently using an algorithm to favor 

informative features in this preselected region. A classifier or regression model, which 

respectively learns a rule for the separation of the classes or predicting a quantitative 

variable, is then applied to the feature set. Furthermore, classifiers often penalize 

the weight associated with particular features dependent on the constraints of the 

regularization applied in the classification algorithm.  

Classifiers 

Various classifiers have been applied to neuroimaging datasets. In principle, any type 

of classification or regression algorithm can be used in pattern recognition ranging from 

linear or logistic regressions to multilayer neural networks or Gaussian processes28. The 

relatively large number of features and the small number of examples, also referred to 

as the curse of dimensionality, puts some restrictions to the applicability of algorithms. 

Each classifier learns a rule, which separates the classes optimally. In principle, 

classifiers differ with regard to the method determining this rule. In the present review 

we focus on classifiers dealing with discrete outcome measures such as diagnostic 

labels, regression methods are thus not included into the review. 
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A Linear discriminant classifier (LDC), a classical linear model, is used to separate classes 

by maximizing the ratio of between-class to within class variance. A Logistic regression 

classifier (LRC) is a probabilistic discriminant model that aims to learn an optimal 

decision rule by modeling the log-odds ratio as a linear combination of predictor 

variables. Under Gaussian assumptions, LDC and LRC are equivalent29. Both methods 

yield probabilistic predictions that a new example corresponds to a particular class and 

can be transformed into a class label. The support vector machine (SVM) is an algorithm 

designed for binary classification that maximizes the margin between classes in a high 

dimensional space. Mathematically, the discriminant function is defined by a weight 

vector orthogonal to the decision boundary, which can be uniquely specified by the 

samples that lie closest to the decision boundary, referred to as support vectors. The 

decision boundary represents the rule for classification of new examples. A Gaussian 

process classifier (GPC) is a probabilistic model and is a Bayesian extension of LRC. 

In contrast to SVM, the predicted class is augmented by an estimate of the certainty 

of the prediction. GPCs are best described as a distribution over functions. Based on 

Bayes’ rule the posterior distribution of functions which represent the training data is 

found in an optimal way. This posterior distribution is used to classify new examples 

according to the rules of probability. Neural network classifiers (NNC) are a broad class 

of algorithms that are modeled on biological networks. They consist of a set of artificial 

neurons that are trained by adjusting the weights connecting them and can be used 

for a range of pattern recognition tasks including classification. The learned relation 

of these artificial neurons represents the rule for decision when new examples are 

encountered.

Training and testing of classifiers

The multivariate pattern, a visualization of the decision rule, is learned on the basis of 

a training set and validated in a test set. It is essential that the test and training sets are 

kept independent from one another in order to avoid over-fitting. Over-fitting refers 

to inflated performance measures as a consequence of testing a trained classifier on 

previously seen data. During training the classifier learns to predict the labels from 

the feature set. In case of a relatively simple learning problem, e.g. without iterative 

feature selection, the trained classifier is subsequently tested on previously unseen 

data, the test set. Usually, this is repeated using multiple different training and test 

partitions in a procedure called k-fold cross-validation, where k denotes the number 

of data partitions. The special case, where k is equal to the number of samples is 

referred to as leave one out-cross validation (LOO-CV). This procedure is iterative and 

every example in the sample is left out once for testing; the performance measures, 

e.g. accuracies, are subsequently averaged across those iterations for the training and 
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test set. More complex approaches, which include for example a feature selection step, 

require nested cross validation. This means that the data are partitioned twice. First, in 

an ‘outer’ fold, a data partition is excluded for testing. The remaining samples are then 

repartitioned in an ‘inner’ cross-validation loop. The outer loop enables an unbiased 

estimation of generalizability; the inner loop provides an estimate of generalizability 

independent from the test set that can be used to determine the optimal number of 

features or to optimize parameters.

Performance evaluation of classification 

The most frequently used performance measures are sensitivity, specificity and 

accuracy. These measures give an indication of how accurately a classifier can 

generalize to new cases. In a clinical context, sensitivity refers to the percentage of cases 

that a classifier correctly predicts the disorder of a participant. In other words, a high 

sensitivity thus means a high percentage of true positive and a low of false negatives. 

A high specificity indicates that only a few participants are diagnosed with a disorder 

while actually being healthy (i.e. a high percentage of true negatives and a low of false 

positives). The accuracy refers to the total proportion of samples correctly classified. 

A good practice is to report balanced accuracy measures, which is an average accuracy 

obtained for each diagnostic label46 that is unaffected by potential imbalances between 

groups. It is important to note that measures like the receiver operating characteristic 

(ROC) curves are more informative performance measures. The ROC curves provide 

information on the balance between the true positive rate (sensitivity) and the false 

positive rate (1-specificity) across a range of decision thresholds. Classifiers are usually 

evaluated on one of those or a combination of those measures. In practice, these 

metrics for classifier performance are usually combined with procedures to estimate 

statistical significance of the pattern recognition model. For classification, a significant 

deviation from chance level performance is usually estimated using p-values derived 

from permutation testing and in some cases parametric tests may also be appropriate47. 

Unfortunately, the reports on classifier performance differ considerably across studies, 

which can make comparisons across studies difficult. Therefore, we recommend – at 

a minimum – reporting sensitivity, specificity, balanced accuracy and the area under 

the curve as well as the confidence intervalII for those measures48. Positive and 

negative predictive values are also important for diagnostic studies as they directly 

quantify the potential utility of the classifier for clinical decision making. The positive 

predictive value is defined as the number times the classifier correctly predicted 

participants as having the disorder (positive diagnosis) divided by the total number of 

II Calculator of confidence intervals: http://vassarstats.net/clin1.html
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positive predictions. The negative predictive value is defined similarly as the number 

of times the classifier correctly predicted a negative diagnosis divided by the total 

number of negative predictions. For comparative reasons, we report only accuracy 

measures in the tables and text, as these measures were provided most consistently 

across different studies. In case that more than one accuracy measure was reported in 

a single study, only the maximum for each contrast is shown in the tables. Therefore, 

accuracies reported in the Tables should be understood to represent upper bounds for 

classification performance. Moreover, most studies do not report confidence intervals 

for classifier accuracies, which hamper comparison between algorithms and studies. 

Pattern interpretation

Most linear classifiers permit the weights determining the classification rule to be 

visualized in the voxel space, which has formed the basis for ‘discriminative mapping’ 

of the weight vector49. However, the interpretation with regard to the localization of 

an effect within such multivariate patterns is not straightforward50 and is dependent 

on the particular classification algorithm employed. An additional problem for non-

linear classifiers is that it is usually not possible to exactly map the weights back into 

the voxel space. Furthermore, weights associated with a specific location can change 

as a consequence of a reconfiguration of the multivariate pattern due to e.g. feature 

selection. Therefore, a straight-forward interpretation in terms of effect localization 

is often incorrect. For this and other reasons, researchers combined univariate and 

multivariate approaches to benefit from potentially higher sensitivity of multivariate 

estimates for detecting spatially distributed effects and a better interpretability of 

univariate approaches in terms of effect localization51. However, in general a multivariate 

pattern must be considered as a whole and only in some cases allows a more specific 

interpretation. However, the discriminative mapping approach is often useful to give a 

qualitative overview of the regional distribution of weights learned by the classifier. 

This can help, for example, to ensure that the classifier discrimination is not driven by 

artefactual processes confounded with the class labels (e.g. head motion). In general, 

it is difficult to interpret the overlap of multivariate patterns across different studies. 

The potential of pattern recognition in psychiatry lies rather in mapping behaviorally 

diagnostic labels onto biology or to help fractionate disease phenotypes. 

Pattern recognition for diagnostic predictions of mental disorders

The present review is based on an extensive literature search for research papers 

applying pattern recognition for making diagnostic predictions of mental disorders. 
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Schizophrenia (SCZ)35 was one of the first disorders investigated with pattern 

recognition, followed by major depressive disorder (MDD)52,53, attention-deficit/

hyperactivity disorder (ADHD)54, bipolar disorder (BPD)55, autism spectrum disorder 

(ASD) 56, post-traumatic stress disorder (PTSD)57, obsessive compulsive disorder 

(OCD)58, social anxiety disorder (SAD)59 and specific phobia (SP)60. A systematic 

literature search primarily in PubMed was performed and concluded on the 1st of Mai 

2015. The search consisted, firstly, of different terms related to pattern recognition 

and their abbreviations secondly, all terms and abbreviations related to MRI thirdly, all 

names and abbreviations for one of the disorders mentioned aboveIII. This search was 

repeated for all disorders, and their references were checked on missed publications 

which were included to the review as well.  All publications were screened on their 

relevance for the review. All papers using pattern recognition approach on MRI data in 

psychiatric diagnostics that reported performance measures of the classification and 

had case-control design were included to the review (FIGURE 2). The search procedure 

was repeated in Google scholar to decrease the likelihood of missing relevant articles. 

Articles that were based on one of the big data sharing efforts such as the Autism 

Brain Imaging Data ExchangeIV (ABIDE)61, ADHD-200 Global CompetitionV 62, Centre 

for Biomedical Research ExcellenceVI (COBRE)63 or MIND Clinical Imaging ConsortiumVII 

(MCIC)64 were combined and a representative accuracy included to the table. In total we 

reviewed 118 articles and categorized them on the basis of a scheme developed for 

this review depicted in FIGURE 1, the summary of all articles is presented in the Tables 

1 to 6.  

 

III  Search term: (pattern recognition OR multivariate pattern analysis OR classification OR 

prediction OR diagnostics OR linear discriminant analysis OR logistic regression analysis OR 

support vector machine OR Gaussian processes OR neural networks) AND (magnetic resonance 

imaging OR structural magnetic resonance imaging OR functional magnetic resonance imaging 

OR diffusion magnetic  resonance imaging OR task functional magnetic resonance imaging OR 

resting state functional magnetic resonance imaging OR diffusion tensor imaging) AND (one of 

the disorders mentioned)
IV  http://fcon_1000.projects.nitrc.org/indi/abide/
V  http://fcon_1000.projects.nitrc.org/indi/adhd200/
VI  http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
VII  http://coins.mrn.org/
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FIGURE 2  Depicted is the search procedure for the literature review and the inclusion criteria 
as well as the number of reviewed publications per disorder. SCZ = Schizophrenia; Mood Dis. = 
Mood disorders; * BPD= Bipolar Disorder, MDD =Major Depressive Disorder; Anx. Dis = Anxiety 
Disorders; ** OCD = Obsessive Compulsive 
Disorder, SAD = Social Anxiety Disorder, PTSD = Post-traumatic Stress Disorder, SP = Specific 
Phobia; ADHD = Attention-deficit/ hyperactivity disorder; ASD = Autism Spectrum Disorder

Schizophrenia

One of the first studies on SCZ was published in 200535. After a short period, in which no 

publications were reported, a few studies on SCZ using structural MRI derived feature 

were conducted. Those studies yielded promising accuracies of up to 90%. At the time 

of writing, about fifty-three different studies on pattern recognition in Schizophrenia 

have been published and range in predictive accuracy from 62% to 100% (TABLE 1).  

Several of those studies were performed in the context of a task-based functional MRI 

experiment, with auditory oddball, verbal fluency, working memory and sensory motor 

tasks65–68. An important early study predicted SCZ based on structural MRI and used a 

principal component feature selection algorithm prior to the predictions. An optimal 

number of principal components were determined based on the overall predictive 

performance of the algorithm. The study could show that different subcategories of 

SCZ could be reliably predicted, and three-class classification for this patient group 

was feasible with a maximal accuracy of 82%69.  An interesting study in this context, 

investigating the differential diagnostics of, SCZ, BPD and healthy participants could 

show that verbal fluency let to a reliable diagnostic specificity for SCZ66. The first large-

scale study with a cohort of 128 patients and an equal number of controls as well 

as a similar-sized replication cohort predicted SCZ based on structural MRI-derived 

SCZ

636
Studies

52
Studies

+
2 Data
sharing

initiatives

367
Studies

33
Studies

172
Studies

8
Studies

Relevance?
1) Pattern regocnition in psychiatric diagnostics

2) Report performance measure(s)
3) Patient-control cohort

4) No review

155
Studies

11
Studies

+
1 Data
sharing
initiative

193
Studies

14
Studies

+
1 Data
sharing
initiative

MOOD 
DIS.*

ANXIETY
DIS.**

ADHD ASDMental disorders

Search concluded on
01.05.2015

Relevant studies
were selected and 

their references 
checked on missed 
publications which 

were included as well

Included to
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multivariate patterns with an accuracy of just above 70%. Their cross validation was 

about the same as the replication accuracy70. Different data sharing efforts for SCZ 

cohorts, such as the MCIC and the COBRE, have been initiated. However, the sample 

numbers were relatively small compared to other disorders and the predictions in 

those samples showed similar performance compared to other samples in SCZ71–73. 

Recently, a study combining diffusion-weighted as well as structural MRI reached 

perfect accuracies, by building connectivity matrices based on both image modalities74. 

However, it is important to note that this study was small, with only ten subjects per 

condition, and therefore, it is not clear whether those results will generalize well to a 

different sample. 

In comparison to other psychiatric disorders, SCZ is the disorder to which pattern 

recognition methods have most commonly been applied. Initial results indicate that 

this disorder can be accurately predicted, although accuracies vary considerable 

between studies. Primarily, functional and structural MRI modalities were researched 

and it is difficult to make a distinction between certain MRI modalities, with regard to 

the performance of a classifier. Large-scale studies in SCZ are still absent. 
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Bipolar disorder and major depressive disorder

Several studies have used pattern recognition to make diagnostic predictions of BPD 

and MDD (TABLE 2). The initial results indicate that classification of BPD is challenging, 

but possible55,60,66,116,117. In these studies, structural images provided features, which 

could reliably be used to distinguish BPD cases from healthy participants. However, 

the number of studies on BPD is relatively low, and therefore, conclusions can only 

be tentative (TABLE 2). In contrast, many studies have employed pattern recognition 

methods to predict MDD diagnosis. This started in 2008 with two studies, one using a 

verbal memory N-back task52 and the other using a sad facial processing task53, with 

diagnostic accuracies of 67.5% and 84%, respectively. The first structural MRI and 

resting state fMRI studies were performed a year later. The accuracies obtained from 

resting state fMRI-derived features were particularly promising118,119. In the following 

years, the number of studies accelerated rapidly and the accuracies ranged from 67% to 

99% (TABLE 2). However, all studies were performed in relatively small to medium sized 

samples; the largest study preformed in MDD using pattern recognition consisted of 62 

patients and an equal number of control participants. Based on structural features, the 

two groups could be distinguished using 90% accuracy120. Cross-disorder classifications 

are particularly difficult especially when the disorders that need to be distinguished 

are similar as in the cases of BPD and MDD. However, BPD could be distinguished from 

MDD on the basis of multivariate patterns based on gray matter differences117. In this 

study, the findings were validated in an independent cohort and the test-set validation 

yielded comparable accuracies to the within sample leave one out cross-validation. SCZ 

could also be distinguished from MDD, with even higher accuracies (TABLE 2)66,101,108.  

Those studies employed different feature sets, ranging from task based functional to 

structural and diffusion MRI, indicating that differential diagnostics based on multiple 

MRI modalities is feasible. 

In summary, for MDD and BPD large studies are still missing to a degree that allows 

definitive conclusions to be drawn. Especially BPD requires further research across 

different modalities.
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Obsessive compulsive, social anxiety, post-traumatic stress disorder and 

specific phobia

As shown in TABLE 3, only a few recent studies have applied pattern recognition 

to OCD, SAD, PTSD, and SP. In an early study on OCD, which used an approach that 

calculates the distance between individual participants and the mean of OCD and a 

control group based on structural MRI derived measures, it showed that OCD patients 

could be distinguished from controls relatively reliable in an independent test-set138. 

This initial study set the stage for subsequent pattern recognition studies several years 

afterwards.  In a task-based functional MRI study, in which stimuli with emotional 

valence were presented, OCD patients could be classified with perfect accuracy in 

a very small sample of ten participants in each group58. These promising results 

required further verification in a larger sample to exclude specific study or sample 

characteristics as cause for the good performance. However, subsequent studies could 

not substantiate these results to the same degree139,140.Two studies on SAD have been 

published in small samples, reporting accuracies above 80%59,141. Multivariate patterns 

in these studies were derived from different MRI modalities indicating that the features 

pertaining to disorder classification can be extracted and analyzed across modalities. 

In general, informative features were found to be distributed across widespread brain 

areas59,141 and they could not easily be localized to brain regions usually associated 

with anxieties, such as the limbic lobes142.  An additional study showed that structural 

images can be used as a diagnostic medium for different specific phobias, which could 

reliably be classified based on gray and white matter densities60. In a study conducted 

after an earthquake in Sichuan (China),50 survivors with and without PTSD were 

compared to controls using structural imaging. Patients with PTSD could be classified 

with an accuracy of 91%143. If replicated, such data suggest that severe traumas can alter 

brain structure to a degree that can be detected as clinically meaningful multivariate 

patterns. The highest discriminative weights were found in different areas of the brain, 

particularly in the left and right parietal regions. 

In summary, it can be determined that the number of studies conducted on obsessive, 

compulsive and anxiety disorders is too small to draw conclusions. While the first 

results appear promising, these disorders require further research, especially in larger 

samples.
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Attention-deficit/hyperactivity disorder

For the neurodevelopmental disorder ADHD, the first report of an application of pattern 

recognition was published in 2008 describing a sample of 12 children/adolescents and 

an equal number of controls (TABLE 4). Resting-state fMRI data was used to classify 

these two groups with an accuracy of 75 to 80%54. Four studies conducted afterwards 

focused on structural MRI and yielded accuracies for the classification of ADHD ranging 

from about 72% to 93%145–148. With the exception of one study, all of the others used 

feature selection methods prior to classification. The study with the highest predictive 

accuracy employed an automated feature selection algorithm146. The weights associated 

with areas in the brainstem contributed mostly to the classification. However, these 

brainstem regions have not been associated with ADHD prior to this finding, and 

further exploration is needed. Another study on structural MRI data used Gaussian 

process classification of the entire brain which includes both gray and white matter and 

it could predict ADHD with an accuracy of 79.3%147. The same type of classifier was also 

employed in two different task fMRI studies, a stop signal and a temporal discounting 

task. The accuracies in those studies were 77% and 75%, respectively51,149, indicating 

that voxel-based feature-sets can yield good predictive accuracies. While small studies 

with presumably relatively homogeneous samples have shown promising predictions, 

the question about generalizability remains. For this reason, a data-sharing project, the 

ADHD-200 Global Competition, was set-up in 201262, which allowed different groups 

from all over the world to train their machine-learning algorithms on a legacy multi-

site dataset, with the goal of finding classifiers suitable for ADHD diagnostics. The study 

collected existing data on about 350 patients and 554 controls, and multiple classifiers 

were employed and trained on data ranging from demographic tables to structural and 

resting-state fMRI. Unfortunately, the classification results were disappointing with 

accuracies not exceeding 61% on the held-out test sample37,71.

In summary, it appears that while small studies performed well in predicting case 

status, the large ADHD-200 sample seemed to suffer from the high heterogeneity of 

the disorder and/or of the experimental characteristics of the studies contributing to 

this sample. Up until now, no research on pattern recognition of diffusion MRI-derived 

features has been published, while widespread alterations in white matter have been 

linked to ADHD150. 
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Autism spectrum disorder

Autism spectrum disorder, another (male-dominant) neurodevelopmental disorder, 

has been studied using pattern recognition since 2010, when three studies, one in 

males154, and two in mixed gender samples of about 20 patients and controls56,155, were 

published. These initial results were promising, and showed accuracies ranging from 

81% for whole brain structural features to 90% for regional features (TABLE 5). The 

first resting state and diffusion MRI studies in ASD were analyzed by using pattern 

recognition. This provided comparable accuracies, and showed that other modalities 

than the structural can provide informative features for ASD classification156,157. After 

those initial publications, eight additional studies were published up until December 

2014, which extracted features from different modalities. The accuracies in those 

studies ranged from 70% to 96% (TABLE 5)158–165. In one of these studies, a searchlight 

algorithm was applied to structural MRI data, yielding a maximal accuracy of 92% 

for subsets of voxels165. In this type of analysis, a small number of voxels in spatial 

proximity with one another provide the features for prediction. The searchlight moves 

across the whole feature space and repeats the prediction at every location, potentially 

allowing a better interpretability with regard to the localization of an effect. A 

large data-sharing effort was also established for ASD, the ABIDE consortium61, but 

similarly to the situation for ADHD, the diagnostic predictions in this cohort were 

disappointing71,158,160,166.

In summary, most MRI modalities have been researched in ASD, although the number 

of studies per modality is still relatively low. As in ADHD, clinical and experimental 

heterogeneity might hinder proper classification in ASD in larger (retrospective) sample 

collections. Importantly, specific subgroups in ASD, such as lower functioning ASD 

patients and female patients are currently underrepresented in the existing studies. 
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Other mental disorders

A few studies have investigated additional mental disorders, especially substance-use 

disorders or eating disorders. In one study it was shown that patients with different 

types of eating disorders could be distinguished based on their brain response viewing 

pictures of food and neutral stimuli, indicating that differential diagnosis between 

eating disorders is feasible168.  Drug dependence could also be classified by MR-derived 

features169,170, in the latter study classification on the basis of frontal regions appeared 

especially promising. 

In summary, few studies have employed pattern recognition techniques for mental 

disorders other than those described in the previous sections. However, preliminary 

studies published on eating disorders and drug dependence suggest that pattern 

recognition methods may be applicable more widely than has been demonstrated to date.

Discussion

In this article, we have extensively and systematically reviewed the literature applying 

different pattern recognition methods for neuroimaging to mental disorders. Despite 

many promising results, the use of pattern recognition for assisting in the diagnosis 

of mental disorders is still in its infancy. Considering the complexity of the problem, 

starting with the diagnostic process of mental disorders to the challenges of MRI, this 

is perhaps not surprising. Structural and functional MRI have been investigated equally 

just as often, but diffusion MRI was relatively neglected, especially in ADHD (FIGURE 

3A). Features sets were most frequently based on either the regional or voxel level 

(FIGURE 3B), and the automatic feature selection was applied more often than expert 

feature selection (FIGURE 3C). While the body of literature on SCZ, MDD, ADHD, and ASD 

is already relatively extensive, only a few studies have applied pattern recognition to 

OCD, SAD, PTSD, SP, and BPD. Many studies suffer from common limitations, such as a 

relatively small sample size and a primary focus on estimating generalizability within 

a single study. Furthermore, as described below, the few larger studies that have been 

performed – mainly based on multi-site retrospective collection of data – tend to have 

reduced performance in comparison with smaller studies (FIGURE 4). 

Classifiers used in the various studies included linear discriminant classifier, logistic 

regression classifier, support vector machines, Gaussian process classifiers, and neural 

network classifiers differ very little in their performance, but instead they differ 

more with respect to their applicability to large datasets and their computational 

requirements. Unsurprisingly, SVM, which is applicable to a large number of features in 
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combination with only a few examples, often represents the method of choice (FIGURE 

3D). However, as diagnostic labels in psychiatry are inherently uncertain, predictive 

algorithms that provide probabilistic predictions, such as GPC, may provide advantages 

for clinical studies. For example, the probabilistic predictions can be easily recalibrated 

to accommodate variations in disease prevalence (see FIGURE 3 below). 

