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A B S T R A C T

The efficiency of neuronal information transfer in activated brain networks may affect behavioral performance.
Gamma-band synchronization has been proposed to be a mechanism that facilitates neuronal processing of
behaviorally relevant stimuli. In line with this, it has been shown that strong gamma-band activity in visual
cortical areas leads to faster responses to a visual go cue. We investigated whether there are directly observable
consequences of trial-by-trial fluctuations in non-invasively observed gamma-band activity on the neuronal
response. Specifically, we hypothesized that the amplitude of the visual evoked response to a go cue can be
predicted by gamma power in the visual system, in the window preceding the evoked response. Thirty-three
human subjects (22 female) performed a visual speeded response task while their magnetoencephalogram
(MEG) was recorded. The participants had to respond to a pattern reversal of a concentric moving grating. We
estimated single trial stimulus-induced visual cortical gamma power, and correlated this with the estimated single
trial amplitude of the most prominent event-related field (ERF) peak within the first 100ms after the pattern
reversal. In parieto-occipital cortical areas, the amplitude of the ERF correlated positively with gamma power, and
correlated negatively with reaction times. No effects were observed for the alpha and beta frequency bands,
despite clear stimulus onset induced modulation at those frequencies. These results support a mechanistic model,
in which gamma-band synchronization enhances the neuronal gain to relevant visual input, thus leading to more
efficient downstream processing and to faster responses.
1. Introduction

Mesoscopic and macroscopic electrophysiological signals, as
measured invasively as local field potentials (LFPs) or non-invasively as
the magneto/electroencephalogram (MEG/EEG), can often be charac-
terized by rhythmic activity patterns in a broad range of frequencies
(Buzs�aki and Draguhn, 2004). Experimentally, distinct frequency bands
have been implicated in various cognitive processes. For instance,
cortical gamma-band activity (30–90 Hz) has been associated with
attention (Fries et al., 2001; Taylor et al., 2005; Tiitinen et al., 1993),
memory (Carr et al., 2012; Jensen and Lisman, 1996) and perception
(Gray and Singer, 1989; Llinas et al., 1994). Gamma rhythms result from
a balanced interplay between neuronal excitation and inhibition.
Fast-spiking interneurons bring about the inhibition of the excitatory
drive within a population. Once the inhibition fades off, the excitatory
drive activates pyramidal cells and in turn, excites the feedback loop of
fast-spiking interneurons. This interaction synchronizes the IPSPs in
pyramidal neurons and generates gamma rhythms at the population level
in, Cognition and Behaviour Rad
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(Buzs�aki and Wang, 2012). Fries (2015) proposed that this mechanism
functions to synchronize inputs down the processing hierarchy, thereby
making communication between neuronal groups more effective.

Given its putative mechanistic role in affecting the outcome of
cortical computations, gamma-band synchronization has become a pop-
ular neural substrate to quantify in relation to behavior during cognitive
experiments. This has led to evidence for a relationship between gamma-
band synchronization and behavior, both in humans and other mammals.
Multiple studies have found a larger pre-stimulus gamma power for
perceived versus unperceived stimuli (Hanslmayr et al., 2007; Link-
enkaer-Hansen, 2004; Makeig and Jung, 1996; Wyart and Tallon-Baudry,
2008), and strong gamma power in visual areas leads to faster responses
to a visual go cue (Womelsdorf et al., 2006; Koch et al., 2009; Hoo-
genboom et al., 2010). These results are in line with the idea that
gamma-band synchronization facilitates stimulus processing, and more
specifically, they suggest a behavioral relevance of the strength of
gamma-band synchronization in task-relevant areas.

Although the relation between the amplitude of the gamma rhythm
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and behavior has been established, relatively little is known about how
gamma-band synchronization in sensory cortical areas affects the chain
of neuronal events, leading to an eventual effect on behavior. One way to
investigate this would be to relate trial-by-trial fluctuations of the gamma
amplitude and/or phase, estimated at the moment of task-relevant
stimulus onset, with the transient event-related response to this stim-
ulus. Most studies investigating the mechanisms of gamma-band facili-
tation used invasive recording techniques, and focused on the relevance
of the gamma phase (Cardin et al., 2009; Fries et al., 2001; Ni et al.,
2016). Ni et al. (2016) show, at the mesoscopic scale of LFPs and
multiunit activity, that gamma-band oscillations lead to rhythmic fluc-
tuations in neuronal gain, such that inputs at phases of high gain elicit
stronger multiunit activity.