 

FIGURE 3  Visual summary of articles reviewed. A) Number of articles on different modalities; 
B) Number of articles of different feature extractions; C) Number of articles on different feature 
selections; D) Number of articles on different classifiers; SCZ = Schizophrenia; Mood Dis. = 
Mood Disorders; * BPD= Bipolar Disorder, MDD =Major Depressive Disorder; Anx. Dis = Anxiety 
Disorders; ** OCD = Obsessive Compulsive Disorder, SAD = Social Anxiety Disorder, PTSD = 
Post-Traumatic Stress Disorder, SP = Specific Phobia; ADHD = Attention-Deficit/ Hyperactivity 
Disorder; ASD = Autism Spectrum Disorder;

Only a few studies have directly compared either different modalities or different 

feature selection approaches. For less frequently researched disorders, it is impossible 

to come up with a definite conclusion in regard to the usefulness of specific modalities 

at the current time. Wherever different modalities have been used, they appear to result 

in comparable accuracies. Previously, we introduced the concept of feature selection 

and made a distinction between expert and automatic selection. Both approaches 

have been applied in the articles reviewed. Automatic feature selection has been a 

useful tool to improve classifications in some cases119,133, whereas in others feature 

selection did not make a difference56. However, extra care needs to be taken when 

interpreting articles that apply feature selection, as there is a danger of over-fitting if 

the split between the training and test sets during feature selection is incomplete and 

parameter optimization may be an issue in some studies.
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FIGURE 4  Scatter plot with the number of patients included in a specific study on the x-axis 
and the respectively reported maximal accuracy for the patient vs. control prediction on the 
y-axis. SCZ = Schizophrenia; BPD= Bipolar Disorder; MDD =Major Depressive Disorder; OCD = 
Obsessive Compulsive Disorder; SAD = Social Anxiety Disorder; PTSD = Post-Traumatic Stress 
Disorder; SP = Specific Phobia; ADHD = Attention-Deficit/ Hyperactivity Disorder; ASD = Autism 
Spectrum Disorder; C = Controls

In general, reported accuracies are likely to be optimistic and confidence intervals 

are often not reported. Only few studies have reported accuracy measures on 

additional datasets, limiting the generalizability of the results. The observation that 

larger studies tend to have reduced performance in comparison with smaller studies 

is hard to interpret, and at the same time surprising, as it may be expected that the 

number of examples would increase predictive performance of classifiersVIII. It could 

point to a bias in the literature, or simply be due to the fact that large-scale studies are 

hampered by an increase in heterogeneity within clinical groups. This heterogeneity 

can stem from many sources: large cohorts are often not as well matched on important 

demographic and clinical variables and, furthermore, data are often pooled across 

research centers providing data from different scanners and/or acquisition sequences. 

This may be particularly problematic for large studies which aggregate legacy datasets 

VIII  Whether or not an increase in sample size improves accuracy depends on how well the data 

meets the assumptions made by the classifier (e.g. whether the data are independent and 

identical distributed) and what the Bayes error of the classification problem is. 
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that were originally acquired for other purposes. On a positive note, there is increasing 

evidence from pattern recognition studies of neurological disorders that when data 

acquisition parameters for structural MRI are carefully controlled across sites, accurate 

generalization across sites is feasible171–173.

In contrast, data derived from task fMRI, resting state fMRI or diffusion MRI may 

suffer from more problems when pooled in comparison to structural MRI data, which 

allows for less degree of freedom in terms of procedures or protocols of acquisition. 

Furthermore, larger samples often suffer from missing data. These factors may impair 

the ability of the classifier to learn an appropriate decision rule and thus reduce 

accuracy. These considerations highlight the need for well-powered and carefully 

controlled prospectively acquired samples and for further research into developing 

acquisition and pre-processing pipelines that are robust to inter-scanner differences.

In the following sections, we evaluate the progress made in translating PR techniques 

when applied to clinical diagnostics and subsequently we identify clinical as well as 

research applications for which these techniques are most likely to add value.

Translating pattern recognition towards clinical utility

The diagnostic process in real clinical populations is more complex than in research 

settings, where two, usually balanced, groups of well-matched patients and controls 

are carefully diagnosed before a supervised pattern recognition algorithm is trained. 

Often, individuals with uncertain diagnoses or comorbidities are excluded. Therefore, 

considerable work remains for pattern recognition to become applicable in clinical 

practice. In many cases, the question to be answered will not be related to distinguishing 

patients from controls; rather, distinction between different disorders in the same 

population will be needed. In other words, what is required is a differential diagnosis. 

Furthermore, it is necessary to identify individuals who have comorbidities and may 

be members of multiple diagnostic classes. There are very few studies in the current 

literature that tackle these problems. A few studies across different disorders have 

demonstrated multi-class classification of three or more disorders66,101,115,117,131,135,147. 

We are not aware of any pattern recognition studies that have tackled the issue of 

comorbidities. Further work in this area is therefore needed. 

While most pattern recognition algorithms are trained and tested on well-balanced 

samples, the prevalence of most mental disorders in the general population is five 

percent or lower. Even if the classification models are not applied at the population 

level, the relative class frequencies in the training set are often different from the test 
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set or target application domain. Therefore, in such cases, accuracies that are derived 

from those samples are not immediately representative for predictions in clinical 

samples. In settings with low prevalence, clinical diagnostic algorithms require very 

high specificity to prevent an unacceptably high false positive rate (i.e. to prevent too 

many healthy individuals being erroneously diagnosed). Therefore, it is important to 

tailor the predictive properties of specific pattern recognition algorithms depended 

on the setting in which they are used, as they will have to be biased differently 

in a population as opposed to a high-risk or clinical setting. Here again, the use of 

probabilistic pattern recognition algorithms is indicated. An important advantage of 

these algorithms is that they allow the decision threshold to be easily recalibrated 

to accommodate different diagnostic settings28. Evidence showing this concept for 

neuroimaging was demonstrated in Hahn et al. (2013), in which an unbalanced test 

sample was predicted based on a balanced training sample and the classifier was 

adjusted for class priors yielding better performance. 

Another important consideration for diagnostic applications of pattern recognition is 

the relative expense of MRI compared to other measures. The prospective value of 

employing an automated approach should be weighed in contrast to the costs of data 

acquisition. This, combined with moderate diagnostic accuracies for most disorders, 

means that pattern recognition techniques are not likely to be applied directly to 

making diagnostic predictions in the immediate future. However, pattern recognition 

may well provide a useful adjunct to clinical decision-making in cases where 

uncertainty is high or if a decision for an expensive or invasive procedure needs to be 

taken. Perhaps more importantly than such direct diagnostic applications, we identify 

several specific applications for which pattern recognition in a diagnostic context is 

more immediately applicable.  

First, pattern recognition techniques can provide a richer endophenotype than 

behavior alone, which may ultimately be informative about disease mechanisms, 

staging and progression. One way that this can be achieved is by means of mapping 

classifier weights back into brain space. In this way, biological pathways that 

might have been implicated in the aetiology of a particular disorder can be more 

appropriately described. This line of research might eventually yield new insights 

into the mechanisms of particular disorders, and subsequently to diagnoses based on 

‘biomarkers’ rather than based primarily on clinical interviews. However, care needs to 

be taken when such weight-maps are interpreted in terms of effect localization50. 

Second, pattern recognition algorithms that provide estimates of predictive confidence 

across multiple classes could be used to disentangle comorbidities in patient groups. 

True multi-class methods175, provide a prediction for all classes for each subject. 
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Therefore, if a subject has a high predictive confidence for multiple disorders it may 

indicate that the subject is comorbid for those disorders. In contrast, if the predictive 

confidence is only high for one of the disorders, this may be considered a relatively 

definitive diagnostic prediction. Another intriguing possibility for accommodating 

comorbidities is multi-label classification176, or multi-task learning177 where each data 

sample has multiple labels associated to it. Multi-task learning has been applied in 

neuroimaging for predicting multiple clinical variables178,179 but to our knowledge, it 

has not been applied to accommodate comorbidities and may therefore be a promising 

avenue of future research. 

Third, pattern recognition might provide an efficient validation procedure for the 

stratification of patient groups. The rationale here is that, if a subcategorization 

reduces the biological heterogeneity of a patient group, prediction of the subgroups 

should be more accurate. 

Fourth, classification based on MRI-derived feature sets might be employed as a ‘triage’ 

or screening step before an expert opinion is sought. For example, for certain clinical 

conditions, ‘gold standard’ diagnoses require specially trained and thus expensive 

medical specialists and several hours of interview. This is the case, for example, in 

the administration of the gold standard diagnostic instruments for ASD, the autism 

diagnostic interview180 and the autism diagnostic observation schedule181. In such cases, 

a prior screening of patients using automated techniques might improve cost-efficiency. 

Fifth, in disorders that are characterized by dangerous behaviors of the patient for 

himself or his environment as well as in situation when difficult clinical decisions have 

to be made, pattern recognition might be used to further specify a clinical indication. 

Concretely, schizophrenic patients might be classified based on their likelihood of a 

psychotic episode or whether a prescription of Clozapine should be indicated, an anti-

psychotic that is often more effective but requires weekly white blood cell counts. In this 

way, the (still quite considerable) expenses of acquiring an MRI could be justified by the 

supplementary information provided to the clinician, which in turn could lead directly 

to adjusting the treatment. In addition to the diagnostic studies reviewed here, pattern 

recognition has a clear merit in predicting treatment response 57 or a naturalistic 

outcome 182. Outcome predictions provide a promising way to improve cost-efficiency, 

by targeting potential treatments for patients most likely to benefit from them. 

Finally, another promising application of pattern recognition in the clinical domain 

could be sample enrichment in clinical trials. Pattern recognition algorithms could help 

to select a biologically more homogenous group to reduce the sample size needed to 

detect an effect of a new medication. 
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In summary, there are many challenges that need to be addressed to move pattern 

recognition towards clinical practice. Studies that demonstrate applicability to 

differential diagnosis and the identification of comorbidities are needed. In the short 

term, pattern recognition could be an effective tool in assisting complex clinical 

diagnostic process in specific diagnostic settings. In the case of specific diagnostic 

questions, the biological validation of the stratification of diagnostic groups and the 

identification of biological pathways implicated in a particular disorder, this approach 

has its merits. Employing pattern recognition for widespread screening of clinical 

populations is premature, and further research on how to accommodate variations in 

disease prevalence is needed.

Reducing heterogeneity of mental diagnoses

Mental disorders may be characterized by different etiologic factors across individuals, 

with different disease causes potentially resulting in the same symptoms. Thus, 

different features might be meaningful across patients belonging to the same diagnostic 

group, increasing the difficulty to find a multivariate pattern, which predicts a specific 

diagnostic category. In addition, there is heterogeneity at the diagnostic level. The 

diagnostic process for many mental disorders is complex and requires considerable 

expertise, experience, and time. Despite best efforts, and due to the complexity of the 

underlying pathology, some examples within a diagnostic group may be mislabeled. 

Furthermore, patients can be diagnosed with the same disorder despite showing 

different patterns of symptoms. It is not always clear, whether or not these symptoms 

are a consequence of similar biological mechanisms. Classification of cases can be 

impaired if the number of examples with an uncertain or incorrect diagnosis is high. 

One way to reduce the uncertainty of diagnostic categories is to stratify groups into 

smaller, potentially less heterogeneous subgroups, by for example selecting those 

individuals which have shown a representative pattern of brain abnormalities specific 

to a certain disorder, indicated by high predictive probabilities across different MRI 

modalities for this particular disorder. As exemplified by the reduced diagnostic 

accuracy reported for larger studies, current pattern recognition algorithms seem 

insufficiently able to accommodate such biological (and/or experimental) heterogeneity 

(see above). It is reasonable to expect that accurate diagnostic biomarkers will be 

easiest to find for diagnostic labels with a consistent pattern of underlying pathology. 

One way to achieve this is to stratify diagnostic groups into smaller biologically more 

meaningful subgroups. The biological validity of these smaller groups could then be 

estimated by pattern recognition algorithms based on MRI-derived feature sets. This 

process could generate hypotheses and can be used to evaluate alternative diagnostic 
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stratifications. In keeping with this point, the misclassifications that a classifier 

makes can be highly informative about stratifications within clinical groups. To take 

a simple example, a classifier might predict that the imaging-derived pattern for a 

given individual resembles one typical for some disorder, however the person displays 

no symptoms. On the one hand, this could indicate a prodromal or at-risk disease 

phase, but on the other hand it might also mean that this individual has developed 

compensatory mechanisms that inhibit symptom expression.

The importance of the choice of features

MRI-derived features are an indirect measure of underlying brain biology. To 

illustrate, the resolution of a modern MRI scan rarely exceeds 1 cubic millimeter. While 

abnormalities at this scale allow clinical predictions based on neuroimaging, some 

processes in the brain implicated in the aetiology of mental disorders are present in 

small regional networks, single neurons, or even take place at the molecular level in 

axon terminals183. Increasing the spatial resolution of MRI technology might therefore 

provide us with means to infer discriminative information which is hidden from view 

today, but which might improve clinical predictions in the future.

As mentioned earlier, mental disorders are characterized by considerable 

heterogeneity, and many patients belonging to the same diagnostic group could 

do so for various reasons. Therefore, it is important to consider a range of different 

data types, from genetics to information concerning a patient’s social network. The 

information contained in these features would need to be combined to interpret the 

data efficiently. Multi-modal techniques such as ‘multi-kernel learning’175,178,184 or linked 

independent component analysis25, which combine different data types, might help to 

make sense of these multimodal datasets. Although potential improvements would 

largely depend on the information contained in such data, these techniques might yield 

better interpretability and a more complete picture of the aetiology of a disorder.  

Feature selection guided by prior knowledge can improve accuracy in disorders, which 

allow clear enough hypotheses on specific relevant imaging features; this has already 

been shown in Alzheimer’s disease44. For most mental disorders this prior knowledge, 

if available today at all, is only accessible with considerable uncertainty, as the results 

with respect to specific imaging features still diverge between studies. Therefore, 

hypotheses, which could guide feature selection, are scarce and they are often not 

robust enough nowadays. Large scale meta-analyses capturing information on altered 

brain phenotypes are necessary for individual mental disorders as well as across 

disorders. In addition, such meta-analyses should also assess different MRI modalities. 
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Recent efforts, such as the ENIGMA Working Groups on different brain disorders 

and the ENIGMA Cross-disorder Working Group, might provide a first step in this 

directionIX 182,185,186. In addition, recent efforts combining information from voxel-based 

morphological studies across different disorders into a unified profile of results within 

and across disorders could be a right step in this direction187, and they certainly set the 

scene for research focusing on unrevealing common and unique factors contributing 

to mental disorders. It is important that the publications on such data contain specific 

recommendations for the machine learning community and that prior knowledge 

on informative features for mental disorders is organized in suitable and accessible 

ways, so that it can guide expert-based feature selection more effectively. Importantly, 

those publications require estimates of effect sizes of specific potential features and 

should not shy away when the overall pattern of results seems inconclusive. As our 

understanding of the pathology underlying mental disorders improves, this knowledge 

can increase the accuracy of future pattern recognition models beyond what is currently 

possible. Increasing clinical prediction today is (next to improving or adapting pattern 

recognition to clinical requirements) predominantly a quest for informative features. 

Conclusion

Pattern recognition has shown promising, but mixed results for predicting diagnosis 

in clinical neuroimaging research. Despite many promising proof-of-concept results, it 

is clear that the techniques are still in their infancy, and many challenges remain to be 

solved before they can be employed in clinical practice. Some of the main challenges 

stem from the very high aetiological and phenotypic heterogeneity that characterizes 

mental disorders. The studies we have reviewed are mostly employing relatively small 

samples acquired in single imaging centers, with only a few efforts to simultaneously 

discriminate different disorders. Clearly, more extensive validation using large, 

carefully acquired samples is necessary, as is the development of methodological 

innovations to improve accuracy, to discriminate between multiple disorders 

simultaneously, and to translate to settings having realistic disease prevalence. In 

the short to medium term, however, there are specific clinical contexts where pattern 

recognition can add value; for example, as triage tools in cases where the diagnosis 

of a trained clinician is expensive or access to such resources is limited, to subdivide 

patient populations into more homogeneous subgroups, and to help fractionate disease 

phenotypes. In order for the field to move forward, we argue that it is essential that 

clinical and methodological expertise be combined to make optimal use of the valuable 

source of information provided by neuroimaging data. International research consortia 

IX  http://ENIGMA.ini.usc.edu 
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bringing together clinicians and researchers across disciplines, such as the EU-

funded, IMAGEMENDX, PRONIAXI, PSYSCANXII, and AggressotypeXIII consortia, provide 

valuable platforms for such interaction. In the future, we anticipate that technological 

developments in pattern recognition in combination with the acquisition of large, 

multimodal, and prospectively acquired clinical samples will enable the construction 

of more accurate models and will move the field closer towards biomarkers that can be 

used to guide clinical decision making in mental disorders.  

X  www.imagemend.eu
XI  www.pronia.eu
XII  http://ec.europa.eu/research/health/medical-research/brain-research/projects/

 psyscan_en.html
XIII  www.aggressotype.eu
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Abstract

Attention-deficit/ hyperactivity disorder (ADHD) is one of the most prevalent and 

heritable psychiatric disorders. While previous studies have focused on mapping focal 

or connectivity differences at the group level, the present study employed pattern 

recognition to quantify group separation between unaffected siblings, participants 

with ADHD, and healthy controls on the basis of spatially distributed brain activations. 

This was achieved using an fMRI-adapted version of the Stop-Signal Task in a sample 

of 103 unaffected siblings, 184 participants with ADHD, and 128 healthy controls. We 

used activation maps derived from three task regressors as features in our analyses 

employing a Gaussian process classifier. We showed that unaffected siblings could 

be distinguished from participants with ADHD (area under the receiver operating 

characteristic curve (AUC) = .65, p=.002, 95% Modified Wald CI: .59 - .71 AUC) and 

healthy controls (AUC = .59, p=.030, 95% Modified Wald CI: .52 - .66 AUC), although 

the latter did not survive correction for multiple comparisons. Further, participants 

with ADHD could be distinguished from healthy controls (AUC = .64, p=.001, 95% 

Modified Wald CI: .58 -.70 AUC). Altogether the present results characterize a pattern of 

frontolateral, superior temporal and inferior parietal expansion that is associated with 

risk for ADHD. Unaffected siblings show differences primarily in frontolateral regions. 

This provides evidence for a neural profile shared between participants with ADHD and 

their healthy siblings.
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Attention-deficit/ hyperactivity disorder (ADHD) is one of the most prevalent188,189 and 

heritable psychiatric disorders190. Heritability estimates are around 75%, and relatives 

of participants with ADHD have about 25% risk to have ADHD themselves which is 

about four times higher than the population rate191.  While unaffected siblings share 

some of the biological risk for disease with their affected siblings, they do not express 

this risk symptomatically. Unaffected siblings of participants with ADHD have shown 

patterns of cognitive and neural functioning intermediate to those observed in affected 

siblings and healthy controls192–194 Specifically, unaffected siblings of participants 

with ADHD have shown impairments in response inhibition, as evidenced in impaired 

performance on cognitive tasks, as well as brain abnormalities in structures involved 

in response inhibition. Therefore, this group of individuals represents an interesting 

study population in exploring disorder mechanisms and a complex group for disorder 

classification as preformed in this study. Response inhibition deficits belong to the 

most prevalent deficits observed in children and adolescents with ADHD149,194–197. To 

probe deficits in response inhibition in the current study, we chose the Stop-Signal Task 

functional magnetic resonance imaging (fMRI) paradigm. This experimental paradigm 

has previously shown reductions in task related brain (de)activations in participants 

with ADHD compared to healthy controls149,197–199. 

In contrast to studies that examined focal or connectivity differences between 

unaffected siblings and participants with ADHD197,200, we quantified group separation 

on the basis of spatially distributed patterns of activity across the brain, which 

provides a unified measure of group separation that is more representative of the 

overall pattern of brain activity than any individual region. Pattern recognition is ideal 

for this purpose and aims to extract regularities in data, which can be used to predict 

group membership29. Early pattern recognition studies aimed to show that participants 

with ADHD could be distinguished from healthy controls based on different MRI 

modalities51,145,147,149,151. These studies were usually small in size and the literature 

tends to show reduced classification performance with increased sample size17.  

Larger studies capture more of the inherent heterogeneity of ADHD, in terms of its 

symptomatology and pathophysiology. Therefore, those studies are more indicative for 

the predictability of ADHD in clinical settings, as a heterogeneous group of individuals 

approach clinics to seek treatment. 

In studies on unaffected siblings of schizophrenia and autism spectrum disorders, 

researchers used neural patterns to distinguish siblings from their respective patient 

group and healthy controls159,201,202.  However, until now no pattern recognition study 

has investigated unaffected siblings of participants with ADHD. In the present study 

we sought to: (i) precisely quantify the group separation between unaffected siblings, 

participants with ADHD and healthy controls in a large sample that accurately reflects 
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the range of variation in the disease phenotype and (ii) map the nature of these 

differences to identify response inhibition related activation patterns, that underlay 

the shared genetic load between unaffected siblings and participants with ADHD. 

The present study is the largest study employing pattern recognition to investigate 

unaffected siblings of participants with ADHD, using a hallmark deficit of ADHD as 

biomarker, response inhibition149,194–197.

Methods

Participants 

We used data from the NeuroIMAGE project, a large longitudinal clinical cohort consisting 

of individuals tested at two different sites in The Netherlands, the Vrije Universiteit 

in Amsterdam and the Donders Centre for Cognitive Neuroimaging in Nijmegen. We 

TABLE 1  Demographic and clinical characteristics of complete sample

Participants with 
ADHD

Unaffected siblings Healthy controls Sig.

N 184 103 128

Males 128 41 60

Females 56 62 68

Mean SD Mean SD Mean SD

ADHD symptomsa 12.94 2.90 0.75 1.28 0.36 0.90 ADHD > Siblings 
= Controls

Age 17.24 3.27 17.12 4.06 16.36 3.24 ADHD = Siblings 
= Controls

Age range 8 <-> 25 7 <-> 27 9 <-> 23

Estimated IQb 95.13 16.84 102.20 15.79 106.03 14.17 ADHD < Siblings 
= Controls

IQ range 55 <-> 138 65 <-> 144 58 <-> 141

Mean SD Mean SD Mean SD

SSRT (ms) 270.3 61.91 252.52 49.32 258.83 52.65 ADHD > Siblings 
= Controls

ICV (ms) 0.211 0.052 0.18 0.047 0.17 0.041 ADHD > Siblings 
=  Controls

Errors (n) 6.45 7.89 4.05 5.29 3.45 4.31 ADHD > Siblings 
= Controls

Current Medication 107 4 0

Note: ADHD = Attention Deficit/Hyperactivity Disorder; ODD = Oppositional Defiant Disorder; CD = Conduct 

Disorder; RD = Reading Disability; SSRT = Stop-Signal Reaction Time; RTV = Reaction Time Variability; Errors 

= number of errors on go-trials; Sig.= Nominal significant differences are listed in this column if this column is 

empty no significant differences could be reported.
a ADHD diagnosis was based on K-SADS structured psychiatric interviews and Conners’ questionnaires204.
b  Estimated IQ was based on the block-design and vocabulary subtests of the Wechsler Intelligence Scale for 

Children (WISC) or Wechsler Adult Intelligence Scale (WAIS-III)205.
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selected all individuals who performed the Stop-Signal Task. ADHD diagnosis was 

based on K-SADS203 structured psychiatric interviews and Conners’ questionnaires204. 

The total sample consisted of184 participants with ADHD,103 unaffected siblings, and 128 

healthy controls (TABLE 1). This sample is similar to the sample detailed in our previous 

publication 197, with the exception that the current study excluded subjects if there 

was an inconsistent diagnosis based on either K-SADS or Conners’ questionnaire. Ethics 

approval for this study was obtained from relevant ethics review boards, and informed 

consent/assent was signed by parents and their children. A comprehensive overview 

of recruitment, diagnostics, ethical approval, testing procedures, and quality control 

are provided in a separate methods publication1. 

Stop-Signal Task design 

Response inhibition was measured using an fMRI-adapted version of the Stop-Signal 

Task197,206, consisting of four blocks of 60 trials each. Participants were instructed 

to respond as quickly and accurately as possible to a go-signal (two-choice reaction 

time task) with a left or right button press on a button box, unless the go-signal was 

followed by a stop-signal (25% of trials), in which case participants were instructed to 

withhold their response. Participants who did not reach 70% accuracy on the go-trials 

were excluded prior to analyses (N=5). The task was adapted to the performance of 

the participant, by varying the delay between go and stop-signal (stop-signal delay), in 

order to achieve 50% successful inhibition on stop-trials for all participants. The stop-

signal delay was decreased from an initial 250ms, by 50ms after successful inhibition, 

and increased by 50ms after failed inhibition. The main measure of response inhibition 

performance, the stop-signal reaction time (SSRT), was calculated by averaging the 

delay necessary for a participant to successfully inhibit his/her response in 50% of 

the stop-trials. Secondary outcome measures were the total number of omission and 

commission errors on go-trials (errors) and the intra-individual component of variation 

(ICV), calculated by dividing the reaction time variance by the mean reaction time (both 

calculated from reaction times on correct go trials). 

Acquisition of functional MRI

Data were acquired at both sites on similar 1.5 Tesla Siemens MRI scanners (Siemens 

Sonata at VUmc; Siemens Avanto at Donders Centre for Cognitive Neuroimaging) using 

the same Siemens 8-channel head coil and the following protocol: The Stop-Signal 

Task was collected in four runs using a T2*-weighted echo planar imaging sequence 

(TR=2340 ms, TE=40 ms, FOV=224x224 mm, 37 slices, voxel size=3.5x3.5x3.5 mm, 

94 volumes per run). To assist accurate normalization, participants were also scanned 

using a high resolution MPRAGE T1-weighted sequence (TR=2730 ms, TE=2.95 ms, 
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TI=1000 ms, flip angle = 7˚, voxel size=1x1x1 mm, matrix size = 256 × 256, FOV=256 

mm, 176 slices).

Processing of fMRI data

Functional MRI data were processed using FSL (FMRIB's Software Library, www.fmrib.

ox.ac.uk/fsl; fMRI Expert Analysis Tool, version 6.0207–209. Preprocessing included 

removal of the first four volumes of each run, within-run motion correction to the 

middle volume, slice-timing correction, and spatial smoothing with a 6 mm Gaussian 

kernel, before residual motion correction was applied using ICA–AROMA. ICA-AROMA is 

an advanced motion correction tool that has been shown to outperform other motion 

correction procedures210,211.  The data from each run were registered to the participant’s 

T1 anatomical image using linear, boundary-based registration implemented in FSL-

FLIRT. For each participant a general linear model was fit, including successful stop, 

failed stop and successful go trials as regressors in addition to error trials, signal from 

cerebral spinal fluid and white matter, which were included as nuisance covariates. 

Task regressors were convolved with a double-gamma hemodynamic response 

function and data were high pass filtered with a cutoff of .01 Hz prior to estimation. The 

resulting single-subject regression coefficient images (‘beta maps’) were transformed 

to participant-level anatomical space (3 mm isotropic resolution) and combined across 

runs using a fixed effects model, using FSL-FEAT. This resulted in three participant-

level activation maps, (1) successful stop, (2) failed stop, and (3) successful go, which 

were transformed to a neutral ‘midspace’, a procedure which neutralizes potential 

registration biases due to structural group and gender differences. The reader is 

referred to a prior publication for further details of the processing procedures197, where 

the only difference in the present manuscript was the addition of the advanced motion 

correction using ICA-AROMA.

Quantifying and mapping group separation with Gaussian process classi-

fiers

Gaussian process classifiers31 were used to distinguish participants with ADHD from 

their unaffected siblings and healthy controls. Gaussian processes are best described as 

a distribution over functions, where inference proceeds by first computing the posterior 

distribution over functions according to the rules of probability. This is referred to as 

conditioning the prior distribution on the data. In the classification case, the posterior 

process is then passed through a sigmoid response function that maps the output to 

the unit interval, thereby providing a valid probability score for each prediction. These 

quantify predictive confidence and provide the primary advantage of Gaussian process 

classifiers over alternative approaches. Further details surrounding this approach 
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have been published previously212. First, we estimated group separation on the basis 

of neuroimaging biomarkers. For this, we trained GPC models to make predictions 

based on the activation maps corresponding to the three task regressors, described in 

the fMRI processing section. The total number of features in these classifications was 

224781. Second, we estimated group separation on the basis of behavioral data, which 

provides a reference for the classifier above. For this, we trained a GPC model on the 

basis of data from the behavioural task. Specifically, we used the number of errors 

during the task, the ICV as well as the SSRT as features (see above). Each classifier 

was embedded within a leave-one-participant-out cross-validation procedure, and the 

measure of generalizability was the area under the receiver-operating characteristic 

curve (AUC). This measure has the advantage that it is not sensitive to a particular 

choice of decision threshold. Statistical significance was assessed by permutation 

testing for the AUC, considering the family structure within the sample. Specifically, 

instead of permuting the labels individually, we permuted the labels that belong to 

participants from the same family together. In that way, we ensured that the family 

structure was preserved, when the labels were shuffled. 

Multiple-comparison correction for the AUCs was performed with the Bonferroni-Holm 

method213 and 95% confidence intervals were reported and based on the modified 

Wald-method214. Note that these confidence intervals should be considered illustrative 

only. The primary measures we use to assess statistical significance are p-values 

derived from the permutation testing procedures described above, which fully account 

for the family structure in the data. 

A common approach to visualizing the importance of each brain region to the 

classification is to visualize the classifier weights directly49. However, the classifier 

weights are influenced by both the signal and noise in the data, which complicates 

interpretation. Therefore, forward maps50 were computed that provide a better 

indication of the differential activation pattern underlying the group separation., Most 

commonly, these maps are reported without applying a threshold, but it is clearly 

desirable to localize the most important differences.  Therefore, we present a novel 

approach to thresholding forward maps based on fitting a mixture model. To achieve 

this, we fit a Gaussian-Gamma mixture to the image histograms that provide an explicit 

model for the null distribution plus positive and negative activations215. For this, we 

used the implementation in the FSL-MELODIC softwareXIV. After fitting this model, these 

maps can then be thresholded in two ways: (i) by an alternative hypothesis testing 

(AHT) procedure where voxels are declared significant if they have a probability  pAHT 

>.5 of belonging to one of the alternative distributions215 or (ii) by controlling the false 

XIV  http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
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discovery rate (FDR) against the explicitly modelled null distribution216,217. Here this 

was done at the norminal rate of pFDR <.05. In our data, both approaches lead to similar 

conclusions (see SUPPLEMENTARY FIGURE 1). All figures were visualized in Caret218. 

Sensitivity analyses were performed to increase the confidence in the analyses 

described above. Since the total sample showed a slight class imbalance with respect 

to gender and scan-site and in order to reduce nuisance variance, the sample was 

perfectly matched for gender as well as scan-site and optimally on age. We used optimal 

matching algorithms implemented in the R-package MatchIt to simultaneously match 

age across all groups219 (for information on the matched sample see SUPPLEMENTARY 

TABLE 1).

The matched sample contained 74 participants per group. The analyses were performed 

in MATLAB using customized scripts from the PRoNTo toolbox220. 

Results

Descriptive statistics: Stop-Signal Task 

Unaffected siblings showed shorter stop-signal reaction times and lower error rates 

than the participants with ADHD (TABLE 1, Wald χ2 = 7.941, p<.005 and Wald χ2 = 

10.701, p<.001, respectively), but did not differ from healthy controls in their reaction 

times and error rates (TABLE 1, Wald χ2 = .743, p=.389 and Wald χ2 = -.5954, p=.343, 

respectively). The intra-individual component of variation was lower in unaffected 

siblings as compared to the participants with ADHD (TABLE 1, Wald χ2 = 20.213, p<.001), 

and slightly higher than in healthy controls (Wald χ2 = 4.057, p=.044). These results 

are similar to those reported in an earlier study with an overlapping sample 197. The 

addition of age, gender, IQ, medication status, or comorbid diagnoses to the model did 

not influence the reported group differences. 

Quantifying and mapping group separation

The accuracies for discriminating groups are summarized in FIGURE 1. Briefly, 

unaffected siblings could be distinguished from the participants with ADHD on the 

basis of successful stop activation maps (AUC = .65, p < .002, 95% Modified Wald CI:  

.59 - .71 AUC) and participants with ADHD could be distinguished from healthy controls 

on the basis of the same activation maps included as features to the classifications (AUC 

= .64, p < .001, 95% Modified Wald CI: .58 -.70 AUC). We also found nominally significant 

discrimination of unaffected siblings from healthy controls based on successful stop 
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activation maps (AUC = .59, p < .030, 95% Modified Wald CI: .52 - .66 AUC) as well 

as nominally significant discrimination between participants with ADHD and healthy 

controls based on failed stop activation maps (AUC = .60, p < .019, 95% Modified Wald 

CI: .54-.66 AUC, FIGURE 1; for balanced accuracy, sensitivity and specificity measures in 

the complete and matched sample see SUPPLEMENTARY TABLE 2). 

FIGURE 1  Depicted are the results for all predictions in the complete and matched sample, 
the x-axis corresponds to the area under the receiver-operating characteristic curve (AUC). 
An area of 0.5 indicates no discrimination; ** indicates that the prediction remains significant 
after Bonferroni-Holm correction; * indicates that predictions are significant before multiple 
comparison correction. 

 

FIGURE 2 shows the forward maps for the successful stop activation maps for each 

group distinction without applying a threshold. In SUPPLEMENTARY FIGURE 1, the same 

maps are shown without a threshold in the first column, with a threshold of pAHT>.5 

in the second and pFDR<.05 in the third. The classifier discriminating participants 

with ADHD from healthy controls showed a frontolateral, superior temporal and 

inferior parietal pattern with positive coefficients favoring ADHD. The pattern that 

separated unaffected siblings from participants with ADHD showed high coefficients 

in frontolateral and inferior parietal areas favoring ADHD, but was for the remainder 

wide-spread in comparison. The nominally significant unaffected sibling versus healthy 

controls distinction, showed a pattern with high coefficients primarily in inferior 

frontolateral areas favoring unaffected siblings. In SUPPLEMENTARY FIGURE 2 we show 

the fit of the mixture models to the three forward maps. The sensitivity analyses for 

which we perfectly matched the sample on gender and scan site and optimally on age 
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showed a similar pattern of results as those described above, with exception of the 

successful-stop difference between ADHD and their unaffected siblings, all predictions 

improved in the matched sample (FIGURE1).  

For the classifier trained to separate groups on the basis of the behavioral data, we 

showed that unaffected siblings could be distinguished from participants with ADHD 

(AUC = .66, p <.001) but not from healthy controls (AUC=.51, p>.05), based on behavioral 

scores described earlier.  Participants with ADHD could be distinguished from healthy 

controls (AUC =.71, p < .001). 

FIGURE 2  Forward maps of significant predictions based on successful stop activation maps. I)  
Unaffected siblings versus healthy controls show a frontolateral pattern with positive 
coefficients favoring siblings. II) Unaffected siblings versus participants with ADHD show a 
widespread pattern with positive coefficients favoring ADHD predictions. III) Participants 
with ADHD versus healthy controls show a relatively clear frontolateral, interior-parietal and 
superior-temporal pattern with positive coefficients favoring ADHD predictions. The left images 
correspond to the left hemisphere, the right images to the right hemisphere.  
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Discussion 

In this study we showed that: (i) unaffected siblings of participants with ADHD could 

be distinguished from healthy controls and from participants with ADHD. Further, 

(ii) participants with ADHD could be reliably distinguished from controls. (iii) The 

predictions on behavioral data were approximately equally accurate, except for the 

distinction of unaffected siblings from healthy controls, which was not possible with 

behavioral data. The pattern of difference between participants with ADHD and healthy 

controls was characterized by positive bilateral frontolateral, superior temporal and 

inferior parietal coefficients favoring ADHD and frontolateral coefficients favoring 

unaffected siblings in comparison with healthy controls. This provides evidence for a 

neural profile shared between participants with ADHD and their healthy siblings.

The pattern of difference reported here, partially overlaps with regions in frontal and 

parietal areas reported in earlier studies of our NeuroImage sample197,200. Looking at 

the thresholded forward maps (SUPPLEMENTARY FIGURE 1), we see frontolateral areas 

with positive coefficients favoring participants with ADHD as well as unaffected 

siblings when contrasted with healthy controls. In comparison to our previous studies 

that examined focal or connectivity differences, we extend these findings by precisely 

quantifying group separations based on task activation maps and show that the pattern 

of difference that distinguishes all groups is characterized by a widespread profile.  

The diagnostic accuracy we report is moderate in relation to earlier studies aiming to 

separate participants with ADHD from controls using small samples17 but is comparable 

to studies that have employed large samples that capture more of the heterogeneity 

in the ADHD phenotype71. The pattern recognition approach we employed allowed us 

to quantify the degree of separation between groups and therefore also the degree 

to which shared familial risk factors present in patients and unaffected siblings are 

expressed in patterns of brain activity. We could distinguish unaffected siblings from 

participants with ADHD showed a similar accuracy for distinguishing unaffected 

siblings from healthy controls based on fMRI data. This is in line with earlier studies 

that identified patterns of shared risk between siblings of participants with autism and 

schizophrenia159,201,202. Interestingly, a distinction based on behavioral data was not 

possible between unaffected siblings and healthy controls, indicating that unaffected 

siblings are not behaviorally different from healthy controls in response inhibition. 

However, they show a different neural pattern, which may be linked to compensatory 

brain processes in these unaffected individuals compared to their affected siblings. 

As mentioned in the introduction, ADHD has mostly been classified in considerably 

smaller studies51,54,62,145–149,151,152. In a classical analytic setting, p-values derived from 
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measures of central tendency (e.g. a t-test) have an explicit dependency on the sample 

size, so the significance necessarily increases with increasing sample size, even though 

the effect size may not. In contrast, the predictive accuracy is a measure of class 

overlap that is governed by the distributions of the different classes and is largely 

independent of sample size, if properly assessed (e.g. using cross-validation). Therefore, 

the estimate of class overlap becomes more precise with increased sample size. This is 

important because the current study is the largest task-based fMRI study employing 

pattern recognition in ADHD and therefore may represent a benchmark for what is 

possible in terms of accuracies in representative cohorts of heterogeneous disorders.  

This heterogeneity may, for example, stem from sampling subjects at different ages 

and at different points on their developmental trajectory. Our results suggest that – like 

all psychiatric disorders – the heterogeneity of the ADHD phenotype presents a major 

challenge for identifying disease mechanisms and for finding biomarkers that predict 

diagnosis and disease course. For example, previous research shows that only a subset 

of participants with ADHD display behavioral alterations in response inhibition221. 

Different participants with ADHD may have different symptom profiles and different 

underlying biological causes222. Therefore, finding methods to parse heterogeneity is a 

major research initiative. Clustering methods are most commonly used for this purpose 

and aim to partition patients into subgroups221,223,224, but alternative methods such 

as normative modeling30,225 may also be beneficial for understanding heterogeneity 

underlying psychiatric disorders. 

In summary, the present results describe a pattern of frontolateral, superior temporal 

and inferior parietal expansion that is associated with risk for ADHD. Unaffected 

siblings show differences primarily in frontolateral regions. This provides evidence for a 

neural profile shared between participants with ADHD and their healthy siblings. In the 

future, pattern recognition techniques can be employed to break down heterogeneity 

in those groups. This may allow us to better understand brain mechanisms that protect 

participants who share familiar risk but are unaffected.  
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Supplementary materials

SUPPLEMENTARY TABLE 1  Demographic and clinical characteristics of matched sample

SUPPLEMENTARY TABLE 2  Performance complete and matched sample

  Participants with 
ADHD 

Unaffected siblings Healthy controls Sig.

N 74 74 74  

Males 37 37 37

Females 37 37 37

  Mean SD Mean SD Mean SD

ADHD symptomsa 12.89 2.86 0.92 1.38 0.35 0.94 ADHD > Siblings = 
Controls

Age 16.45 3.26 16.97 3.68 16.1 3.24 ADHD = Siblings = 
Controls

Estimated IQ 96.82 16.74 102.32 16.63 108.17 15.21 ADHD < Siblings < 
Controls

Age range 9 <-> 24 7 <-> 26 9 <-> 23  

IQ rangeb 55 <-> 132 65 <-> 144 58 <-> 141

  Mean SD Mean SD Mean SD

SSRT (ms) 285.96 73.14 251.62 49.64 255.83 53.86 ADHD < Siblings = 
Controls

ICV (ms) 0.222 0.051 0.184 0.045 0.174 0.042 ADHD < Siblings = 
Controls

Errors (n) 7.473 9.208 3.905 4.467 2.662 2.7 ADHD < Siblings = 
Controls

Current Medication 36 3 0  

Note: ADHD = Attention Deficit/Hyperactivity Disorder; ODD = Oppositional Defiant Disorder; CD = conduct 

disorder; RD = Reading disability; SSRT = Stop-signal reaction time; RTV = reaction time variability; Errors = 

number of errors on go-trials; Sig.= Nominal significant differences are listed in this column
a ADHD diagnosis was based on K-SADS structured psychiatric interviews and Conners’ questionnaires204

b  Estimated IQ was based on the block-design and vocabulary subtests of the Wechsler Intelligence Scale for 

Children (WISC) or Wechsler Adult Intelligence Scale (WAIS-III)205 

Performance measures complete sample

Balanced accuracy/ sensitivity/ specificity successful stop failed stop successful go

Unaffected siblings vs. Healthy controls .566/ .592/ .539 .48/ .476/ .484 .452/ .466/ .438

Unaffected siblings vs. Participants with 
ADHD

.598/ .603/ .592 .544/ .554/ .534 .53/ .565/ .495

Participants with ADHD vs. Healthy con-
trols

.599/ .565/ .633 .559/ .533/ .586 .546/ .538/ .555

Performance measures matched sample

Balanced accuracy/ sensitivity/ specificity successful stop failed stop successful go

Unaffected siblings vs. Healthy controls .6351/ .622/ .649 .534/ .527/ .541 .527/ .554/ .500

Unaffected siblings vs. Participants with 
ADHD

.507/ .541/.473 .527/ .500/ .554 .554/ .608/ .500

Participants with ADHD vs. Healthy con-
trols

.642/ .662/ .622 .601/ .595/ .608 .568/ .595/ .541
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SUPPLEMENTARY FIGURE 1  First column shows the forward maps of significant predictions 
based on successful stop activation maps. Second column shows Z-statistics Thresholded at 
pAHT>.5 for the forward maps. Third column shows Z-statistics Thresholded at pFDR <.05 the 
forward maps.
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SUPPLEMENTARY FIGURE 2  Fit of the mixture models to the three forward maps depicted using 
mixture modeling as implemented in FSL.
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Abstract

Attention-deficit/hyperactivity disorder (ADHD) is biologically heterogeneous, with 

different biological predispositions – mediated through developmental processes – 

converging upon a common clinical phenotype. Brain imaging studies have variably 

shown altered brain structure, activity, and connectivity in children and adults with 

ADHD. Recent methodological developments allow for the integration of information 

across imaging modalities, potentially yielding a more coherent view regarding the 

biology underlying the disorder. We analyzed a sample of adults with persistent ADHD 

(n=87) and healthy controls (n=93) using an advanced multimodal linked independent 

component analysis approach. Diffusion and structural magnetic resonance imaging 

data were fused to form imaging markers, reflecting independent components that 

explain variation across modalities. We included these markers as predictors into 

logistic regression models on adult ADHD and put those into context with predictions 

of estimated intelligence, age, and sex. Adult ADHD was explained to 27.87% by all 

markers. No single individual imaging modality dominated this result. Instead, it 

was explained by aggregation of relatively small effects across several modalities 

and markers. One of the top markers for adult ADHD was multimodal and linked to 

morphological and microstructural effects within anterior temporal brain regions 

whereas another was linked to cortical thickness. Several markers were also influenced 

by estimated intelligence, age, and/or sex. We conclude that no dominant imaging 

modality or marker characterizes structural brain phenotypes in adult ADHD, but that 

we can refine our characterization of the disorder by the integration of small effects 

across modalities. 
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Attention-deficit/hyperactivity disorder (ADHD) is often perceived as a childhood 

disorder, however, it affects adults as well189,226. The prevalence of ADHD in the adult 

population is about 2.5%189. It is biologically heterogeneous222, suggesting that different 

biological predispositions – mediated through developmental processes – converge 

upon a common clinical phenotype193,227–231. The different mechanisms that have 

been proposed for ADHD222 may be reflected to varying degrees across neuroimaging 

modalities150,200,232–236. Imaging modalities are sensitive to different properties of the 

underlying biological tissue. While structural imaging captures basic tissues such as 

gray and white matter volumes, diffusion imaging allows for the estimation of white 

matter microstructural integrity. Therefore, it is beneficial to integrate effects across a 

range of imaging modalities using a principled approach to refine our understanding of 

the biology underlying adult ADHD.

Recent methodological developments allow for this integration23,237,238 and have 

presented novel imaging markers underlying age-dependent brain changes237,239 or 

childhood and adolescent ADHD25. In these studies, a linked independent component 

analysis (ICA) was used, which, in contrast to other methods, combines information 

at an early stage in the analysis pipeline. This allows for a principled integration of 

information rather than a post-hoc combination of unimodal results at the stage of 

final interpretation. Linked ICA searches for hidden sources of spatial variation across 

multiple brain imaging modalities, yielding independent components or imaging 

markers. Given the presumed heterogeneity of adult ADHD in terms of its biology and 

pathophysiological mechanisms222, integrating information across imaging modalities 

may yield a more complete picture of each underlying mechanism and allow for 

multiple mechanisms to be taken into account simultaneously.

In this study, we have taken an integrative perspective concerning adult ADHD, 

combining imaging modalities into markers using a multimodal linked independent 

component analysis (ICA) of diffusion and structural magnetic resonance imaging 

(MRI) data. We integrated the resulting imaging markers using multiple logistic and 

linear regressions. Hypothesizing that a biologically heterogeneous phenotype – such 

as adult ADHD – affects different modalities at once, we expected that through such 

integration, a sizable and robust effect would be detectable. We contrasted the analyses 

with effects of estimated intelligence, age, and sex to increase our understanding of the 

known roles of these factors on brain structure as well as ADHD and to quantify the 

overall magnitude of ADHD-related effects in relation to these factors.  



CHAPTER 4

80

Methods 

Participants

We selected 87 participants with adult ADHD and 93 healthy controls from the Dutch 

cohort of the International Multi-center persistent ADHD CollaboraTionXV 2, based 

on data availability across imaging modalities. Participants with adult ADHD were 

recruited from the Department of Psychiatry at the Radboud University Medical 

Center and through advertisements. In this recruitment process, the participants with 

adult ADHD were matched for sex, age, and estimated intelligence to a healthy control 

population. All participants underwent psychiatric assessments, neuropsychological 

testing, and neuroimaging. The diagnostic interview for adult ADHD (DIVA)240 was 

conducted to confirm the diagnosis of adult ADHD. This interview focuses on the 18 

DSM-IV symptoms of ADHD and uses concrete and realistic examples to thoroughly 

investigate, whether a symptom is currently present or was already present in 

childhood241. In all cases, a childhood history of ADHD symptoms was established, 

and persistent ADHD was diagnosed. The ADHD Rating Scale-IV was filled in by each 

participant to report current symptoms of attention and hyperactivity/impulsivity242. 

To assess comorbidities, the structured clinical interviews for DSM-IV SCID-I and SCID-

II were administered243–245. The inclusion criteria for participants with ADHD were: i) 

DSM-IV-TR criteria for ADHD in childhood as well as in adulthood, ii) no psychosis, 

iii) no alcohol or substance addiction in the last six months, iv) full-scale intelligence 

estimate >70 (prorated from Block Design and Vocabulary of the Wechsler Adult 

Intelligence Scale-III), v) no neurological disorders, vi) no obvious sensorimotor 

disabilities, vii) no medication use other than psychostimulants or atomoxetine. The 

(additional) inclusion criteria for healthy controls were: viii) no current neurological or 

psychiatric disorder according to DIVA, SCID-I, or SCID-II, ix) no first-degree relatives 

with ADHD or another major psychiatric disorder. All participants were Dutch and 

of European Caucasian ancestry. This study was approved by the regional ethics 

committee (Centrale Commissie Mensgebonden Onderzoek: CMO Regio Arnhem – 

Nijmegen; Protocol number III.04.0403). Written informed consent was obtained from 

all of the participants. An overlapping sample has previously been used in unimodal 

analyses246–248. 

XV ww.impactADHDgenomics.com
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TABLE 1  Demographics and clinical characteristics

Note: ADHD = Attention-deficit/hyperactivity disorder; Comparison = Nominal significant 
differences are listed in this column; if this column is empty, no test was performed
a  ADHD diagnosis was based on a structured Diagnostic Interview for ADHD in Adults (DIVA; 
Kooij, 2010)

b  Estimated intelligence was based on the block-design and vocabulary subtests of the Wechsler 
Adult Intelligence Scale (WAIS-III; Wechsler, 2012)

c  Self-reported number of hyperactivity/impulsivity symptoms as measured with the ADHD-DSM-
IV rating scale241

d  Self-reported number of inattention symptoms as measured with the ADHD-DSM-IV rating scale241

e  Number of comorbid disorders such as major depressive disorder based on a SCID (Structured 
Clinical Interview) interview243–245 

 
MRI acquisition

Whole brain imaging was performed with a 1.5 Tesla MR scanner (Magnetom Avanto, 

Siemens Medical Systems, Erlangen, Germany) and a standard 8 channel head coil. 

A high-resolution T1-weighted MPRAGE anatomical scan was obtained from each 

participant, in which the inversion time was chosen to provide optimal gray matter 

- white matter T1 contrast (repetition time = 2730 ms, echo time = 2.95 ms, inversion 

time = 1000 ms, flip angle = 7°, field of view = 256 x 256 x 176 mm³, voxel size = 1.0 

x 1.0 x 1.0 mm³). The T1 images served as a basis for the extraction of gray matter 

volumes, pial surface area, and cortical thickness. Further, it served as a high-resolution 

reference image for diffusion imaging data. Transversely oriented diffusion-weighted 

images were acquired using a twice-refocused spin-echo-planar-imaging sequence 

that minimized imaging distortions from eddy currents 249. The diffusion imaging 

data were acquired using two different protocols. Forty participants were scanned 

with the following protocol: repetition time = 10200 ms, echo time = 95 ms, field of 

view = 320 x 320 x 160 mm³, voxel size = 2.5 x 2.5 x 2.5 mm³, 6/8 partial Fourier. 

Four images without diffusion weighting (b=0 s/mm²) and 30 images with diffusion 

weighting (b=900 s/mm²) applied along evenly distributed directions were acquired. 

The remaining 140 participants were scanned with an adapted second protocol, which 

Participants with adult ADHDa Healthy controls Comparison

N=180 87 93

Males 31.0% 29.0%

Diffusion protocol 1 71.3% 83.8%

Mean SD Mean SD

Age 32.9 9.5 35.1 11.7 p>.05

Estimated intelligenceb 109.4 15.9 107.8 14.9 p>.05

Hyp. /Imp. Symptomsc 5.54 2.4 .95 1.4 p<.001

Inat. symptomsd 6.5 2.0 .6 1.1 p<.001

Comorbid disorderse 1.31 1.3 .28 .6 p<.05
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was implemented to reduce motion artefacts during scanning. Parameters that differed 

from the first protocol were repetition time (6700 ms), echo time (85 ms), field of view 

(220 x 220 x 140 mm³), and full Fourier acquisition; other parameters were unchanged. 

Imaging markers that were significantly affected by a difference in scan protocol were 

excluded from statistical analyses.

MRI processing 

Diffusion parameters 

Pre-processing of diffusion MRI images entailed denoising250, realignment, residual 

eddy-current correction (SPM8), artefact removal from head and/or cardiac motion 

(PATCH, Zwiers, 2010) and correction for magnetic susceptibility-induced distortions252. 

The pre-processed diffusion data were fed into FSL 4.1.7207, and diffusion tensor model 

fit was used to derive fractional anisotropy (FA), mean diffusivity (MD), and tensor mode 

(MO) at each voxel253. These measures in principle quantify the shape of the diffusion 

tensor254, i.e. FA measuring the anisotropy of diffusion, MD the overall magnitude of 

diffusion, and MO reflecting the shape of the diffusion tensor. These measures were 

fed into tract-based spatial statistics (FSL-TBSS) pipeline for skeletonization255 and 

nonlinearly registered to the FMRIB-58_FA template (MNI152-space). The skeleton was 

thresholded at FA≥0.2 and its resolution reduced from 1 to 2 mm isotropic voxel size 

for computational reasons. 

Cortical thickness and areal expansion 

Structural MRI images were fed into Freesurfer v5.3 software to extract measures 

for cortical thickness and areal expansion (http://surfer.nmr.mgh.harvard.edu/)256,257. 

The standard FreeSurfer pre-processing pipeline (recon-all) was applied to these 

images, in which a reconstruction of the cortical sheet was estimated using intensity 

and continuity information. Cortical thickness was determined as the closest distance 

from the gray/white boundary to the gray/cerebrospinal fluid (CSF) boundary at each 

vertex258. Surface area in Freesurfer is estimated as relative amount of expansion or 

compression at each vertex when registering each participant's surface to a common 

atlas. Surface maps were resampled and mapped to a common coordinate system 259. 

During pre-processing, the data were registered onto the high-resolution average 

participant surface space (fsaverage), and a 10 mm FWHM surface-based smoothing 

kernel was applied. 

Gray matter volume 

Prior to gray matter volume estimation, all participants’ T1 images were rigidly aligned 

using statistical parametric mapping version 12 (SPM-12). Subsequently, images were 

segmented, normalized, and bias-field-corrected using ‘new segment’ from VBM-
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SPM12 (http://www.fil.ion.ucl.ac.uk/spm, London, UK)260,261, yielding images containing 

gray and white matter segments plus CSF. DARTEL262 was then used to create a 

study-specific gray matter template to which all segmented images were normalized. 

Subsequently, all gray matter volumes were smoothed with a 9.4 mm FWHM Gaussian 

smoothing kernel (corresponding to sigma=4 mm). Data were downsampled from 2 mm 

to 4 mm isotropic resolution for computational reasons

Linked independent component analysis

Linked ICA23 is a Bayesian spatial multimodal extension of the common ICA model263,264. 

While most ICA algorithms perform factorization of time-series, the linked ICA 

algorithm provides a factorization over participants. This model can simultaneously 

decompose data modalities, with different number of features, while ensuring 

balancing of information across modalities. Each of the linked ICA components is 

linked to a participant course (one scalar value per participant) and each modality's 

corresponding spatial map215. The participant courses can be analyzed in relation to 

behavioral measures explaining for example development, behavior, or pathologies. 

Here, linked ICA was used to combine six data modalities, FA, MD, MO, cortical 

thickness, areal expansion estimates, and gray matter volume. We decided to estimate 

50 independent components, following recommendations described in earlier 

papers23,25,237. It would have been justifiable to use 40 to 50 imaging markers based 

on these recommendations. Therefore, we repeated the ICA model estimations using 

40 and 45 imaging markers. We used the code available on the FSL homepageXV!, 

and for further discussions of the method, we refer to the original papers23,237. For 

visualization, the spatial maps were converted to pseudo-Z-statistics and thresholded 

at |Z| > 2.3. In the following, we will refer to the independent components derived from 

linked ICA analysis as imaging markers or simply markers. If a marker was associated 

with multiple data modalities, we called it a multimodal marker. Statistical inferences 

were performed on the associated participants’ courses.

Statistical analyses 

Prior to statistical inference, thirteen imaging markers were excluded from further 

analyses, as they were either dominated by a single participant – more than 10% of the 

variance explained by an individual – or were associated with the diffusion acquisition 

protocol (SUPPLEMENTARY TABLE 1), we analyzed thus a total of 37 imaging markers in 

our main analyses.

XVI https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA
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Complex and heterogeneous phenotypes such as adult ADHD are unlikely to be 

affected by a single imaging marker in isolation. Therefore, we performed a descriptive 

logistic regression analysis on adult ADHD with the participants’ loadings associated 

with the 37 imaging markers as regressors. We compared this descriptive logistic 

regression model to three other models containing the same regressors but different 

criteria, namely, sex, age and estimated intelligence. We only report results that 

remained significant after multiple comparison corrections using the Bonferroni-

Holm method213 significance level < .05/4) and only interpreted individual regressors 

(imaging markers) that remained significant after correcting for the total number of 

regressors in an overall significant regression model using the Bonferroni-Holm 

method (significance level <.05/37). The two thresholds were determined based on the 

number of independent regressions (adult ADHD, estimated intelligence, age, and sex) 

or the number of predictors in each individual model (37 imaging markers). 

We performed a number of sensitivity analyses to determine the specificity, robustness, 

and generalizability of our main results. To increase the confidence in the specificity of 

our findings, we controlled for sex, age, and estimated intelligence in a separate model 

on adult ADHD. Further, we correlated self-reported symptoms of inattention and 

hyperactivity/impulsivity with the top imaging markers associated with adult ADHD 

across and within each group. We tested the robustness of our results by repeating the 

main analyses using 40 and 45 imaging markers that were the result of a re-estimated 

linked ICA decomposition. We correlated the top markers associated with adult ADHD 

across these ICA decompositions, to show their similarity. To investigate if the results 

were linked to the selection of participants, we split each group in our sample into two 

parts, based on odd and even participant numbers. We repeated the analyses in each 

of these splits and compared the outcome. We estimated the generalizability of the 

results by determining the out-of-sample performance of the logistic regression model 

on adult ADHD using a leave-one-participant-out cross-validation procedure. Here, we 

estimated significance using permutation testing with 1000 permutations. 

In independent analyses, we performed four logistic regressions on adult ADHD. 

In those analyses, we included the top 10% of the markers, which was associated 

with adult ADHD, estimated intelligence, age, and sex as regressors. In this way, we 

tested the exploratory value of imaging markers primarily associated with age, sex, 

and estimated intelligence, for adult ADHD. All of the analyses were performed using 

statsmodels in pythonXVII.

XVII http://statsmodels.sourceforge.net/stable/
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Results 

Imaging markers primarily linked to adult ADHD 

The demographics of the sample used in this analysis are shown in TABLE 1, and 

FIGURE 1 depicts all of the imaging makers that were included into the descriptive 

regression on adult ADHD. The markers were ranked based on their contribution to 

the model. Participants’ courses associated with all imaging markers explained 27.86% 

of the variance in adult ADHD (TABLE 2). Note that this measure reflects the within 

sample explained variance. By using the leave- one-participant-out cross validation 

procedure in a predictive regression analyses we could significantly predict adult 

ADHD with an accuracy of 60.00% (p=.006). For a full overview of the model, we refer 

to SUPPLEMENTARY TABLE 2. The sensitivity analysis including estimated intelligence, 

age and sex in addition to the imaging markers which supported the specificity of our 

findings for adult ADHD (SUPPLEMENTARY TABLE 3). To further increase the confidence 

in our results, we repeated the analysis on adult ADHD using the 50 original markers, 

as well as models based on 40 and 45 imaging markers. In all of these cases, the 

main results remained robust (SUPPLEMENTARY TABLE 4 AND 5). We correlated the top 

markers of these different ICA models and showed that they correlate almost perfectly, 

and thus our results remain robust independent on the number of prespecified ICA 

decompositions (SUPPLEMENTARY TABLE 5). Additionally, we split our sample into 

two parts by taking odd and even participants for both groups apart and estimated 

logistic regressions in each of these splits separately. We did this by using markers 

that were only at least nominally significant in the original model. We could show that 

the regressions remain significant in both splits (SUPPLEMENTARY TABLE 6). Below, 

we describe the imaging markers, namely 6 and 19, that contributed significantly to 

the logistic regression model on adult ADHD (TABLE 1) and which remained so robust 

during various sensitivity analyses. Marker 6 was unimodal showing contributions 

of cortical thickness across the whole cortex. Marker 19, was multimodal with strong 

contributions from the temporal pole, parahippocampal gyrus, occipitotemporal 

gyrus, inferior temporal gyrus, and hippocampal complex (FIGURE 1). Both associated 

positively with adult ADHD.  In a sensitivity analysis, we could show that neither 

of these markers was associated with self-reported symptoms of hyperactivity/

impulsivity nor with symptoms of inattention, in the individual groups. However, when 

combining the adult ADHD and healthy control group to perform the same correlation, 

inattention was associated with both markers, while hyperactivity/impulsivity only 

with Marker19 (SUPPLEMENTARY FIGURE 2).
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TABLE 2  Logistic regression on adult ADHD

Adult ADHD: N=180 df. residuals df. model Pseudo R2 Accuracy P

Descriptive logistic regression 143 36 27.86% 75.50% .004**

Cross validation - Accuracy Perm. p

Predictive logistic regression LOO-CV - 60.00% <.001**

Individual markers Regression 
coefficient

z-stats p

M6 .76 3.24 .001**

M19 .70 3.26 .001**

M32 .51 2.26 .024*

M1 -.54 -2.2 .028*

M38 -.45 -2.17 .030*

M47 -.50 -1.96 .049*

Note: ADHD= Attention-deficit/hyperactivity disorder; df. = Degrees of freedom; p = uncorrected 

p-value; Permutation p = p-value using permutation testing; LOO-CV = Leave one participant out 

cross-validation method

*   nominal significant (p<.05)

**  Overall regression model that remained significant after multiple comparisons using the 

Bonferroni-Holm method p< (.05/4) or an individual regressor that remained significant after 

multiple comparison correction p < (.05/37). The thresholds were determined based on the 

number of independent regressions (adult ADHD, estimated intelligence, age and sex) or the 

number of predictors in each individual model (37 Imaging Markers).

 

Estimated intelligence, age and sex in the context of adult ADHD

FIGURE 2 depicts imaging markers associated with adult ADHD, estimated intelligence, 

age, and sex. Comparable to adult ADHD, estimated intelligence was explained by all 

imaging markers to 32.21% (SUPPLEMENTARY TABLE 7), age to 78.82% (SUPPLEMENTARY 

TABLE 8) and sex to 57.51% (SUPPLEMENTARY TABLE 9). The logistic regressions on adult 

ADHD using the 10% of most predictive imaging markers for estimated intelligence, age 

and sex accounted for 5.11%, for age 3.87% and for sex .86% of the variance in adult 

ADHD (TABLE 3). In contrast the top 10% of the imaging markers associated with adult 

ADHD accounted 8.94% of the variance in adult ADHD. While markers primarily linked 

to estimated intelligence and age were associated with adult ADHD, markers primarily 

linked to sex were not.
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FIGURE 1  All of the imaging markers associated with adult ADHD are depicted immediately 
to the right of the legend. These markers are ranked based on their contributions to the 
descriptive logistic regression model. Toward the left of each figure, the pseudo R2 across all 
imaging markers is depicted. The spatial patterns are depicted for the top two imaging markers 
associated with adult ADHD, as they remained significant after performing within model 
correction for multiple comparisons. Effects that remained significant after multiple comparison 
correction were flanked by two stars [p< (.05/4)]. Note: FA = Fractional Anisotropy, MD = Mean 
Diffusivity, MO = Tensor Mode, TH = Cortical Thickness, AR = Pial Surface Area, GM = Gray 
Matter Volume

TABLE 3  Top imaging marker logistic regressions

Note: ADHD= Attention-deficit/hyperactivity disorder; p = uncorrected p-value

* = nominally significant (p<.05); ** = overall regression model significant after Bonferroni-Holm 

correction p< (.05/4) 
a  Estimated intelligence was based on the block-design and vocabulary subtests of the Wechsler 

Adult Intelligence Scale (WAIS-III; Wechsler, 2012)

Predictors Top 10% imaging markers 
of initial analysis on adult 
ADHD
[M6, M19, M32]

Top 10% imaging mark-
ers of initial analysis on 
Estimated intelligencea

[M35, M4, M19]

Top 10% imaging 
markers of initial 
analysis on age
[M1, M3, M8]

Top 10% imaging 
markers of initial 
analysis on sex
[M34, M3, M35]

Criterion Adult ADHD Adult ADHD Adult ADHD Adult ADHD

Pseudo R2 8.95% 5.11% 3.87% .86%

p <.001** .001** .007** >.05
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FIGURE 2  Imaging markers associated with adult ADHD, estimated intelligence, age and sex 
are depicted. All markers are ranked based on their contribution to the respective regression. 
To the left of each subfigure, the R2 in relation to adult ADHD, estimated intelligence, age and 
sex are depicted. To the right of each Figure, R2 in relation to adult ADHD for the top 10% of 
the markers associated with adult ADHD, estimated intelligence, age and sex are depicted. Note 
that the top markers for estimated intelligence and age are in this order predictive for adult 
ADHD. While the top markers for sex are not. These findings suggest shared brain substrates 
for estimated intelligence and adult ADHD as well as age and adult ADHD. Note: FA = Fractional 
Anisotropy, MD = Mean Diffusivity, MO = Tensor Mode, TH = Cortical Thickness, AR = Pial 
Surface Area, GM = Gray Matter Volume

Discussion

In the present study, we have taken an integrative perspective on adult ADHD, 

combining different neuroimaging modalities into imaging markers, using a data-driven 

multivariate analysis method. Adult ADHD was explained to 27.86% by all markers, 

which was comparable to estimated intelligence. This translated to a cross validated 

accuracy of 60.00%. Both adult ADHD and estimated intelligence were associated 

with multiple markers, across different modalities, with relatively small contributions 

to the descriptive regression models. Among the top two markers with the strongest 

predictive value for adult ADHD, the unimodal one was predominantly affected by 

cortical thickness and widespread, whereas the other was bilateral and multimodal 

with focal effects localized predominantly in temporal brain regions. In general, adult 
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ADHD was associated with heterogeneous effects across markers. The markers with 

the strongest association with estimated intelligence and age showed a link to adult 

ADHD. The markers prominently linked to sex did not show a link to this disorder.

Individual imaging markers showed a weaker association with adult ADHD, but their 

combination was predictive. This result may speak to the heterogeneity of ADHD and 

supports the model that divergent brain mechanisms – evident to varying degrees in 

different neuroimaging modalities – converge toward the same clinical phenotype in 

different individuals with adult ADHD. Alternatively, present results may be interpreted 

in such a way that multiple imaging markers may in combination be less prone to noise, 

or capture different aspects of biology which link better to biological reality. Similarly, 

in the way that distance from downtown and square footage interactively predicts 

property values in city centers, different independent imaging markers in combination 

may better explain complex phenotypes, such as adult ADHD. Our current results are 

in line with this hypothesis and therefore support integration as a means to extend our 

understanding of adult ADHD.

The imaging markers that contributed most to the regression model on adult ADHD 

suggest that cortical thickness across the whole cortex as well as multimodal effects in 

anterior temporal brain regions are most predictive for adult ADHD. Having mentioned 

that, adult ADHD is associated with all imaging modalities 17,25,150,265 both within 

and across markers (FIGURE 1). One of the two markers prominently linked to adult 

ADHD, Imaging Marker 19, was multimodal. The marker showed a focal pattern 

with affects primarily in bilateral areas of temporal pole, parahippocampal gyrus, 

occipitotemporal gyrus, inferior temporal gyrus, and hippocampal complex. Differences 

in ADHD cohorts have been reported in the temporal pole before 229,231,266,267. 

However, findings have been variable, and other brain regions were reported more 

frequently in the literature 222,229,233,234,265,268. In a recent large meta-analysis 

of functional MRI studies in adult ADHD, the left temporal pole was among the regions 

showing greater activation in controls than in participants with adult ADHD 269. The 

current results suggest a complex pattern with focal effects on gray matter volume, 

surface, and thickness as well as white matter integrity in anterior temporal brain 

regions. 

The top 10% of the markers that showed the strongest association with estimated 

intelligence as well as age were also predictive for adult ADHD. Children and adults 

with ADHD have on average a lower intelligence and the disorder is linked to 

development185,222,228,270,271. However, shared brain mechanisms of those phenotypes 

remain to be found.  While studies have shown a genetic overlap between ADHD and 

low intelligence272, the corresponding brain substrates have not been reported. In the 
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present study, we showed that the top markers linking to estimated intelligence were 

also predictive for adult ADHD. In particular, they were predominately found in the 

anterior temporal brain regions. Additionally, we showed that the top markers linked 

to age were also predictive of adult ADHD, highlighting the developmental character 

of  ADHD193,228,230,248 in adulthood as well. Furthermore, in addition to studies using only 

structural modalities237,239 our results suggest that aging manifested itself best in gray 

matter volume rather than in, for example, diffusion measures. Therefore, gray matter 

volume may be a better readout to identify developmental effects in adult participants 

with ADHD rather than other modalities. Surprisingly, the top imaging markers 

associated with sex were not predictive for adult ADHD, indicating that a higher 

prevalence of males in adult ADHD cases, which cannot be explained by the difference 

in brain morphology. Altogether, the present results point to a common substrate for 

intelligence and adult ADHD in multimodal imaging markers, and for aging and adult 

ADHD in gray matter volume. 

While the present study is the first study to use multimodal linked ICA in adult 

participants with ADHD, some studies in children and adolescents with the disorder 

have already been conducted. One of these studies reported differences in multimodal 

imaging markers, primarily in frontal regions across participants with ADHD25. This 

study included structural and diffusion imaging modalities. Another study, which 

included resting state as well as structural modalities273, reported that reduced 

segregation of default mode and task positive network activity co-occurred with 

structural abnormalities in dorsolateral and anterior cingulate cortex. This finding is 

in line with unimodal work on childhood and adolescent ADHD222. As we have included 

different modalities into our study, the present results are not directly comparable 

with those mentioned above. However, we did not find a strong frontal component in 

adult participants with ADHD. This may suggest that adults with ADHD, in comparison 

with healthy controls, have developed sufficient frontal control, which may result 

in a reduction of hyperactive/impulsive symptoms in adulthood. Furthermore, a 

multimodal investigation of this mechanism over development would be an interesting 

topic for future research.

Although the results presented in this article are robust, as exemplified in various 

sensitivity analyses, some limitations require attention. First, the analytical approach 

requires the model order or the number of imaging markers to be chosen before linked 

ICA decomposition. Our choice of 50 imaging markers was based on recommendations 

and work that was previously conducted23,25,237. Forty or 45 markers would have been 

justifiable as well. To exclude the possibility that this choice might have had an effect 

on the results, we repeated the analyses using these specifications. We could show 

that the results remained robust (SUPPLEMENTARY TABLE 4). Second, while complex 
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analytical approaches, such as the one applied here, allow for insights into otherwise 

hidden mechanisms, they also increase the complexity of interpretations237,274. In our 

opinion, however, such analytical integration is essential for a better understanding 

of complex brain disorders and behavioral traits. Third, while we strictly quality-

controlled our input imaging data and phenotypic data, only 37 imaging markers 

survived quality control. Repeating our analysis with all 50 imaging markers, however, 

had no significant effect on our results (SUPPLEMENTARY TABLE 4 and 5). Fourth, leave-

one-participant-out cross-validation yielded relatively low accuracies. However, these 

were well in keeping with previous studies concerning ADHD17,236. Importantly, our 

main purpose for this study was to show that information predictive of adult ADHD 

can be found across modalities, and that a description of this disorder in terms of its 

biological heterogeneity225 requires the integration of information across biological 

read-outs.

In conclusion, our findings strongly argue that small effects across modalities and 

imaging markers require integration to refine the characterization of adult ADHD, as no 

dominant modality or marker exists. 
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Supplementary materials

Prior to statistical association, we excluded imaging markers that were associated 

with confounds and these are listed below. In subsequent sensitivity analyses, we 

included those markers in the analyses and showed that they remained robust in 

SUPPLEMENTARY TABLE 4. 

SUPPLEMENTARY TABLE 1  Excluded imaging markers

M= imaging marker

Excluded imaging 
marker

Reason for exclusion Evidence for exclusion

M2 Affected by differences in diffusion acquisition protocols p = <.001; η2 =.938

M7 Affected by differences in diffusion acquisition protocols p = .042; l η2 =.023

M9 Variance explained by a single participant Variance explained > 10%

M10 Variance explained by a single participant Variance explained > 10%

M11 Variance explained by a single participant Variance explained > 10%

M12 Variance explained by a single participant Variance explained > 10%

M13 Variance explained by a single participant Variance explained > 10%

M16 Variance explained by a single participant Variance explained > 10%

M24 Variance explained by a single participant Variance explained > 10%

M28 Affected by differences in diffusion acquisition protocols p = .033; η2 =.025

M39 Variance explained by a single participant Variance explained > 10%

M41 Variance explained by a single participant Variance explained > 10%

M42 Variance explained by a single participant Variance explained > 10%
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Details of the full logistic regression model as reported in the Results section and 

Figures 1/2. 

SUPPLEMENTARY TABLE 2  Logistic regression on adult ADHD

ADHD= Attention-deficit/hyperactivity disorder; df. = Degrees of freedom; p = uncorrected p-value; 
Perm. p = p-value using permutation testing; LOO-CV = Leave one participant out cross-validation 
method
*  Nominal significant (p<.05)
**  Overall regression model that remains significant after multiple comparisons using the 

Bonferroni-Holm method p< (.05/4) or an individual regressor that remains significant after 
multiple comparison correction p < (.05/37). The thresholds are determined based on the 
number of independent regressions (adult ADHD, estimated intelligence, age and sex) or the 
number of predictors in each individual model (37 Imaging Markers).

N=180 df. residuals df. model Pseudo R2 Accuracy p
Descriptive logistic regression 143 36 27.86% 75.50% .004**

Cross validation - Perm. p

Predictive logistic regression LOO-CV - 60.00% <.001**
Individual markers Regression coefficient z-stats p
M6 .762 3.242 .001**
M19 .698 3.236 .001**
M32 .506 2.258 .024*
M1 -.542 -2.196 .028*
M38 -.454 -2.171 .030*
M47 -.497 -1.968 .049*
M17 .370 1.907 .056
M15 .361 1.742 .081
M31 -.331 -1.676 .094
M4 -.331 -1.612 .107
M18 -.315 -1.539 .124
M45 -.313 -1.473 .141
M20 .284 1.435 .151
M22 .261 1.309 .191
M36 -.227 -1.144 .252
M3 -.235 -1.123 .261
M27 -.197 -1.023 .306
M43 .178 .918 .359
M40 .170 .818 .413
M8 .194 .785 .433
M23 -.151 -.755 .451
M26 -.149 -.744 .457
M35 -.149 -.713 .476
M44 .136 .705 .481
M21 -.122 -.624 .533
M34 -.109 -.543 .587
M37 -.092 -.437 .662
M30 -.084 -.422 .673
M50 -.084 -.414 .679
M14 -.068 -.356 .722
M33 -.059 -.304 .761
M5 -.065 -.298 .765
M49 -.050 -.240 .810
M29 .048 .233 .816
M48 -.032 -.175 .861
M25 -.032 -.170 .865
M46 -.022 -.113 .910
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Sensitivity analysis with estimated intelligence, age and sex as part of the main logistic 

regression on adult ADHD. Detailed overview of the model

SUPPLEMENTARY TABLE 3  Logistic regression on adult ADHD with estimated intelligence, age and sex

ADHD= Attention-deficit/hyperactivity disorder; df. = Degrees of freedom; p = uncorrected p-value; Perm. 
p = p-value using permutation testing; LOO-CV = Leave one participant out cross-validation method
*  Nominal significant (p<.05)
**  Overall regression model that is significant after multiple comparisons using the Bonferroni-Holm 

method p< (.05/4) or an individual regressor that remains significant after correction p < (.05/40). The 
thresholds are determined based on the number of independent regressions (adult ADHD, estimated 
intelligence, are and sex) or the number of predictors in each individual model (37 Imaging Markers, 
estimated intelligence, age and sex).

N=180 df. residuals df. model Pseudo R2 Accuracy p
Descriptive logistic regression 140 39 29.73% 77.20% <.001**

cross validation - Accuracy Perm. p
Predictive logistic regression LOO-CV - 60.50% .002**
Individual regressors Regression coefficient z-stats p
M6 .742 3.081 .002*
M19 .677 2.996 .003*
M1 -.882 -2.923 .003*
M38 -.522 -2.401 .016*
M32 .499 2.193 .028*
M4 -.459 -2.042 .041*
age -.837 -1.991 .047*
M47 -.449 -1.729 .083
M31 -.349 -1.727 .084
M15 .347 1.647 .099
M45 -.357 -1.626 .104
M3 -.407 -1.471 .141
M22 .295 1.383 .167
M36 -.272 -1.328 .184
M17 .260 1.280 .200
M35 -.317 -1.279 .201
M20 .218 1.063 .288
M40 .219 1.008 .314
M26 -.208 -1.002 .316
sex .320 .970 .332
M18 -.210 -.963 .336
M49 -.212 -.926 .355
M37 -.196 -.879 .380
M43 .181 .866 .386
M27 -.156 -.789 .430
M23 -.161 -.785 .432
M48 -.130 -.663 .507
M21 -.116 -.579 .563
M14 -.097 -.495 .621
M50 -.108 -.493 .622
M44 .068 .343 .732
M25 -.062 -.313 .754
M33 -.057 -.290 .772
M29 .053 .240 .810
estimated intelligence .031 .136 .892
M46 -.025 -.122 .903
M8 -.022 -.082 .935
M5 -.017 -.078 .937
M34 -.017 -.070 .944
M30 -.013 -.062 .951
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Repetition of the logistic regression model on adult ADHD now with all 50 imaging 

markers included into the model. Below a detailed overview of the model can be found. 

SUPPLEMENTARY TABLE 4  Logistic regression on adult ADHD with 50 imaging markers

N=180 df. residuals df. model Pseudo R2 Accuracy p
Descriptive logistic regression 130 49 34.56% 77.06% <.001**

Cross validation - Perm. p
Predictive logistic regression LOO-CV - 58.23% <.011**
Individual regressors Regression coefficient z-stats p
M19 .752 3.223 .001**
M6 .602 2.253 .024*
M32 .530 2.162 .031*
M47 -.597 -2.040 .041*
M2 .489 2.037 .042*
M38 -.439 -1.884 .060
M4 -.426 -1.837 .066
M17 .454 1.770 .077
M1 -.489 -1.700 .089
M7 .463 1.620 .105
M31 -.366 -1.612 .107
M15 .387 1.576 .116
M13 .735 1.351 .177
M20 .299 1.312 .190
M18 -.274 -1.234 .217
M11 -.629 -1.213 .225

M36 -.279 -1.194 .232
M10 .596 1.133 .257
M3 -.263 -1.095 .274
M45 -.258 -1.086 .277
M42 -.238 -1.055 .291
M27 -.211 -.984 .325
M40 .219 .971 .332
M22 .208 .948 .343
M43 .206 .932 .351
M41 .182 .884 .376
M35 -.210 -.872 .383
M49 -.192 -.842 .400
M30 -.186 -.834 .404
M29 .151 .630 .528
M37 -.149 -.626 .531
M16 -.233 -.625 .532
M23 -.130 -.579 .562
M26 -.133 -.560 .576
M12 -.206 -.520 .603
M25 -.102 -.491 .623
M8 .135 .489 .625
M9 -.078 -.439 .661
M34 -.081 -.367 .714
M28 -.071 -.304 .761
M44 .059 .273 .785
M14 -.049 -.227 .821
M50 -.044 -.185 .854
M48 -.034 -.172 .864
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ADHD= Attention-deficit/hyperactivity disorder; df. = Degrees of freedom; p = uncorrected p-value; 

Perm. p = p-value using permutation testing; LOO-CV = Leave one participant out cross-validation 

method

*  Nominal significant (p<.05)

**  Overall regression model that is significant after multiple comparisons using the Bonferroni-

Holm method p< (.05/4) or an individual regressor that remains significant after correction p < 

(.05/50). The thresholds are determined based on the number of independent regressions (adult 

ADHD, estimated intelligence, age and sex) or the number of predictors in each individual model 

(50 Imaging Markers).

Comparison of logistic regressions on adult ADHD with 40, 45, 50 prespecified ICA 

decompositions. Correlation of the top imaging markers across these models. Detailed 

overview of the model

SUPPLEMENTARY TABLE 5  Logistic regression on adult ADHD with 40, 45 and 50 imaging 
marker ICAs

ADHD= Attention-deficit/hyperactivity disorder; df. = Degrees of freedom; p = uncorrected p-value; 
Perm. p = p-value using permutation testing; LOO-CV = Leave one participant out cross-validation 
method
**  Significant after multiple comparisons (p<.05/3) for three different logistic regressions on adult 

ADHD with ICA model 50, 45 and 40
# Multiple comparison corrected significant correlations
a Position of marker in model on adult ADHD

M33 -.027 -.127 .900
M39 .023 .104 .917
M5 .021 .082 .934
M21 .008 .039 .969
M46 -.007 -.033 .974
M24 .002 .013 .990

Logistic regression 
50 imaging markers 

df. residuals df. model Pseudo R2 Accuracy p

Descriptive logistic regression 130 49 34.56% 77.06% <.001**

Cross validation - - Perm. p

Predictive logistic regression LOO-CV - 58.23% <.011**

Logistic regression 
45 imaging markers

df. residuals df. model Pseudo R2 Accuracy p

Descriptive logistic regression 135 44 35.40% 77.01% <.001**

Cross validation - - Perm. p

Predictive logistic regression LOO-CV - 62.68% <.001**

Logistic regression 
40 imaging markers

df. residuals df. model Pseudo R2 Accuracy p

Descriptive logistic regression 140 39 32.42% 78.75% <.001**

Cross validation - - Perm. p

Predictive logistic regression LOO-CV - 60.92% <.002**

Top imaging markers for adult 
ADHD with
ICA model 50

Top imaging markers 
for adult ADHD with

ICA model 45

Top imaging markers for 
adult ADHD with

ICA model 40

Correlations

M19(1a) M26(1a) - r = .955#

M19(1a) - M23(1a) r = .970#

M6(2a) M9(2a) - r = .725#

M6(2a) - M7(3a) r = .975#
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To investigate whether or not the main results on adult ADHD are linked to the selection 

of participants, we split our sample into two parts by taking odd and even participants 

for both groups separately. We repeated the analyses in each of these splits for the 

most predictive imaging markers in the main analysis and compared the outcomes.

SUPPLEMENTARY TABLE 6  Logistic regression on adult ADHD in full and split half samples, 
using nominal significant imaging markers from the main analysis

ADHD= Attention-deficit/hyperactivity disorder; df. = Degrees of freedom; p = uncorrected p-value;

 

Detailed overview of the linear regression on estimated intelligence including 

all imaging markers as in the logistic regression on adult ADHD presented in 

SUPPLEMENTARY TABLE 2. The results are depicted in FIGURE 2.

SUPPLEMENTARY TABLE 7  Linear regression on estimated intelligence

Full sample df. residuals df. model Pseudo R2 p

Descriptive logistic regression N=180 174 5 15.14% <.001

Split odd sample df. residuals df. model Pseudo R2 p

Descriptive logistic regression
N=89

83 5 10.08% .029

Split even sample df. residuals df. model Pseudo R2 p

Descriptive logistic regression
N=91

85 5 21.67% <.001

N=180 df. residuals df. model Pseudo R2 p

Descriptive logistic regression 143 37 32.21% .007**

Individual regressors Regression coef-
ficient

t-stats p

M35 .309 4.101 <.001

M4 .225 2.904 .004

M19 .193 2.713 .007

M50 -.195 -2.654 .008

M22 .120 1.660 .099

M48 -.102 -1.447 .150

M26 .098 1.309 .193

M25 .092 1.286 .201

M21 .091 1.271 .206

M33 .086 1.207 .229

M8 .099 1.090 .277

M27 .075 1.059 .291

M36 .065 .915 .362

M46 -.061 -.855 .394

M29 -.060 -0.830 .408

M45 .061 .806 .422

M30 -.059 -.788 .432

M43 -.055 -.777 .439
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df. = Degrees of freedom; p = uncorrected p-value; 

*  Nominal significant (p<.05)

**  Overall regression model that is significant after multiple comparisons using the Bonferroni-

Holm method p< (.05/4) or an individual regressor that remains significant after correction p < 

(.05/37). The thresholds are determined based on the number of independent regressions (adult 

ADHD, estimated intelligence, age and sex) or the number of predictors in each individual model 

(37 Imaging Markers), respectively

 

Detailed overview of the linear regression on age including all imaging markers as 

in the logistic regression on adult ADHD presented in SUPPLEMENTARY TABLE 2. The 

results are depicted in FIGURE 2. 

SUPPLEMENTARY TABLE 8  Linear regression on age

N=180 df. residuals df. model Pseudo R2 p

Descriptive logistic regression 143 37 78.82% <.001**

Individual regressors Regression coefficient t-stats p

M1 -.377 -7.547 <.001

M3 -.318 -7.359 <.001

M8 -.228 -4.427 <.001

M49 -.155 -3.598 <.001

M4 -.123 -2.807 .006

M48 -.099 -2.491 .014

M35 -.102 -2.389 .018

M17 -.093 -2.311 .022

M37 -.092 -2.246 .026

M5 .059 .773 .441

M3 .057 .751 .454

M20 .053 .750 .455

M15 .056 .731 .466

M47 -.061 -.710 .479

M1 -.057 -.647 .519

M40 .045 .601 .549

M18 .039 .541 .589

M17 .038 .530 .597

M34 .032 .446 .656

M31 -.032 -.445 .657

M49 -.032 -.416 .678

M44 .017 .235 .815

M6 -.015 -.184 .854

M37 -.011 -.148 .883

M32 -.006 -.080 .936

M38 -.005 -.072 .943

M14 .002 .027 .978

M23 -.001 -.016 .987
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M30 .086 2.034 .044

M43 .079 1.963 .052

M6 -.080 -1.751 .082

M40 .073 1.735 .085

M5 .073 1.695 .092

M38 -.068 -1.685 .094

M47 .082 1.677 .096

M34 -.067 -1.665 .098

M26 -.070 -1.665 .098

M20 -.062 -1.529 .129

M19 -.051 -1.273 .205

M18 .050 1.220 .225

M36 -.044 -1.108 .270

M50 -.042 -.998 .320

M22 -.036 -.882 .379

M29 -.034 -.836 .405

M44 -.028 -.687 .493

M27 .025 .632 .528

M15 -.025 -.586 .559

M21 .023 .563 .574

M33 .022 .536 .593

M32 -.020 -.475 .636

M46 .015 .364 .717

M45 -.008 -0.194 .846

M23 .006 .159 .874

M14 -.005 -.114 .909

M31 -.004 -.100 .921

M25 <.001 .016 .987

df. = Degrees of freedom; p = uncorrected p-value; 

*  Nominal significant (p<.05)

**  Overall regression model that is significant after multiple comparisons using the Bonferroni-

Holm method p< (.05/4) or an individual regressor that remains significant after correction p < 

(.05/37). The thresholds are determined based on the number of independent regressions (adult 

ADHD, estimated intelligence, age and sex) or the number of predictors in each individual model 

(37 Imaging Markers). 
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Detailed overview of the logistic regression on sex including all imaging markers as 

in the logistic regression on adult ADHD presented in SUPPLEMENTARY TABLE 2. The 

results are depicted in FIGURE 2. 

SUPPLEMENTARY TABLE 9  Logistic regression on sex

ADHD= Attention-deficit/hyperactivity disorder; df. = Degrees of freedom; p = uncorrected p-value; Perm. p 
= p-value using permutation testing; LOO-CV = Leave one participant out cross-validation method
*  Nominal significant (p<.05)
**  Overall regression model that is significant after multiple comparisons using the Bonferroni-Holm method 

p< (.05/4) or an individual regressor that remains significant after correction p < (.05/40). The thresholds 
are determined based on the number of independent regressions (adult ADHD, estimated intelligence, 
are and sex) or the number of predictors in each individual model (37 Imaging Markers, estimated 

intelligence, age and sex).

N=180 df. residuals df. model Pseudo R2 Accuracy p
Descriptive logistic regression 143 26 57.51% 90.2% <.001**

cross validation - Accuracy Perm. p
Predictive logistic regression LOO-CV - 80.50% .001**
Individual regressors Regression coefficient z-stats odds p
M34 -2.120 -4.797 .120 <.001
M3 -2.668 -4.487 .069 <.001

M35 1.784 3.578 5.954 <.001
M43 1.087 3.347 2.964 <.001
M29 -1.339 -3.249 .262 .001
M22 -1.120 -3.063 .301 .002
M18 -1.174 -3.036 .309 .002
M6 -1.248 -2.726 .287 .006
M50 -.901 -2.399 .406 .016
M14 .807 2.369 2.242 .018
M45 .674 2.240 1.962 .025
M17 .605 1.991 1.832 .046
M8 .863 1.893 2.371 .058
M4 .620 1.863 1.860 .063
M27 -.575 -1.777 .563 .076
M37 .489 1.545 1.630 .122
M30 -.499 -1.369 .607 .171
M47 -.573 -1.294 .564 .195
M25 .401 1.288 1.493 .198
M46 .437 1.229 1.549 .219
M21 .412 1.211 1.510 .226
M20 .347 1.199 1.415 .230
M23 .400 1.198 1.491 .231
M33 .404 1.197 1.497 .231
M49 .468 1.176 1.596 .240
M31 .393 1.108 1.482 .268
M48 .400 .976 1.491 .329
M5 -.290 -.973 .748 .330
M26 -.267 -.749 .766 .454
M36 -.223 -.639 .800 .523
M32 -.164 -.479 .848 .632
M38 .1336 .459 1.143 .646
M19 -.149 -.425 .862 .671
M1 -.169 -.403 .845 .687
M15 .122 .370 1.130 .711
M44 .078 .253 1.081 .801
M40 .058 .179 1.060 .858
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SUPPLEMENTARY FIGURE 1  Imaging markers are ranked based on their explained variance 
across modalities, meaning that a marker with a low index explains more of the variance 
present among the structural and diffusion modalities. Markers flanked by a red x are excluded 
from all statistical analyses for reasons described in SUPPLEMENTARY TABLE 1.  Note: FA = 
Fractional Anisotropy, MD = Mean Diffusivity, MO = Tensor Mode, TH = Cortical Thickness, AR = 
Pial Surface Area, GM = Gray Matter Volume

LEGEND

FA

MD

MO

TH

AR

GM



CHAPTER 4

102

SUPPLEMENTARY FIGURE 2  Depicted above are all of the correlations  pertaining to the top 
imaging markers (Markers 6 and 19) contributing to the prediction of adult ADHD, with self-
reported symptom scores of inattention and hyperactivity. In the first row, across the two 
groups in the second only for participants with ADHD and in the third only for healthy controls.
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CHAPTER 5

Mapping the heterogeneous phenotype 
of schizophrenia and bipolar disorder 
using normative models
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C.F., Westlye, L.T., Marquand, A.F. (2018). Mapping the heterogeneous phenotype of 

schizophrenia and bipolar disorder using normative models. JAMA psychiatry, 11, 

1146-1155.



Abstract

Schizophrenia and bipolar disorder are severe and complex brain disorders. Both 

are characterized by substantial clinical and biological heterogeneity. However, case-

control studies often ignore such heterogeneity through their focus on the ‘average 

patient’. This may be the core reason for a lack of robust mechanistic models and 

biomarkers predictive of an individual’s treatment response and outcome.We inspected 

the degree to which case-control analyses disguise inter-individual differences in 

brain structure in patients with schizophrenia and bipolar disorder, and we mapped 

the brain alterations linked to these disorders at the level of individual patients. 

We used cross-sectional T1-weighted magnetic resonance imaging (MRI) data from 

patients and healthy individuals and computed voxel-based morphometry maps. We 

subsequently mapped the range of inter-individual differences in brain structure using 

normative modeling. Patients were recruited from in- and out-patient clinics in the 

Oslo area, Norway. Healthy individuals from the same catchment area were drawn 

from the national population registry. We included 218 patients with schizophrenia 

spectrum disorders (age 30±9.3 years, 57.8% males) of which 163 with schizophrenia 

(age 31±8.7 years, 64.4% males), 190 with bipolar disorder (age 34±11.3 years, 41.8% 

males), and 256 healthy individuals (age 34±9.5 years, 54.7% males). At the level of the 

individual, deviations from the normative model were frequent in both disorders, but 

highly heterogeneous. Overlap of more than 2% between patients was only observed 

in few loci, primarily in frontal, temporal, and cerebellar regions. The proportion of 

alterations was associated with diagnosis and cognitive and clinical characteristics 

within clinical groups. Patients with schizophrenia, on average, showed significantly 

reduced gray matter in frontal regions, cerebellum, and temporal cortex. In bipolar 

disorder, average deviations were primarily present in cerebellar regions. Group-level 

differences disguised a large biological heterogeneity and extreme inter-individual 

differences between patients with the same diagnosis. This strongly suggests that the 

‘average patient’ is a non-informative construct in psychiatry, that falls apart when 

mapping abnormalities at the level of the individual patient. Here, we present a 

workable route towards precision medicine in psychiatry.
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Biological markers that objectively indicate someone’s medical status have been 

identified for many diseases; for example in oncology, this has revolutionized the 

treatment and diagnosis for different types of cancer275. In psychiatry, such prospects 

inspired a quest for the identification of biomarkers for health and disorder9,19,276 as 

well using, for example, candidate gene approaches277. However, the complex etiology 

and biology of psychiatric disorders and a fundamental reliance on symptom-based 

diagnoses has hindered progress. Up until now, psychiatry has remained the last 

area of medicine, where diseases are solely diagnosed on the basis of symptoms 

and biomarkers for treatment. To bring precision medicine to psychiatry, large scale 

international initiatives work towards creating a stratification of mental disorders into 

biologically more homogeneous subtypes, based on the integration of many levels of 

information across multiple dimensions of functioning19,278.

The most significant obstacle toward finding accurate and reliable biomarkers in 

mental disorders is the extreme heterogeneity of such disorders279 based on the 

current psychiatric nosology. Heterogeneity in clinical cohorts can be observed at least 

on three levels. First, heterogeneity as a consequence of different symptom profiles 

that are classified as belonging to the same disorder (clinical heterogeneity). Second, 

heterogeneity induced by diverse biological predispositions converging on the same 

symptoms (biological heterogeneity) and, third, different kinds of environmental 

events that cause the same symptoms or prevent them (environmental heterogeneity). 

Case-control designs – which assume that both patient and control groups are (distinct) 

entities – are overwhelmingly dominant in psychiatry, but they are limited to detecting 

group differences that essentially describe an ‘average patient’. They neglect inter-

individual differences, which are crucial ingredients when it comes to mapping the 

heterogeneous disease phenotype at the level of the individual13. Schizophrenia 

and bipolar disorder are excellent examples for highly heterogeneous mental 

disorders280,281. They have been linked to multiple brain systems and neural processes, 

which become perturbed throughout development through complex interactions 

between the individual’s genetic architecture and environmental stressors280,282. Both 

disorders have been linked to transdiagnostic impairments in the dopamine system283. 

However, since these conclusions are based on group-level comparisons, they provide 

limited information about disease mechanisms in individual patients. 

Here, we aimed to quantify the brain structural heterogeneity in adults with 

schizophrenia and bipolar disorder, by mapping regional brain alterations. In this, 

we hypothesized that group-level differences only represent the ‘tip of the iceberg’ 

of neurobiological abnormalities that characterize these disorders, and that the bulk 

of the ‘iceberg’ comprises highly individual deviations from the norm. To test this 
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hypothesis, we employed a normative modeling approach that maps inter-individual 

differences in reference to the healthy range. A normative model can be understood 

as a statistical model that maps demographic or behavioral variables to a quantitative 

brain readout32. Similar to growth charts used in somatic medicine, in which a child’s 

height is compared to the normative distribution for height at a particular age, a 

normative model can be used to characterize individuals in reference to a normative 

brain structure at a particular age30,32. Using this approach, we provide a route towards 

precision medicine in psychiatry in that we: i) provide quantitative estimates of the 

heterogeneity in schizophrenia and bipolar disorder by investigating the degree of 

spatial overlap in deviations from the normative model; ii) chart the heterogeneity in 

alterations of brain structure across these disorders and at the level of the individual 

patient. 

Methods

Participants

Patients were recruited from in and out-patient clinics in the Oslo area. Patients (from 

the age of 18 to 65 years), understood and spoke a Scandinavian language, had no 

history of severe head trauma, and had an IQ score of above 70. Patients were assessed 

by trained physicians or clinical psychologists284. Psychiatric diagnosis was established 

using the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID) 285. Healthy 

individuals were randomly sampled from national registries and neither they, nor 

their relatives, had a psychiatric or alcohol/substance use disorder nor had they used 

cannabis during the last 3 months. All participants completed a neuropsychological 

test battery, including Verbal learning and memory, processing speed, working memory 

and executive functioning. For more details and a description of MRI acquisition and 

processing see eMethods.

Normative modeling

We estimated a normative brain aging model (FIGURE 1A, 1C, AND 1D) by using Gaussian 

process regression to predict regional gray and white matter volumes across the 

brain from age and sex. We estimated the normative range for this model in healthy 

individuals using 10-fold cross-validation, then applied the model trained on all data to 

patients. Normative models are estimated using Gaussian process regression31, yielding 

coherent measures of predictive confidence in addition to point estimates. This is 

important, as we use this uncertainty measure to quantify the deviation of each patient 

from the group mean at each specific brain locus. Thus, we are able to statistically 
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quantify deviations from the normative model with regional specificity, by computing 

a Z-score for each voxel reflecting the difference between the predicted volume and 

the true volume normalized by the uncertainty of the prediction32. 

We estimated mean deviations from the normative model in healthy individuals, 

patients with bipolar disorder and schizophrenia, by using PALM on the created 

normative deviation maps (Permutation Analysis of Linear Models)286, which allows 

for permutation-based inference using t-tests. PALM creates a map of z-values for 

each of these groups. We thresholded these maps by using Z = +/- 2.6 (i.e. p<.005), to 

make them comparable with individual maps of deviation. Furthermore, we reported 

multiple comparison corrected threshold free cluster enhanced and modality corrected 

differences between the groups. The individual maps of deviation were thresholded at 

|Z| > 2.6 (i.e. p<.005) and extreme positive and extreme negative deviations from the 

normative model were defined based on this threshold. Note that the use of this fixed 

statistical threshold across participants allows for a more reliable comparison between 

participants in terms of numbers of deviation from the normative model, even when 

the overall distribution of deviations of given participant had shifted. However, we 

also repeated the analyses controlling the false discovery rate (FDR) at the individual 

participant level using the Benjamini and Hochberg procedure287. This did not change 

our conclusions and it has been reported in the eMaterials. All extreme deviations were 

combined into scores representing the percentage of extreme positive and extreme 

negative deviations for each participant. We tested for associations between diagnosis 

and those scores using a Chi-square test. We corrected for multiple comparisons using 

the Bonferroni-Holm method213. To assess the extent of those extreme deviations 

spatially, we created individualized maps and calculated the voxel-wise overlap 

between individuals from the same groups. In a final analysis, we tested for associations 

between the percentage of extremely deviating voxels and age, disease duration and 

cognitive performance. We corrected for the number of correlations (n=12) within 

each disorder and modality using the Bonferroni-Holm method213. All analyses were 

performed in python3.6 (www.python.org).

Results

A total of 218 participants with schizophrenia spectrum disorders were included 

(TABLE 1; age = 30 ± 9.3 years, 57.8% males), out of which 163 had schizophrenia (age 

= 31 ± 8.7 years, 64.4% males); additionally, 190 patients with bipolar disorder (age = 

34 ± 11.3 years, 41.8 males), and 256 healthy individuals (age = 34 ± 9.5 years, 54.7% 

males) were included. 
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TABLE 1  Demographics and clinical characteristics of participants

 

HC BPD SCZ SCZ-spectruma

Demographics

Total (N) 256 190 163 218

Males (%) 54.7% 41.8% 64.4% 57.8%

Age
(mean +- std)

34
+- 9.5

34
+- 11.3

31
+- 8.7

30
+- 9.3

Education
(years +- std)

14
+- 2.3

13.57
+- 2.3

12.88
+- 2.6

12.82
+- 2.6

Symptoms

Duration of illness
(mean +- std)

na 285.5
+- 352.2

232.2
+- 330.6

241.1
+- 320.8

PANSS negative
(mean +- std)

na 10.1
+- 3.5

15.9
+- 6.4

14.7
+- 5.3

PANSS positive
(mean +- std)

na 10.0
+- 3.5

15.1
+- 5.5

15.4
+- 6.5

PANSS total 
(mean +- std)

na 45.5
+-  10.1

63.1
+- 16.9

61.9
+- 17.2

Medication

Anti-psychotic (%) na 39.0% 79.3% 80.0%

Lithium (%) na 18.0% 1.5% 1.0%

Anti-epileptic (%) na 43.0% 29.1% 29.0%

Anti-depressant (%) na 27.0% 53.0% 57.0%

Note: HC = Healthy Control; BPD = Bipolar Disorder; SCZ = Schizophrenia; SCZ-spectrum = 

Schizophrenia Spectrum; std = standard deviation; na = not applicable 
a  Schizophrenia spectrum includes patients with Schizophrenia (N = 163), Schizoaffective disorder 

(N = 33), and  Schizophreniform (N = 22) 

Normative model 

FIGURE 1 shows a visual summary of the analysis procedure; in FIGURE 1B we depicted 

a spatial representation of the voxel-wise normative model. The normative model 

was characterized by a global gray matter decrease from age 20 to age 70 years, 

particularly in the frontal and cerebellar regions, with the largest decrease primarily 

in frontal areas. This was true for both females and males. In contrast, the normative 

model of white matter was characterized by decreases and increases across the adult 

lifetime. This was also true for both females and males.  
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FIGURE 1  Overview of the normative model. In 1A, the procedure of estimating the normative 
model in healthy individuals is depicted, with age and gender included as covariates and 
performing 10-fold cross-validation. In 1B, the characterization of the normative model 
is shown. We see that the normative model changes with age and that from age 20 to 70 
years, gray matter is predominantly decreasing. This is true for both females and males and 
predominantly present in the frontal brain regions. In 1C, we depict the application of the 
normative model to the different patient groups, including patients with schizophrenia and 
patients with bipolar disorder. In 1D, we present the steps that are used to characterize the 
deviations from the normative model, starting with a comparison of the extreme deviation 
from the normative model between the groups towards a characterization of the spatial extent 
of these deviations on the individual patient level.

 

Significant mean deviations compared across patients and healthy individuals

FIGURE 2 shows significant mean differences between healthy individuals, patients 

with schizophrenia, and those with bipolar disorder in gray and white matter. These 

differences are corrected for modalities and multiple comparisons. In gray matter, 

patients with schizophrenia showed significantly stronger mean negative deviations 

than healthy individuals in frontal, temporal, and cerebellar regions; mean deviations 

were also more negative than in patients with bipolar disorder, and were localized 

primarily in fontal brain regions. In white matter we largely observed differences 

comparable to those described for gray matter. 

 

OVERVIEW OF THE NORMATIVE MODEL

A C

B D
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FIGURE 2  Characterization of mean deviations from the normative model. Depicted are the 
group-level deviations. These mean differences are corrected for modalities and multiple 
comparisons. Healthy individuals showed stronger mean negative deviations than individuals 
with schizophrenia in gray matter especially in frontal, temporal, and cerebellar regions; 
furthermore, individuals with bipolar disorder showed stronger mean negative deviations 
than healthy individuals in the cerebellum. Patients with bipolar disorder showed on average 
weaker mean negative deviations than patients with schizophrenia in frontal and temporal 
brain regions, but not in the cerebellum. In white matter, we largely observed differences 
comparable to those observed in gray matter. Healthy individuals had on average no regions 
with significant deviations in either gray or white matter.

Significant extreme deviations compared across patients and healthy 

individuals

In gray matter, patients with schizophrenia (0.9%) showed a significantly higher 

percentage of extreme negative deviations compared to healthy individuals (0.23%, p 

< .001, Wald Chi2(2) = 219.67, p < .001, pcorr < .001) and patients with bipolar disorder 

(0.24%, p < .001); see also FIGURE 2 for illustration. On the other hand, the percentage 

of extreme positive deviations across the groups showed that healthy individuals 

differed significantly from patients with schizophrenia and bipolar disorder (Wald 

Chi2(2) = 14.99, p = .001, pcorr = .004); this effect was driven by a larger percentage of 

CHARACTERIZATION OF MEAN DEVIATIONS FROM THE NORMATIVE MODEL
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extreme positive deviations in healthy individuals (1.08% across participants) than in 

bipolar disorder (0.79%, p= .001) and schizophrenia (0.78%, p = .001). 

In white matter, the analysis of the percentage of extreme negative deviations across groups 

showed that patients with schizophrenia differed significantly from healthy individuals 

and bipolar patients (Wald Chi2(2) = 64.14, p < .001, pcorr < .004), with a significantly larger 

proportion of extreme negative deviations in patients with schizophrenia (0.62%) than in 

healthy individuals (0.25%, p < .001) and in bipolar disorder (0.41%, p = .001). In addition, 

the difference between participants with bipolar disorder and healthy individuals was 

significant (p < .001). In the percentage of extreme positive deviations across groups 

healthy individuals differed significantly from patients with schizophrenia and bipolar 

disorder (Wald Chi2(2) = 13.48, p = .001, pcorr < .004); a significantly higher proportion of 

extreme positive deviations was seen in healthy individuals (1.14%) than in those with 

schizophrenia (0.83%, p = .003) and bipolar disorder (0.83%, p=.001). 

Spatial extent of extreme deviations across patients and healthy individuals

FIGURE 3 shows that, on average, healthy individuals did not deviate substantially from 

the normative model. While we observed a scattered pattern of positive deviations on 

the overlap maps, there was no negative deviation in the mean nor in the overlap maps. 

Patients with schizophrenia showed mean negative deviations from the normative 

model in frontal, superior parietal, and the cerebellum gray matter as well as positive 

deviations in the basal ganglia. The overlap maps in people with schizophrenia were 

dominated by extreme negative deviations in these regions. At least 2% of the patients 

deviated extremely in those regions. Also, in white matter, schizophrenia patients 

showed widespread extreme negative deviations from the normative model, with 

focal hotspots in frontal, temporal, and cerebellar regions. The pattern for all patients 

belonging to the schizophrenia spectrum (SUPPLEMENTARY FIGURE 1), thus including 

patients with schizoaffective and schizophreniform disorder in addition to schizophrenia, 

was virtually the same as for the restricted set with schizophrenia (FIGURE 3). 

In patients with bipolar disorder, we saw mean deviations particularly in cerebellar, 

temporal, and thalamic regions. The deviations were predominantly negative showing 

that, on average, these patients had lower gray matter volume in those regions than 

predicted to be normative by the model. The overlap maps corresponded only marginally 

with this pattern; only in the thalamic region did we also see more than 2% of the patients 

who showed extreme negative values (FIGURE 3). We observed positive deviations in the 

caudate, which was supported by the overlap maps. In white matter, on average, we 

observed negative deviations in particular in brainstem, temporal, and frontal regions. 
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Overlap maps using FDR (see SUPPLEMENTARY FIGURE 2) were sparser than those 

reported here, but they were consistent with our main results. Individual extreme 

deviations within the different patient groups were significantly linked to cognitive 

performance and disorder duration but not to age (see Supplementary Results).

 

FIGURE 3  Characterization of extreme deviations from the normative model. The overlap of 
the most extreme deviations is depicted, representing the percentage of individuals showing 
an extreme value (|Z| < 2.6) at a specific brain locus. Each subplot is organized as follows: the 
first plot shows a map of group-level mean deviations (|Z| < 2.6), the second plot shows the 
overlap maps for extreme negative deviations in percentage, and the third plot shows the same 
for the extreme positive deviations. From this figure, we could deduce that, on average, frontal 
regions, the cerebellum, and the temporal cortex showed negative deviations in schizophrenia. 
For bipolar disorder, deviations were less pronounced and primarily present in cerebellar 
regions. Healthy individuals did not deviate from the normative model. Furthermore, negative 
deviations showed a higher overlap amongst patients with schizophrenia than amongst those 
with bipolar disorder, but in both disorders, deviations overlapped little, with only a few brain 
loci showing extreme deviations in more than 2% of the patients. In order to make an easier 
comparison, the mean deviations have been thresholded in a similar way and they have also 
been depicted at the top of each subplot.

CHARACTERIZATION OF EXTREME DEVIATIONS FROM THE NORMATIVE MODEL
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Discussion

We mapped the biological heterogeneity of schizophrenia and bipolar disorder in 

reference to normative brain aging across the adult lifespan. We showed that in 

schizophrenia, on average (i.e. in the ‘average patient’), frontal regions, the cerebellum, 

and the temporal cortex showed reduced cortical volume compared to a healthy 

lifespan trajectory. For the average bipolar patient, this pattern was less pronounced 

and primarily present in cerebellar regions. This is in line with earlier, well-powered 

group comparison studies reporting small to medium effects288–292. More importantly, 

we show that these average deviations mask extreme inter-individual differences. 

More concretely, only a few brain loci showed extreme deviations in more than 2% of 

the patients. 

The most striking aspect of the study was that patients with schizophrenia and bipolar 

disorder differ extremely on an individual level; the lack of substantial overlap among 

patients in terms of extreme deviations from the normative model provides evidence 

for the high degree of biological heterogeneity of both disorders. It is in line with the 

notion that mental disorders are complex, with little sharing of causal brain structural 

defect, genetic variants, or environmental stressors. Schizophrenia was conceptualized 

as a polygenic disorder half a century ago 293, and this concept has recently been 

proven by the actual identification of genetic risk factors294. Together with our current 

results on neuroimaging-based evidence for heterogeneity, these findings corroborate 

the emerging notion that the categorization of mental health disorders, as defined using 

current diagnostic manuals, does not conform with the biology9,19,295; such work also 

emphasizes the need to develop tools for clinical stratification and characterization 

that cut across conventional diagnostic boundaries, such as in the research domain 

criteria19.

Previous studies that all employed a classical case-control design did not identify 

biological signatures for schizophrenia or bipolar disorder that were informative 

enough for individualized predictions17. In practice, the discriminative capability of 

candidate biological signatures is most commonly studied using multivariate pattern 

classifiers that integrate a large number of features in a single model. However, in 

schizophrenia and bipolar disorder, these discriminative patterns do not predict 

the diagnostic categories with an accuracy that can be considered clinically useful, 

especially in large samples17,296,297. The current results suggest that this is possibly the 

result of collapsing individual patients with different biological signatures into a single 

diagnostic group. Furthermore, even though the biological stratification of psychiatric 

disorders may be useful9,19,20,278, our results suggest that potentially emerging biological 

strata are much more likely to be smaller than previously anticipated. Inter-individual 
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differences are vast, and we predict that these differences will not easily boil down to 

reliable and robust biological subtypes of psychiatric disorders.

Recent studies, comparing the predicted age to the true age of a patient, have suggested 

that schizophrenia is characterized by accelerated brain aging, in contrast to bipolar 

disorder298–300.

The current results are in line with these general findings, however, we also found 

deviations from the normative pattern in patients with bipolar disorder. More 

importantly, we clearly demonstrate that high inter-individual differences are a 

hallmark for both disorders, in gray and in white matter; unfortunately, the mapping 

of differences at the level of the individual patient is not possible using the brain age 

approach, as it relies exclusively on group comparisons. A point of consideration in this 

context is that the individual deviations we observed may be functionally related (e.g. 

concentrated in functionally related brain areas). Provided that this is the case, our 

results suggest that brain networks are unlikely to be affected in the same way across 

patients, but different structural abnormalities may impair the working of a specific 

functional network via different mechanisms301,302, converging on similar behavioral 

symptoms. While the test of this hypothesis is beyond the scope of the present article, 

we are planning future work to combine functional and structural measures to better 

chart the nature of abnormalities in schizophrenia and bipolar disorder and we aim 

to map the multimodal heterogeneity of both disorders3,23,24. The present work is the 

start of a research line that aims to systematically map the heterogeneity of mental 

disorders across biological readouts. 

In conclusion, our results have important implications for case-control designs in 

(neuroimaging-based) psychiatric research, as we show surprisingly little overlap 

between individual patients with the same disorder. These findings agree with 

the notion that severe mental disorders are complex, with a highly polygenic and 

multifactorial etiology; they also provide an important step towards a systematic 

mapping of the heterogeneity of these disorders. While our journey from group-level 

psychiatry toward precision medicine has only just began, based on the current results 

we can ascertain that appropriate ways of incorporating inter-individual differences 

will determine this journey’s success. Indeed, the ‘bulk of the iceberg’ (or the main 

problem) cannot be solved by defining the ‘average patient’, but by mapping patients’ 

individual pathophysiology.
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Supplementary Materials

These online materials contain information on Supplementary Methods, Supplementary 

Results, Supplementary Tables, and Supplementary Figures referred to in the main text 

of the manuscript.

Supplementary Methods 

MRI acquisition

Structural scans were obtained on a 1.5 Tesla Siemens MAGNETOM Sonata scanner 

(Siemens Medical Solutions, Erlangen, Germany) using a standard head coil. Two 

T-weighted images were acquired by a repeated 3D T-weighted magnetization prepared 

rapid acquisition gradient echo (MPRAGE) sequence with the following parameters: 

repetition time (TR) = 2730 ms, echo time (TR) = 3.93 ms, inversion time (TI) = 1000 

ms, field of view (FOV) = 240 mm, flip angle (FA) = 7 °, matrix = 192 × 256, voxel 

size = 1.33 × 0.94 × 1 mm, 160 sagittal slices. The two T-weighted scans obtained for 

each participant were averaged after rigid registration to improve signal-to-noise ratio 

(SNR). 

Estimation of gray and white matter volume 

Raw structural MRI images were preprocessed using the computational analysis toolbox 

(http://www.neuro.uni-jena.de/software/)303. This toolbox is based on statistical 

parametric mapping version 12 (SPM-12). Images were segmented, normalized, and 

bias-field-corrected using VBM-SPM12 (http://www.fil.ion.ucl.ac.uk/spm, London, 

UK)260,261, yielding images containing gray and white matter segments. Prior to the 

estimation of the normative models, all gray and white matter volumes were smoothed 

with an 8 mm FWHM Gaussian smoothing kernel.

Cognitive measures 

Verbal learning and memory, was derived from the logical memory subtest of the 

Wechsler memory scale304 and the California verbal learning test305, processing speed 

from the digit symbol test from the Wechsler adult intelligence scale (WAIS-III)306, 

working memory from the digit span test of the WAIS-III306, and executive function 

from the verbal fluency test (Delis-Kaplan Executive Function System (D-KEFS)307 and 

the color word interference test (D-KEFS) 307. These same measures were used in a 

previous study3.
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Supplementary Results

Individual extreme deviations linked to cognitive performance and disorder duration, 

but not age

In SUPPLEMENTARY TABLE 1, all significant associations that survived multiple 

comparisons are displayed. The spatial map of individual extreme deviations is 

displayed in SUPPLEMENTARY FIGURE 3 for gray matter and SUPPLEMENTARY FIGURE 

4 for white matter. In schizophrenia, the number of extreme positive white matter 

deviations are associated positively with disease duration. The number of extreme 

deviations were not significantly associated with age in any of the groups. In bipolar 

disorder, the number of extreme negative deviations associated significantly with 

processing speed and executive functioning; the more negative deviations a patient 

exhibited in gray matter, the lower their processing speed and executive functioning. 

Extreme individual deviations

Extreme individual deviations are depicted in SUPPLEMENTARY FIGURE 3 and 

SUPPLEMENTARY FIGURE 4. These Figures show extreme inter-individual differences in 

both gray and white matter.  



Mapping the heterogeneous phenot

119

Supplementary Tables

SUPPLEMENTARY TABLE 1  Association with age, days since diagnosis and cognition in 
schizophrenia and bipolar disorder

Note: SCZ = schizophrenia; BPD = bipolar disorder; ** = significant after multiple comparison 

correction
a  derived from logical memory subtest of the Wechsler Memory scale and the California verbal 

learning test305

b  derived from the digit symbol test from the Wechsler Adult Intelligence Scale (WAIS-III)306

c  derived from the digit span test of the WAIS-III306

d  derived from the executive function from the verbal fluency test (Delis-Kaplan Executive Function 

System (D-KEFS)307 and the color word interference test (D-KEFS)305.

SCZ Age Days since 
diagnosis

Verbal learning 
and memorya

Processing 
speedb

Working 
memoryc

Executive 
functioningd

GM negative 
deviations

β = -.188
p = .016
pcorr =.192

β = .015
p = .850
pcorr =1

β = -.008
p = .917
pcorr =1

β = -.125
p = .113
pcorr =.1

β = -.048
p = .542
pcorr =1

β = -.146
p = .063
pcorr =0.756

GM positive 
deviations

β = .009
p = .912
pcorr = 1

β = .099
p = .208
pcorr = 1

β = .036
p = .649
pcorr = 1

β = .076
p = .332
pcorr = 1

β = .138
p = .079
pcorr = .948

β = .057
p = .466
pcorr =1

WM negative 
deviations

β = -.131
p = .095
pcorr = 1

β = .099
p = .209
pcorr = 1

β = .078
p = .325
pcorr = 1

β = -.142
p = .070
pcorr =.840

β = -.013
p = .864
pcorr = 1

β = -.080
p = .309
pcorr = 1

WM positive 
deviations

β = .121
p = .123
pcorr =1

β = .233**
p= .003
pcorr = .036

β = -.103
p = .190
pcorr = 1

β = -.039
p = .625
pcorr = 1

β = .116
p = .140
pcorr =.1

β = -.043
p = .582
pcorr = 1

BPD Age Days since 
diagnosis

Verbal learning 
and memorya

Processing 
speedb

Working 
memoryc

Executive 
functioningd

GM negative 
deviations

β = -.042
p = .570
pcorr = 1

β = -.090
p = .216
pcorr = 1

β = -.153
p = .035
pcorr = .420

β = -.232**
p = .001
pcorr = .012

β = -.129
p = .076
pcorr = .912

β = -.232**
p = .001
pcorr = .012

GM positive 
deviations

β = -.123
p = .090
pcorr = 1

β = .203
p = .005
pcorr = .060

β = -.027
p =.716
pcorr = 1

β = .179
p =0.14
pcorr = 1

β = .100
p = .168
pcorr = 1

β = .040
p = .584
pcorr = 1

WM negative 
deviations

β = .178
p = .014
pcorr = .168

β = -.083
p = .255
pcorr = 1

β = -.103
p = .157
pcorr = 1

β = -.119
p = .102
pcorr = 1

β = -.087
p = .232
pcorr = 1

β = -.074
p = .311
pcorr = 1

WM positive 
deviations

β = -.025
p = .733
pcorr = 1

β = .085
p = .243
pcorr = 1

β = -.071
p = .333
pcorr = 1

β = .129
p = .075
pcorr = .900

β = .187
p = .010
pcorr = .120

β = .079
p = .279
pcorr = 1
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Supplementary Figures

SUPPLEMENTARY FIGURE 1  Characterization of extreme deviations from the normative 
model in the schizophrenia spectrum. Similar to FIGURE 3, we report the group-level mean 
deviations. Furthermore, the overlap of the most extreme deviations is depicted, representing 
the percentage of individuals showing an extreme value (|Z| < 2.6) at a specific brain locus. The 
sub-plot is organized as follows: each one starts with a map of group-level mean deviations (|Z| 
< 2.6), the second plot shows the overlap maps for extreme negative deviations in percentage, 
the third shows the same for the extreme positive deviations. This Figure shows the results 
for all patients having a diagnosis in the schizophrenia spectrum, thus including patients 
with schizophrenia, schizoaffective disorder, and schizophreniform disorder. The take-home 
message from this plot is that the results between patients with pure schizophrenia (FIGURE 3), 
and patients belonging to the schizophrenia spectrum do not differ.

CHARACTERIZATION OF EXTREME DEVIATIONS FROM THE NORMATIVE MODEL
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SUPPLEMENTARY FIGURE 2  Characterization of extreme deviations from the normative 
model using an FDR threshold. The group-level mean deviations of healthy individuals and 
patients with schizophrenia and bipolar disorder are depicted. Furthermore, the overlap of the 
most extreme deviations is depicted, representing the percentage of individuals showing an 
extreme value (False Discovery Rate (FDR)-corrected at the 5% level) at a specific brain locus. 
Each subplot is organized as follows: it starts with a map of group-level mean deviations, the 
second plot shows the overlap maps for extreme negative deviations in percentage, the third 
plot shows the same for the extreme positive deviations. From FIGURE 2, we can deduce that 
the conclusions based on FIGURE 3 remain, when we use the false discovery rate as an initial 
thresholding criterion.

CHARACTERIZATION OF EXTREME DEVIATIONS FROM THE NORMATIVE MODEL
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SUPPLEMENTARY FIGURE 3  Characterization of individual deviations from the normative 
model in gray matter. The individual deviations from the normative model in gray matter are 
depicted: on the left, extreme negative deviations and extreme positive deviations are depicted 
for schizophrenia, on the right the same is shown for bipolar disorder. As can be seen, strong 
inter-individual differences exist between patients.

CHARACTERIZATION OF INDIVIDUAL NORMATIVE DEVIATIONS FROM NORMATIVE MODEL IN GRAY MATTER
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SUPPLEMENTARY FIGURE 4  Characterization of individual deviations from the normative 
model in white matter. The individual deviations from the normative model in white matter are 
depicted: on the left, extreme negative deviations and extreme positive deviations are depicted 
for schizophrenia, on the right the same is shown for bipolar disorder. As can be seen, strong 
inter-individual differences exist between patients.

CHARACTERIZATION OF INDIVIDUAL NORMATIVE DEVIATIONS FROM NORMATIVE MODEL IN WHITE MATTER
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Abstract

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder 

characterized by large biological heterogeneity. We mapped inter-individual 

differences in reference to normative brain changes across the lifespan to examine the 

degree to which case-control analyses disguise differences between individuals with 

persistent ADHD. We used cross-sectional T1-weighted magnetic resonance imaging 

(MRI) data from participants with persistent ADHD (N = 153) and healthy individuals 

(N = 146) and computed voxel-based morphometry (VBM) maps. These VBM maps 

formed the basis for our normative modeling approach with which we mapped the 

extent and nature of inter-individual differences in brain structure. At the level of the 

individual, deviations from the normative model were frequent in persistent ADHD. 

However, overlap of more than 2% between participants with ADHD was only observed 

in few brain loci. Participants with ADHD, on average, showed significantly reduced 

gray matter in the cerebellum and hippocampus compared to healthy individuals. 

Case-control comparisons, disguise inter-individual differences in brain alterations 

in participants with persistent ADHD. Our results indicate that the “average ADHD 

patient” characterized by group comparisons has limited informative value, but that 

we need to move towards biological characterizations at the level of the individual 

with ADHD. 
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Two patients suffering from the same psychiatric disorder may show differences in 

symptom expression, behavior, and pathophysiology. Case-control research paradigms 

ignore these sources of heterogeneity; they assume that a diagnostic group is a distinct 

entity to enable the identification of biological markers that are reliable indicators of 

disease state. However, markers identified through this approach generally explain only 

a small part of the variance linked to mental disorders185,289,308. Therefore, this research 

paradigm has been challenged in recent years. Large international initiatives aim to 

bridge the gap between a psychiatric diagnosis and its underlying biology through 

the integration of information across multiple dimensions19,278, yielding subgroups 

of patients stratified based on behavior309,310 or biological functioning30. While such 

stratification approaches may produce more homogeneous diagnostic groups, these 

approaches fail to inform on how individual patients differ from one another in terms 

of underlying biology.

Attention-deficit/hyperactivity disorder (ADHD) is a prevalent and impairing 

neurodevelopmental disorder, which persists into adulthood in a substantial part of 

the patients189. Reliable group differences between healthy individuals and those 

with ADHD have been established for various biological readouts150,200,232–236. These 

include neuroimaging-based brain readouts, where differences in gray matter volume, 

white matter volume, as well as functional brain readouts24,25,193,222,246,248 have been 

reported. However, these differences are mostly of small effect size and have not 

readily translated into individualized predictions17. In line with this observation, 

evidence accumulated in the last decades points towards ADHD being characterized by 

a high degree of heterogeneity222: More specifically, individuals with ADHD can differ 

from each other in their symptom profiles (clinical heterogeneity), their exposure to 

environmental stressors (environmental heterogeneity), and the underlying biology 

of their disorder (biological heterogeneity). This complexity, and the rather exclusive 

research focus on a categorical diagnosis, has hindered progress towards a better 

understanding of ADHD15,311. Moreover, the developmental character of ADHD has been 

shown in numerous studies, and differences in brain development and aging have been 

observed across the lifespan185,193,228. Therefore, the importance of modeling ADHD 

across the lifespan has become increasingly apparent185,312. For example, individually 

different growth trajectories of different brain regions may be an important aspect of 

this complex phenotype228,312. 

In this study, we aimed to quantify and map the brain structural heterogeneity in 

adults with persistent ADHD, at the level of the individual patient. We employed a 

normative modeling approach for this purpose, which provides a perspective that is 

fundamentally different from the classic case-control approach. A normative model 

can be understood as a statistical model that maps demographic, behavioral, or any 
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other variable to – for example – a quantitative brain read-out32, whilst providing 

estimates of centiles of variation within the population. Then, the individual can be 

placed within the normative range, allowing for the characterization of differences 

between individual patients in relation to the healthy range. In this way, we i) chart 

the heterogeneity in abnormalities of brain structure at the level of the individual with 

ADHD, and ii) investigate the degree of spatial overlap in terms of deviations from 

the normative model to provide concrete estimates for disorder heterogeneity. Based 

on previous case-control comparisons24,25,193,222,246,248, which introduced the notion of 

the ‘average ADHD patient’, we expected participants with ADHD to show on average 

larger negative deviations from the normative brain ageing model than healthy 

controls. More importantly, we anticipated that the individual local deviance from the 

normative model would differ between individuals, suggesting that previous group-

level distinctions provide an incomplete picture of the neurobiological abnormalities 

in ADHD and disguise extreme inter-individual differences between individuals with 

ADHD. 

Methods

Participants

We selected 156 adult participants with persistent ADHD and 143 healthy controls 

from the Dutch cohort of the International Multicenter persistent ADHD CollaboraTion 

(IMpACT)2,310, based on data availability for structural MRI images. Participants with 

persistent ADHD were recruited from the Department of Psychiatry of the Radboud 

University Medical Center and through advertisements. In this recruitment process, 

the participants with persistent ADHD were matched for gender, age, and estimated 

intelligence to a healthy control population. All participants underwent psychiatric 

assessments, neuropsychological testing, and neuroimaging. The diagnostic interview 

for persistent ADHD (DIVA)241 was conducted to confirm the diagnosis of ADHD in 

adulthood. This interview focuses on the 18 DSM-IV symptoms of ADHD and uses 

concrete and realistic examples to thoroughly investigate whether a symptom is 

currently present or was already present in childhood241. In all participants in the 

ADHD cohort, a childhood history of ADHD symptoms was established, and persistent 

ADHD was diagnosed. The ADHD Rating Scale-IV was filled in by each participant to 

report current symptoms of attention and hyperactivity/impulsivity242. To assess 

comorbidities, the structured clinical interviews (SCID-I and SCID-II) for DSM-IV were 

administered243–245. The inclusion criteria for participants with ADHD were: i) DSM-IV-

TR criteria for ADHD met in childhood as well as in adulthood, ii) no psychosis, iii) no 

alcohol or substance addiction in the last six months, iv) full-scale intelligence estimate 
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> 70 (prorated from Block Design and Vocabulary of the Wechsler Adult Intelligence 

Scale-III205), v) no neurological disorders, vi) no obvious sensorimotor disabilities, vii) 

no medication use other than psychostimulants or atomoxetine. Additional inclusion 

criteria for healthy controls were: viii) no current neurological or psychiatric disorder 

according to DIVA, SCID-I, or SCID-II, ix) no first-degree relatives with ADHD or other 

major psychiatric disorders. All participants were Dutch and of European Caucasian 

ancestry. This study was approved by the regional ethics committee (Centrale 

Commissie Mensgebonden Onderzoek: CMO Regio Arnhem – Nijmegen; Protocol 

number III.04.0403). Written informed consent was obtained from all participants.

TABLE 1  Demographics and clinical characteristics of the study sample 

Healthy individuals Persistent attention-deficit/
hyperactivity disordera

Demographics

Total (N) 146 153

Males (%) 43.8% 41.2%

Age (years)
(mean +- std)

35.43
+- 12.01

35.05
+- 10.81

Education
(years +- std)

5.19
+- .808

4.78
+- .811

Estimated intelligenceb

(mean +- std)
109.94
+- 14.53

107.45
+- 15.08

Symptoms

Hyperactivity/impulsivityc

(mean +- std)
.63
+- 1.12

5.45
+- 2.46

Inattentiond

(mean +- std)
.55
+- 1.21

7.27
+- 1.74

Comorbiditiese

(mean +- std)
.01
+- .117

.20
+- .436

a ADHD diagnosis was based on a structured Diagnostic Interview for ADHD in Adults (DIVA241)
b  Estimated intelligence was based on the block-design and vocabulary subtests of the Wechsler 

Adult Intelligence Scale (WAIS-III205)
c DIVA hyperactivity/impulsivity symptoms in adults
d DIVA inattention symptoms in adults
e  Number of comorbid disorders such as major depressive disorder based on a SCID (Structured 

Clinical Interview) interview243–245

MRI acquisition

Whole brain imaging was performed using a 1.5 T scanner (Magnetom Avanto, Siemens 

Medical Systems) with a standard 8-channel head coil. A high-resolution T1-weighted 

magnetization-prepared rapid-acquisition gradient echo (MPRAGE) anatomic scan was 

obtained from each participant, in which the inversion time (TI) was chosen to provide 

optimal gray matter–white matter T1 contrast (repetition time [TR] 2730 ms, echo time 



CHAPTER 6

130

[TE] 2.95 ms, TI 1000 ms, flip angle 7°, field of view [FOV] 256 × 256 × 176 mm3, voxel 

size 1.0 × 1.0 × 1.0 mm3). The T1 images served as a basis for the extraction of gray and 

white matter volumes. 

Estimation of gray and white matter volume 

Prior to gray matter volume estimation, all participants’ T1 images were rigidly aligned 

using statistical parametric mapping version 12 (SPM-12). Subsequently, images were 

segmented, normalized, and bias field–corrected using “new segment” from SPM12 

(www.fil.ion.ucl.ac.uk/spm)260,261 yielding images containing gray and white matter 

segments. We then used DARTEL262 to create a study-specific gray matter template to 

which all segmented images were normalized. Subsequently, all gray matter volumes 

were smoothed with an 8-mm full width half maximum (FWHM) Gaussian kernel, and 

the normative model was estimated.

Normative modeling

The normative modeling method employed here is described in more detail elsewhere32. 

Briefly, normative models were estimated using Gaussian process regression31, a 

Bayesian non-parametric interpolation method that yields coherent measures of 

predictive confidence in addition to point estimates. This is important, as we used this 

uncertainty measure to quantify both the centiles of variation within the cohort and 

the deviation of each patient from the group mean at each specific brain locus. In this 

way, we were able to statistically quantify deviations from the normative model with 

regional specificity, by computing a Z-score for each voxel, reflecting the difference 

between the predicted volume and the true volume normalized by the uncertainty 

of the prediction32. Thus, we quantified extreme positive and negative deviations 

(reflecting increased or decreased volume, respectively) from the normative model 

using a reasonable threshold for the resulting z-statistic. In the present study, we 

estimated normative brain changes across the adult lifespan represented in our study 

(FIGURE 1) using Gaussian process regression to predict regional gray and white matter 

volumes across the brain from age and sex. We estimated the normative range for 

this model in healthy controls using 10-fold cross-validation, then applied the model 

trained on all data to participants with ADHD.

First, we assessed group-level deviations from the normative model. For this, individual 

gray and white matter deviation maps were fed into PALM (Permutation Analysis of 

Linear Models)286, which allowed for permutation-based inference. We estimated mean 

group-level deviations from the normative model in healthy controls and in patients 

with ADHD. PALM creates a map of z-values for each of these groups. We thresholded 
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these group maps using Z = +/- 2.6, to assist comparisons with the individual maps 

of deviation described below. Further, we report the contrasts for participants with 

persistent ADHD and healthy controls corrected for false discovery rate at the 5% 

inference level using threshold-free cluster enhancement.

Next, the individual maps of deviation were thresholded at |Z| > 2.6. These maps reflect 

the deviation from the normative model at the individual level. Note that the use of a 

fixed statistical threshold across participants allows for a simplified comparison between 

participants in terms of numbers of extreme deviation from the normative model, even 

when the overall distribution of deviations of a participant is shifted. We also repeated 

the analyses correcting for multiple comparisons at the individual participant level using 

the Benjamini and Hochberg procedure287. This did not change our conclusions. Extreme 

positive deviations were defined as all voxels with a value higher than Z > 2.6, while 

extreme negative deviations are defined as a value below the Z < -2.6. All extreme 

deviations were combined into scores representing the percentage of extreme positive 

and extreme negative deviations for each participant. We tested for associations between 

diagnosis and those scores using a non-parametric Chi2 test in a general linear model. 

We corrected for multiple comparisons using the Bonferroni-Holm method213. We created 

individualized maps of extreme deviations and calculated the voxel-wise overlap between 

individuals from the same groups. In a final analysis, we tested for associations between 

the percentage of extremely deviating voxels and age, symptom scores, and comorbidity. 

We corrected for the number of correlations (8) and modality using the Bonferroni-Holm 

method213. All analyses were performed in python3.6 (www.python.org).

Results

Participants

TABLE 1 shows the demographics of the study population. We included 156 adults 

with ADHD and 143 healthy adults. About the same proportion of individuals in both 

groups were male (43.8% first and 41.2% second group, respectively). The average age 

of participants was 35 years in both groups. Individuals with persistent ADHD showed 

higher scores than healthy individuals for hyperactivity-impulsivity (5.45 vs. .63; 

t-test: p < .01) as well as inattention (7.27 vs. .55; t-test: p < .01).

Normative model 

FIGURE 1A, 1C, AND 1D show a visual summary of the analysis procedure. FIGURE 1B 

depicts a spatial representation of the voxel-wise normative model. This model was 
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characterized by global gray matter decreases from the age of 20 to the age of 70 

years, with the largest decreases primarily in frontal and cerebellar regions. This was 

true for females and males, which we modelled separately due to the presence of sex 

effects in ADHD313. In contrast, the normative model for white matter was characterized 

by both decreases and increases across adulthood. More specifically, temporal brain 

regions showed an increase with age, areas in frontal and parietal regions decreased, 

in both genders.

 

FIGURE 1  In A, the estimation of the normative model in healthy controls is depicted using age 
and gender as covariates. In B, the characterization of the normative model is shown. We see 
that the normative model changes with age and that, from age 20 to 70 years, gray matter is 
predominantly decreasing; this is true for both females and males and more strongly observed 
in frontal brain regions. Blue colors indicate a decrease, red colors an increase. In C, we depict 
the application of the normative model to persistent ADHD. In D, we present the steps that 
were taken to characterize the deviations from the normative model. 

Characterization of mean deviations from the normative model 

FIGURE 2A shows the mean deviations from the normative model in the gray matter 

for healthy individuals and those with ADHD. Individuals with ADHD and healthy 

individuals differed significantly after correction for multiple comparisons in their 

mean deviations from the normative model in the cerebellum, temporal brain regions, 

and the hippocampus. Participants with ADHD on average showed larger mean 

negative deviations in those regions. Looking at Z-score maps thresholded at +/-2.6, 

this pattern was confirmed, and additional regions showing negative mean deviations 

were observed in the anterior cingulate, insula, and frontal cortex (FIGURE 2A). No 

differences in mean deviations between patients and controls were observed in white 

OVERVIEW OF THE NORMATIVE MODEL

A C

B D
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matter (FIGURE 2B), although some positive and negative mean deviations exceeded 

the z-score threshold of +/-2.6 in patients: in the temporal pole, we observed positive 

deviations, while frontal and parietal regions showed negative deviations. 

 

FIGURE 2  In A, the group-level mean deviations of healthy controls and participants with 
persistent ADHD are depicted in gray matter volume. Further, the contrast between persistent 
ADHD and healthy controls is depicted corrected at a false discovery rate of 5%. Cerebellar 
regions, temporal regions, and the hippocampus deviate significantly. In B, the group-level 
mean deviations of healthy controls and participants with persistent ADHD are depicted in 
white matter volume. 

Association of extreme deviations from the normative model with per-

sistent ADHD

An analysis of the total percentage of extreme negative deviations in gray matter 

across the groups showed that participants with persistent ADHD differed significantly 

from healthy individuals (Wald Chi2(1) = 23.64, pcorr. < .001). This effect was driven by a 

larger percentage of negative deviations in participants with persistent ADHD (0.48%; 

95% confidence interval: 0.30% - 0.66%) than in healthy controls (0.28%; 95% confidence 

interval: 0.24% - 0.34%). In white matter, significant differences in the percentage of 

extreme negative deviations were observed between groups as well (Wald Chi2(1) = 

CHARACTERIZATION OF MEAN DEVIATIONS FROM THE NORMATIVE MODEL

A

B
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18.02, pcorr. < .001); again, a significantly higher proportion of negative deviations was 

seen in participants with persistent ADHD (0.41%; 95% confidence interval: 0.24% - 

0.57%) than in healthy controls (0.24%; 95% confidence interval: 0.17% - 0.31%). No 

differences between groups were observed in positive deviations on measures in gray 

and white matter (SUPPLEMENTARY TABLE 1).

FIGURE 3  In A, the overlap of the most extreme deviations is depicted, representing the 
percentage of individuals showing an extreme value (|Z| < 2.6) at a specific brain locus. This 
figure shows significantly more extreme negative deviations in participants with persistent 
ADHD, which translate into more overlap especially in hippocampal and caudal regions. We do 
not observe significant differences in extreme positive deviations between persistent ADHD 
and healthy controls. Panel B shows the individuals with most extreme deviations. We observe 
that individual extreme deviations are variable between participants with ADHD, and that the 
extreme negative deviations show a significant and positive association with age, uncorrected 
for the number of tests.

CHARACTERIZATION OF EXTREME DEVIATIONS FROM THE NORMATIVE MODEL

A

B
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Characterization of extreme deviations from the normative model

Participants with ADHD showed overlap in local gray matter negative deviations in 

more than 2% of patients primarily in the cerebellum, hippocampus, and basal ganglia; 

less overlap in negative deviations was observed in healthy individuals (FIGURE 3A). 

In white matter, we also observed greater overlap in participants with ADHD than 

in healthy controls, again involving regions around the hippocampus and the basal 

ganglia. A scattered pattern of positive deviations was seen in the overlap maps for 

participants with ADHD as well as for healthy individuals in both gray and white matter. 

The overlap maps of the extreme negative deviations partly resembled the pattern 

observed in the mean deviation analyses of cases and controls, also when detecting 

extreme deviation based on the false discovery rate (FDR, SUPPLEMENTARY FIGURE 1). 

Further, three of the four most extremely deviating patients showed extreme values 

in the cerebellum (Figure 3B). Generally, deviations in both positive and negative 

directions were unique for each participant with ADHD, when looking at the patterns 

of individual deviations, with limited overlap (SUPPLEMENTARY FIGURE 2). The extreme 

negative deviations were associated with age in participants with ADHD, but not 

symptom scores or comorbidity, before correction for multiple comparisons (β-weight 

= .198, p=.014, SUPPLEMENTARY TABLE 1); for the extreme positive deviations, we did 

not find any associations that were even nominally significant. 

Discussion

We mapped the biological heterogeneity of persistent ADHD in reference to normative 

brain aging across the adult lifespan, based on VBM-derived brain measures. In 

participants with ADHD, we observed robust mean deviations in gray matter from the 

normative model in the cerebellum, temporal regions, and the hippocampus. However, 

at the single participant level, we found that few individual brain loci showed extreme 

negative deviations in more than 2% of the participants with ADHD, providing a 

measure for the (substantial) inter-individual variation between adults with persistent 

ADHD. 

Modeling persistent ADHD across the lifespan is an important aspect of our analysis. 

Whereas case-control comparisons show little evidence of (gray matter) alterations 

in adult patients, we here confirm robust mean differences between participants 

with ADHD and healthy individuals in gray matter. The findings for hippocampus and 

temporal region are in line with findings for children with ADHD from recent, large-

scale international studies185. In addition, we observed deviations in the cerebellum; a 

decrease in gray matter was seen in individuals with ADHD across the adult lifespan. 
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The cerebellum has gained increasing interest in ADHD for approximately the past two 

decades314. In case-control studies, those with ADHD have shown a decreased size of 

the cerebellum315,316, which may be linked to timing problems that are present across 

many individuals with this disorder317. We did not observe a robust difference in the 

prefrontal cortex and basal ganglia, regions that are often implicated in (childhood) 

ADHD318. However, when reducing thresholding (|Z| > 2.6), these regions do present 

reductions in gray matter volume also in the current study (FIGURE 2). 

While the result described above is largely in line with existing ADHD literature and 

points to the cerebellum as an important structure in persistent ADHD, we additionally 

observe a large biological heterogeneity at the level of the brain. Specifically, we found 

that only a few individual brain loci showed extreme negative deviations in more 

than 2% of the participants with ADHD, providing evidence in line with the notion that 

persistent ADHD is a heterogeneous disorder222 and that inter-individual differences at 

the level of brain structure are a hallmark for this phenotype. This is consistent with 

conceptual developments such as the Research Domain Criteria19, which emphasize the 

importance to move beyond simple group comparisons in psychiatry towards multilevel, 

high-dimensional descriptions of individual patients. Our finding that patients with 

persistent ADHD differ substantially on an individual level negates the concept of the 

‘average ADHD patient’, as it does not sufficiently reflect the degree of inter-individual 

variation that characterizes this disorder. This may explain, why case-control studies, 

which dominate research on ADHD and psychiatric disorders in general, have shown 

small group differences between patients and healthy individuals24,25,193,222,246,248,319,320. 

Having said this, the degree of inter-individual differences may be different for other 

biological readouts (e.g. functional measures), which is an important topic for future 

research. 

The current results allow for a novel interpretation of earlier large-scale pattern 

recognition studies in ADHD, which often shows relatively low accuracy in 

discriminating ADHD cases from controls. For example, the ADHD-200 completion, in 

which ADHD was predicted on the basis of brain read-outs, showed predictions that 

did not exceed 60% accuracy62. These frustrating outcomes were replicated in follow-

up research, summarized in different reviews17,71,236. The conclusion seemed to be 

that, in larger studies, the predictive accuracy for ADHD is reduced relative to smaller 

studies, which is counterintuitive to the premises of general machine learning, where 

an increase in sample size usually improves learning from data. This conundrum can be 

understood in the context of the current results, as larger, more representative samples 

capture more of the biological as well as the procedural heterogeneity (e.g. due to 

different scanners sites) of this disorder. Smaller studies maybe have been selected 

more carefully, or otherwise by chance a more homogenous subgroup was selected. 
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Therefore, a larger sample will provide a better estimate of the variation between 

individuals. This increases the difficulty in finding a common decision function across 

participants with ADHD in machine learning analyses236, again highlighting the need to 

move towards individualized characterizations of ADHD, as we pursued in the present 

study for the first time.

In conclusion, while our group level effects are largely in line with the existing literature 

on ADHD, our approach also shows that the disorder is a much more biologically 

heterogeneous on the individual level than previously anticipated. Hence, we need 

to move towards descriptions of biology for the individual patient to improve our 

understanding of ADHD. The present results provide the first quantitative estimates 

of the degree of biological heterogeneity underlying ADHD and, therefore, provide 

valuable information relevant to an improved nosology and characterization regarding 

the different facets of persistent ADHD. 
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Supplementary Materials 

Supplementary Tables 

SUPPLEMENTARY TABLE 1  Association of deviations from the normative model with symptom 
scores, age, and comorbidity

Age b-weight p

GM percentage positive deviations -0.082 0.311

GM percentage negative deviations 0.073 0.368

WM percentage positive deviations 0.094 0.249

WM percentage negative deviations 0.198 0.014c

Comorbidityc β-weight p

GM percentage positive deviations -0.117 0.153

GM percentage negative deviations 0.079 0.332

WM percentage positive deviations -0.027 0.742

WM percentage negative deviations -0.019 0.813

Hyperactivity/impulsivitya β-weight p

GM percentage positive deviations 0.075 0.397

GM percentage negative deviations -0.013 0.884

WM percentage positive deviations -0.013 0.888

WM percentage negative deviations 0.083 0.348

Inattentionb β-weight p

GM percentage positive deviations 0.017 0.845

GM percentage negative deviations -0.148 0.094

WM percentage positive deviations -0.152 0.086

WM percentage negative deviations -0.022 0.801

a  DIVA (diagnostic interview for adult ADHD) hyperactivity/impulsivity symptoms in adults
b  DIVA inattention symptoms in adults
c   Number of comorbid disorders such as major depressive disorder based on SCID (Structured 

Clinical Interview)
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Supplementary Figures

SUPPLEMENTARY FIGURE 1  The overlap of the most extreme deviations is depicted, 
representing the percentage of individuals showing an extreme value. The overlaps are false 
discovery rate corrected at the 5% chance level. The findings resemble those shown in FIGURE 
3, extreme negative deviations overlap more in patients with ADHD than in healthy controls, 
but overlap is highly limited and focal in a few regions.

CHARACTERIZATION OF EXTREME DEVIATIONS FROM THE NORMATIVE MODEL
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SUPPLEMENTARY FIGURE 2  The individual deviations from the normative model in gray matter 
and white matter are depicted for participants with persistent ADHD. Starting on the left, the 
extreme negative deviations are followed by extreme positive deviations for gray matter, on 
the right the same is shown for white matter.

CHARACTERIZATION OF INDIVIDUAL DEVIATIONS FROM THE NORMATIVE MODEL IN ATTENTION-DEFICIT/
HYPERACTIVE DISORDER
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Summary of studies and findings 

In Chapter 1 we briefly introduced the relevance of our work for precision medicine 

in psychiatry and introduced the ideas of the refinement by integration and refinement 

by heterogeneity mapping. The former describes a trend in psychiatry to integrate 

information across biological readouts for an improved description of a biological 

process. The latter is primarily an attempt to map the biological heterogeneity of 

mental disorders systematically. In Chapter 2, we surveyed the literature from the 

past two decades that employed different pattern recognition algorithms to predict 

diagnosis on the basis of biological information. Despite many promising proof-of-

concept results, this research did not translate towards clinical practice for any of the 

disorders we investigated. We suggested that this is because the majority of studies 

suffered from common limitations, such as a relatively small sample size and/or 

a primary focus on estimating generalizability within a single sample. In Chapter 3, 

we extended the existing literature by performing a pattern recognition study based 

on a functional MRI stop-signal reaction time task in a sample that was an order of 

magnitude larger than earlier studies. In line with our observations in the first chapter, 

we showed that the predictions in this larger sample were lower than those reported 

in smaller studies. Further, we could show that a frontal-parietal pattern of brain 

activity contributed to the prediction of ADHD. In Chapter 4, we integrated different 

structural and diffusion modalities by employing linked independent component 

analysis (ICA). This technique allowed us to inspect a biological process from different 

angles of measurement simultaneously. We could show that the findings were largely 

in line with previous results on persistent ADHD in adults from unimodal studies and 

went beyond earlier studies by identifying a multimodal pattern linked to persistent 

ADHD. While we could report novel multimodal imaging markers, this approach did not 

yield higher out-of-sample predictions for ADHD. Together, the information presented 

in the second, third and fourth chapter of this thesis suggests a benchmark for the 

discriminability of cohorts according to classical diagnostic labels that range from about 

60% for ADHD to about 75% for schizophrenia, independent of the magnetic resonance 

imaging modality investigated. In Chapter 2, we also observed a strong variance across 

studies, which indicated that sample characteristics and the heterogeneity of the 

mental disorders play important roles. In Chapters 5 and 6, we subsequently used a 

normative modeling approach to move beyond the ‘average patient’ to the level of the 

individual; we showed that schizophrenia, bipolar disorder, and ADHD are biologically 

heterogeneous to a degree that was previously not anticipated. Only a few individuals 

with the same diagnosis showed abnormalities from this model in the same brain loci, 

suggesting large inter-individual differences in structural brain readouts for those 

mental disorders studied. 
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Answering the overarching question of this thesis

In this thesis, we addressed the overarching question: how can refinement by 

integration and/or refinement by heterogeneity mapping contribute to the development 

of precision medicine in psychiatry? As we defined this in the introduction, precision 

medicine refers to a general trend in medicine to individualize diagnostics and 

treatment through incorporating behavioral with biological and environmental 

characterizations of individual patients. In short, we could determine that a refinement 

by integration is useful to improve the description of a pathophysiological process, 

measured across imaging readouts, that may contribute to a specific disorder. However, 

our data strongly suggests that a systematic refinement by heterogeneity mapping is 

more important, as patients from the same diagnostic group showed limited biological 

resemblance. Our results are surprising, as the degree of biological heterogeneity on 

structural brain readouts is extreme and was previously not anticipated. We showed 

that the ‘average patient’ is a non-informative concept in psychiatry, and that, instead, 

a movement towards the individual is necessary. 

From groups via clusters to individual patients

The work conducted for this thesis, in combination with work from others, identified 

novel biological signatures linked to mental disorders, but failed to improve predictions 

of mental disorders3,17,24,25,274. The integration of information leads to the identification 

of novel biological signatures relevant for the characterization of the ‘average patient’, 

while the field is now moving beyond comparisons of cases and controls towards 

stratification19,30,278. These efforts are predominantly based on clustering that utilize 

behavioral data, symptom profiles, genetics, and/or brain imaging data as the basis 

to identify subgroups for those disorders. All these studies have similar limitations, 

such as predefined number of clusters, which is usually an arbitrary choice, or a lack 

of external validation of the prospective stratifications. Further, clustering algorithms 

always give a result, and they do not test the null hypothesis that there may be no 

clusters in the data at all321. Only a few studies have performed extensive out-of-sample 

validations30. One study that generated considerable attention mapped symptom counts 

on resting state data322. In this way, the researchers identified two dimensions, which 

formed the basis for hierarchical clustering. The researchers identified four subgroups 

for depression, which were subsequently validated extensively. While the number 

of external validations was impressive, the clusters identified seem arbitrary, as 

individuals might simply be described along the two identified continuous dimensions 

without utilizing clustering at all (Marquand, Wolfers, & Dinga, in press). In line with this 

observation, our results, although obtained in other mental disorders, show that inter-
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individual differences between patients with the same diagnosis are extreme. Therefore, 

the description of patients on the group level is certainly not sufficient, a cluster level 

description may not be refined enough to capture the etiological complexity of mental 

disorders, which may in fact be relatively patient specific. 

Beyond Research Domain Criteria

Research initiatives such as the Research Domain Criteria (RDoC)19, suggest an 

approach to investigate mental disorders through systematic research across cognitive 

domains and levels of biological description. As described in the introduction, the 

RDoC matrixXVIII provides a theoretical framework for research in psychiatry. While 

RDoC is an innovative way to conceptualize mental health and is driving substantial 

basic research, data analysis methods that enable information to be integrated across 

domains to give rise to prospective disorder reclassifications do not readily exist 

yet20,21. Further, RDoC would benefit from distinguishing state and trait effects of a 

specific disorder. In the work conducted for this thesis, we investigated the relevance 

of integrating distinct, multi-modal biological brain readouts and the mapping of 

biological heterogeneity for a refined understanding of mental health and disorder. 

Both aspects can provide concrete and workable frameworks and laying out the path 

towards an effective implementation of precision medicine in psychiatry.

Over the last decades, samples drastically increased in size and now often include 

numerous biological readouts, from genetic variation to brain imaging and behavior. 

Examples for this trend are studies from the ENIGMA consortium185,288,289,291,308,323, 

IMAGEN324, NeuroIMAGE1, and the currently collected data from the UK Biobank22, 

which will eventually include about 100.000 participants with brain imaging data. 

This large number of acquired variables necessitates some sort of data reduction 

techniques, a refinement by integration is therefore essential to distil knowledge in an 

efficient way and to capture a biological process from different angles of measurement 

simultaneously. Furthermore, a refinement by heterogeneity mapping is necessary to 

allow for biological mappings at the level of the individual. This thesis, inspired by 

the RDoC framework, has provided a workable framework that integrates these two 

aspects and provides a route towards precision medicine in psychiatry.

Concretely, we suggest to use phenotyping instruments that capture measurements 

of different biological depth along the constructs proposed in RDoC19 from large 

populations cohorts such as IMAGEN, UK Biobank, and novel samples. These different 

XVIII https://www.nimh.nih.gov/research-priorities/rdoc/constructs/rdoc-matrix.shtml
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levels of measurements should be integrated using effective means of integration, 

such as discussed in this thesis. In this way, biological processes that may underlie 

a certain construct are captured along biological readouts across different units of 

analysis, simultaneously. Once the biological process is characterized sufficiently, 

a normative modeling framework could be utilized to build reference panels across 

those integrated biological domains, which can subsequently be used to map inter-

individual differences in clinical samples that use similar data acquisition procedures 

as the population reference. Provided, that it makes sense to stratify those disorders, 

when we for instance detect common abnormalities in patients, we can chart variation 

in brain systems which can provide the basis for prospective clustering. For this effort 

to be successful, we need to acquire samples including patients with different mental 

disorders, using similar acquisition procedures as the population reference samples. 

Such work has e.g. been started for the Personalized Parkinson ProjectXIX, which is in 

part conducted at the Donders Institute and should be extended for mental disorders. 

In summary, the approach put forward in this thesis builds on and extends RDoC in three 

ways: i) it describes a workable framework to integrate information along domains 

of functioning; ii) it introduces population and healthy reference samples as effective 

means to map inter-individual differences in cohorts that describe a specific disorder; 

iii) it provides a method that goes beyond clustering to map individual differences and 

may hold potential for systematic stratification efforts. RDoC is theory – that without a 

doubt inspires – our framework can put it into practice, even going beyond its initially 

intended scope.

Challenges for the introduction of precision medicine in psychiatry

While we are convinced that a refinement by integration as well as a refinement by 

heterogeneity mapping are essential to move towards precision medicine in psychiatry, 

there is also room for improvement. Here, we want to highlight the challenges that we 

foresee. 

First, one of the most pressing challenges for normative modeling is that we cannot 

distinguish between abnormalities that directly reflect a pathophysiological process 

and those that may be compensatory or present for reasons irrelevant to a specific 

disorder. In subsequent research, this should be addressed by including information 

from healthy family members and linking deviations (in a voxel-wise manner) to 

a variable that is of relevance for the disorder or linked to a subjective measure of 

suffering. Moreover, we need to identify if these deviations index the treatment 

XIX https://verily.com/projects/precision-medicine/personalized-parkinson-project/
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choices, treatment responses, the course of the disorder and prognosis (i.e. outcome, 

comorbidities, risk for escalation, substance use, criminality). For this to be feasible, 

we need to acquire novel longitudinal samples that contain this information in high 

density, via for instance wearable sensors.

Second, the methods utilized in this thesis capture variation across subjects in order 

to identify multimodal patterns linked to a certain disorder. While this is an important 

step forward, we require methods that generate novel features on the level of the 

single participant, which may have a closer link to underlying biology. One such 

method, models connectivity gradients325 and might be useful to map inter-individual 

differences. However, we need to develop additional methods that effectively integrate 

biological information at the individual level. The methods applied in this thesis would 

require a renewed estimation of the models with each participant. 

Third, for the normative modeling approach, we used structural brain imaging. This 

is certainly not sufficient as a particular mental disorder is influenced by different 

biological and environmental factors222,280,326, which can only be captured by a 

single brain imaging modality to a limited degree. Altered activity in resting state 

networks215,327 have been implicated in different mental disorders328. Abnormalities 

that appear heterogeneous at the level of brain structure may for instance affect a 

single brain network underlying a certain function such as attention. In other words, 

individuals with a disorder, who show heterogeneous alterations in brain structure, 

might show converging functional abnormalities. Therefore, it is not sufficient to map 

abnormalities in one imaging modality or biological readout, as one needs to inspect 

brain structure and function, or ideally all modalities simultaneously.

Fourth, the normative modeling approach utilized in the present thesis relies on a 

Gaussian process regression framework. In the future, it will be important to use 

models that are less costly in terms of computations that allow us to translate this 

framework to larger studies (Kia, & Marquand, under review). When integrating 

genetic information into this framework, models that take advantage of the biological 

structure of the genome may be necessary. The normative modeling framework can 

only integrate genetic information provide that this information is predictive of other 

biological or behavioral read-outs to a sufficient degree. Therefore, we aim to develop 

appropriate models that improve the out of sample predictability of brain read-outs 

through genetics. Once the sample size of population samples is large enough, deep 

learning may be an efficient tool to achieve this329. 

Fifth, and as mentioned earlier, our normative models were built based on healthy 

control groups that were demographically matched to cases. However, in the future, 
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it may be more informative if large population samples could be used to derive 

different normative models for different domains of functioning, such as attention, 

for example. These normative models can subsequently be linked to samples that are 

acquired independent of the normative sample, using the same parameters. In this 

way, we can then map the heterogeneity of a certain mental disorders in reference to a 

representative population sample. 

Sixth, the current thresholding of the maps of deviation from the normative model 

on the level of the individual participant requires an arbitrary choice. Either the 

researcher chooses to incorporate an absolute threshold or (s)he applies a threshold 

based on the participant-dependent threshold determined by the false discovery rate 

(FDR). The disadvantage of the former approach is that it may identify deviations as 

extreme, which are not appropriately corrected for multiple comparisons, while the 

latter is insensitive to an overall shift in deviations from a norm in one individual. In 

other words, an individual with reductions in gray matter across the entire cortex may 

seem quite normal using an FDR thresholding procedure, as the overall distribution of 

deviation is shifted in this individual. Therefore, we need an effective and principled 

hybrid between the two thresholding procedures. This approach needs to be sensitive 

to overall shifts in the participant’s distribution of deviation, but not at the expense 

of appropriately correcting for multiple comparisons. In the work conducted for this 

thesis, we used both approaches and compared them to one another, resulting in the 

same conclusions with either approach.

Seventh, we should build patient-specific longitudinal trajectories that disentangle 

disease state from a healthy state within a single individual. For most neuroimaging 

studies it is only practical to acquire a limited number of longitudinal time points, but 

other data modalities (e.g. wearable sensors) provide a rich characterization of biology 

and behavior over time. When wearable devices can be used to sample the individual 

trajectory from a healthy state towards a disordered state, an extreme deviation from 

this longitudinal trajectory may be indicative for the onset of a specific disorder. 

Therefore, individual trajectories will be a focus of research once datasets become 

richer in time. The approaches presented here may then allow to identify disordered 

and healthy states within a single individual and in reference to population-based 

trajectories.

Eighth, for normative models that have proven to be disease-relevant and that can 

effectively disentangle individual differences for certain mental disorders, we need to 

develop standardized procedures from acquisition to preprocessing and estimation. 

For these procedures to became clinically relevant, they need to be evaluated not only 

for their reproducibility and validity, but also for their cost-effectiveness. If they pass 
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such tests, which need to be developed in future work, these normative models can be 

engineered as standardized procedures and could potentially cumulate into some sort 

of intelligent diagnostic and atomized test for mental disorders.  

Finally, models describing mental disorders in reference to normative variations 

should also include a dimension reflecting a subjective experience, such as suffering, 

impairment, or quality of life, which we could so far only incorporate imperfectly in our 

studies. After all, a person meeting the symptom criterion for a disorder, who neither 

suffers nor causes suffering in others, cannot be seen as having a mental disorder. 

Therefore, by only focusing on a physical description of mental disorders one might fall 

into an explanatory gap between biological signatures that reflect a mental state and 

the subjective mental state itself. 

In summary, we suggest that the field should: i) learn distinctions between 

abnormalities that directly reflect a pathophysiological process and those that may 

be compensatory or irrelevant, ii) develop and use methods that integrate biological 

information within a single participant, iii) map abnormalities across brain imaging 

modalities, iv) develop and use methods that are tailored to model a specific problem, 

such as the relationship of genetics to brain imaging, v) use large population samples to 

derive different normative models for different domains of functioning, vi) develop an 

approach that is sensitive to overall shifts in the participant’s distribution of deviation, 

but not at the expense of inferior correction for multiple comparisons, vii) build 

patient-specific longitudinal trajectories that disentangle disease state from a healthy 

state within a single individual, viii) develop standardized procedures from acquisition 

to preprocessing and estimation of models that have shown disorder relevance, and 

viv) integrate subjective ratings that provide an indication of suffering. In the following 

section, we will present concrete ongoing work to address some of these challenges.

Ongoing work and future work

We have already started to address some of the challenges listed in the previous 

section, in work that is not included in this thesis.

First, we are combining the refinement by integration and refinement by heterogeneity 

mapping approaches using multimodal data, including resting state fMRI data. In this 

way, we investigate whether the extreme degree of heterogeneity observed in the 

structural imaging domain is similarly extreme in other imaging domains (Wolfers et 

al., in preparation).
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Second, we employed the linked ICA approach in a healthy group of participants and 

identified a multimodal structural pattern that is associated with positive human traits 

and qualities (e.g. agreeableness) on one end and negative (e.g. substance abuse) on the 

other end (Llera, Wolfers, Mulders, & Beckmann, under review). This result shows an 

excellent correspondence with a similar pattern observed in resting state brain imaging 

data330, suggesting that brain function to a certain degree recapitulates aspects of brain 

structure. Together, these results suggest that multimodal brain signatures linked to 

positive and negative human traits and qualities may be relevant to disentangle mental 

health from disorder at the extreme of this multimodal pattern. 

Third, we are currently investigating longitudinal multimodal imaging patterns that 

integrate information across various brain readouts across two adolescent time points 

(Wolfers et al., in preparation). In this way, we aim to identify a pattern of structural 

variation that reflects a normal developmental process in a population sample with 

adolescents. This may subsequently also be used to investigate abnormal processes in 

mental disorders.

Fourth, in response to a paper that generated much attention during the past year 

and which was discussed earlier322, we have prepared work arguing that the clusters 

identified in this paper are arbitrary (Marquand, Wolfers, & Dinga, under review). 

We argue that the data may be better described by relying on dimensions instead 

of running a clustering algorithm on top of this dimensional structure. In line with 

this observation, we identified population-derived externalizing and internalizing 

dimensions in a large population sample. The dimensions were relevant for different 

mental disorders in clinical validations, including schizophrenia, bipolar disorder, and 

ADHD (Ing et al., under review).

Fifth, we are currently investigating the difference in abnormalities between siblings 

with and without a mental disorder. In this family-based design, we are hoping to 

generate a better understanding of abnormalities that are disorder-relevant and those 

that are not. This may help us to address one of the big open questions for normative 

modeling (Wolfers et al., in preparation), namely, which abnormalities are indicative 

for disorder. By comparing affected and unaffected siblings, especially if they are 

genetically the same, this may give an indication of which brain abnormalities are 

relevant for a specific disorder.

Sixth, we are conceptualizing methodological improvements for normative modeling 

that address three main challenges: i) make it more computationally efficient, ii) model 

the association of covariates to brain readouts more appropriately, and iii) developing 

a thresholding tailored to the requirements of normative modeling at the level of the 



Towards precision medicine in psychiatry

153

individual. This procedure should have an absolute threshold that corrects for multiple 

comparisons appropriately.

Finally, we are currently exploring the relevance of deep learning methods for selecting 

and integrating features. We are also investigating how covariates are associated with 

brain readouts in the context of normative modeling329,331. We certainly require larger 

samples for this endeavor, but we are confident that these methods will be beneficial 

in future.

In summary, we are currently working on different methodological and conceptual 

improvements of normative modeling in particular, as we are confident that this 

approach could have a significant impact on our understanding of mental health 

and disorder. We emphasize that this thesis only represents the beginning of a long 

collaborative process to push the field forward towards more precision medicine in 

psychiatry. 

Some additional, societal considerations regarding individualized mental 

healthcare

Precision medicine in psychiatry will only be possible, if individuals provide their 

medical records, biological data, and demographics: in other words, precision 

medicine requires that the individual becomes more transparent for companies and 

governmentsXX. This could lead to stigmatization and other negative consequences 

for patients. This debate is too broad to be discussed here entirely332,333. However, 

data security and ownership are important considerations for the individual and our 

society. Therefore, effective laws need to be put in place to protect individual patients 

from interests that are not in line with their own.  

Nowadays, hi-tech companies are starting to create healthcare branches which 

indicates that this market holds enormous potential for future financial benefits. 

Imagine a company that can predict and potentially influence your mental health 

using machine intelligence in combination with big data and biological readouts from 

wearable devices. This company could be influential to such a degree that it might 

not be healthy for societal processes. We are aware that the perfect balance between 

an individualized mental healthcare system and the protection of individual medical 

data and records is difficult to envision. However, societies today are well advised 

to put effective laws in place that protect the data from individual citizens and to 

XX https://en.wikipedia.org/wiki/Dutch_Intelligence_and_Security_Services_Act_referendum,_2018
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fund competitive and transparent mental healthcare research at universities. We do 

not want to wake up one day in a world as it is so beautifully described in Juli Zeh’s 

book ‘Corpus Delicti’334, in which the ‘dogma of health’ suppresses people’s right to be 

sick and abnormal, or mentally disordered. All these facets of life are important for a 

society to thrive and flourish freely.  

Final conclusion 

In this thesis, we determined that a refinement by integration is essential to improve 

the description of a pathophysiological process. However, as we found patients from 

the same diagnostic group to show highly limited biological resemblance, a systematic 

refinement by heterogeneity mapping seems similarly or even more essential. We show 

that the ‘average patient’ is a non-informative concept in psychiatry, and instead a 

movement towards the individual patient is necessary to shape the next generation’s 

mental healthcare system and to move towards precision medicine in psychiatry.
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Samenvatting

In dit proefschrift hebben we de overkoepelende vraag behandeld: hoe kan 

‘refinement by integration’ en/of ‘refinement by heterogeneitymapping’ bijdragen 

aan de ontwikkeling van precisiegeneeskunde in de psychiatrie? Met ‘refinement 

by integration’ bedoelen wij onderzoek dat verschillende biologische variabelen 

integreert om tot een beter predictie van geestelijke stoornissen te komen. ‘Refinement 

by heterogeneitymapping’ betekent het in kaart brengen van individuele verschillen 

tussen patiënten met dezelfde psychiatrische diagnose.  Wij onderzoeken of deze twee 

principes in de context van precisiegeneeskunde in de psychiatrie. Precisiegeneeskunde 

is een algemene trend in de geneeskunde om diagnostiek en behandeling aan te passen 

op het individu. 

In hoofdstuk 1 introduceren wij de relevantie van ons werk voor precisiegeneeskunde 

in de psychiatrie. In hoofdstuk 2 hebben wij de literatuur van de afgelopen twee 

decennia systematisch in kaart gebracht die over patroonherkenning ging om de 

diagnose van een psychiatrische stoornis op basis van biologische informatie te 

voorspellen. Ondanks vele veelbelovende proef-van-concept resultaten, heeft dit 

onderzoek geen plek weten te veroveren in de klinische praktijk. Wij hadden de 

hypothese dat dit komt omdat de meerderheid van de studies last had van algemene 

beperkingen, zoals een relatief kleine steekproefomvang en/of een primaire focus op 

het schatten van de generaliseerbaarheid binnen een enkele steekproef. In hoofdstuk 3 

hebben we de bestaande literatuur uitgebreid door een patroonherkenning studie uit te 

voeren op basis van een functionele MRI-stop-signaal reactietijd taak in een steekproef 

die tien keer groter was dan bij eerdere studies het geval was. Wij konden aantonen 

dat een frontaal-pariëtaal patroon van hersenactiviteit bijdroeg aan de voorspelling 

van ADHD. In hoofdstuk 4 hebben we verschillende structurele en diffusiemodaliteiten 

geïntegreerd door gebruik te maken van een moderne integratiemethode. Met deze 

techniek kunnen we gelijktijdig een biologisch proces vanuit verschillende meetpunten 

onderzoeken. We konden aantonen dat de bevindingen grotendeels in lijn waren met 

eerdere resultaten over ADHD bij volwassenen, maar daarbij ook een multimodaal 

patroon identificeren. Helaas leverde deze aanpak geen hogere voorspellingen op voor 

ADHD. In hoofdstuk 2 hebben we ook een sterke variantie waargenomen in termen 
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van predicties voor verschillende geestelijke stoornissen over de studies heen, die 

aangaven dat de steekproefkenmerken en de heterogeniteit van deze stoornissen een 

belangrijke rol spelen in de diagnostiek op basis van hersenscans. In de hoofdstukken 5 

en 6 hebben we vervolgens de heterogeniteit van verschillende geestelijke stoornissen 

in kaart gebracht. We konden aantonen dat schizofrenie, bipolaire stoornis en ADHD 

biologisch sterke individuele verschillen laten zien in een mate die eerder niet werd 

verwacht. 

Samengevat, kunnen wij vaststellen dat een ‘refinement by integration’ nuttig is 

om de beschrijving van een pathofysiologisch proces, gemeten over verschillende 

modaliteiten, te verbeteren. Onze gegevens suggereren echter sterk dat een 

systematische ‘refinement by heterogeneitymapping’ belangrijker is, omdat patiënten 

uit dezelfde diagnostische groep een beperkte biologische overeenkomst vertoonden. 

Daarom is het belangrijk om op biologisch niveau naar het individu te kijken in plaats 

van de groep met een aandoening. In andere woorden, de ‘gemiddelde patiënt’ is geen 

informatief construct in de biologische psychiatrie. 

Samenvatting
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and fellow yogis, this thesis would have been much less fun to work on. I hope you are 

all able to attend the ceremony on the 15th of March, so I can personally thank you for 

your support and we can enjoy a great time together. 
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Donders graduate school for cognitive neuroscience*  

For a successful research Institute, it is vital to train the next generation of young 

scientists. To achieve this goal, the Donders Institute for Brain, Cognition and Behavior 

established the Donders Graduate School for Cognitive Neuro- science (DGCN), which 

was officially recognized as a national graduate school in 2009. The Graduate School 

covers training at both Master’s and PhD level and provides an excellent educational 

context fully aligned with the research program of the Donders Institute. 

The school successfully attracts highly talented national and international students 

in biology, physics, psycholinguistics, psychology, behavioral science, medicine 

and related disciplines. Selective admission and assessment centers guarantee the 

enrolment of the best and most motivated students. 

The DGCN tracks the career of PhD graduates carefully. More than 50% of PhD alumni 

show a continuation in academia with postdoc positions at top institutes worldwide, 

e.g. Stanford University, University of Oxford, University of Cambridge, UCL London, 

MPI Leipzig, Hanyang University in South Korea, NTNU Norway, University of Illinois, 

North Western University, Northeastern University in Boston, ETH Zürich, University of 

Vienna etc. Positions outside academia spread among the following sectors: specialists 

in a medical environment, mainly in genetics, geriatrics, psychiatry and neurology. 

Specialists in a psychological environment, e.g. as specialist in neuropsychology, 

psychological diagnostics or therapy. Positions in higher education as coordinators or 

lecturers. A smaller percentage enters business as research consultants, analysts or 

head of research and development. Fewer graduates stay in a research environment 

as lab coordinators, technical support or policy advisors. Upcoming possibilities are 

positions in the IT sector and management positions in pharmaceutical industry. In 

general, the PhDs graduates almost invariably continue with high-quality positions 

that play an important role in our knowledge economy. 

* http://www.ru.nl/donders/graduate-school/phd/
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