In the present research, we investigated the effect of trial-by-trial
fluctuations in MEG-derived gamma-band activity on stimulus-evoked
activity. Using a visual stimulation paradigm that is known to robustly
induce gamma-band activity in early visual cortical areas, we instructed
participants to respond as fast as possible to an unpredictable salient
change in a moving grating. We hypothesized that intrinsic variability in
gamma power reflects variability in the efficiency of information transfer
in the visual processing stream, which would manifest itself as correlated
amplitude variability of the early evoked responses. More salient acti-
vation in sensory areas would in turn lead to enhanced processing in
downstream areas, eventually causing a faster behavioral response.

2. Material and methods

2.1. Subjects

33 healthy volunteers, of which 22 females and 11males, participated
in the study. Their age range was 18–63 years (mean� SD: 27� 10
years). The age range in the participants is large, but this is due to a few
outliers in age. In fact, 28 out of 32 participants in the analyses were in
the age range of 18–27. The age of the rest of the participants was: 34, 43,
59 and 63. All subjects had normal or corrected-to-normal vision, and all
subjects gave written informed consent according to the Declaration of
Helsinki. The study was approved by the local ethics committee (CMO
region Arnhem/Nijmegen). One subject was excluded from analysis due
Fig. 1. Task time-line. Each trial starts with a 1.0 s blink period, followed by a var
1.0–3.0 s, after which a stimulus reversal occurs. The grating continues drifting for
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to a technical error, which corrupted one of the data files.

2.2. Experimental design

2.2.1. Stimuli
The experimental task was programmed in MATLAB (R2012b,

Mathworks, RRID: SCR_001622) using Psychophysics Toolbox (Brainard
and Vision, 1997), RRID: SCR_002881). All stimuli were presented
against a gray background. A fixation dot was present throughout the
experiment, the color of which indicated when the participant was
allowed to blink with their eyes (green for blinking, red for not blinking).
A concentric sinusoidal grating was presented at 100% black/white
contrast and was tapered towards the edges with a Hanning mask, such
that edge effects were excluded (see Fig. 1). The grating was present at
the center of the screen, with a visual angle of 7.1�, 2 sinusoidal cycles
per degree and a contraction speed of 2 cycles per second.

2.2.2. Experimental equipment
Stimuli were presented by back-projection onto a semi translucent

screen (width 48 cm) by an PROPixx projector with a refresh rate of
120Hz and a resolution of 1920� 1080 pixels. Subjects were seated at a
distance of 76 cm from the projection screen in a magnetically shielded
room. MEG was recorded throughout the experiment with a 275-channel
axial gradiometer CTF MEG system at a sampling rate of 1200Hz. In
addition, subject's gaze direction and pupil size were continuously
recorded using an SR Research Eyelink 1000 eye-tracking device (RRID:
SCR_009602). Head position was monitored in real-time during the
experiment by using head-positioning coils at the nasion and left and
right ear canals of the subject (Stolk et al., 2013). When head position
deviatedmore than 5mm from the position at the start of the experiment,
subjects readjusted to the original position. Behavioral responses during
the MEG session were recorded using a fiber optic response pad (FORP).

In addition to the MEG recording, anatomical T1 scans of the brain
were acquired with a 3T Siemens MRI system (Siemens, Erlangen, Ger-
many). In order for co-registration of theMEG andMRI datasets, the scalp
surface was mapped using a Polhemus 3D electromagnetic tracking de-
vice (Polhemus, Colchester, Vermont, USA).
iable baseline period (1.5–2.0 s). A concentric drifting grating is presented for
0.75 s, until the end of the trial, during which a response has to be made.
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2.2.3. Procedure
Subjects were instructed to keep fixation at the fixation dot

throughout the experiment (see Fig. 1). The fixation dot was colored red
most of the time, but turned green during the eye-blink period. After a
1.0 s eye-blink period and a 1.5–2.0 s baseline window, a contracting
grating was presented at the center of the screen. The grating contracted
for 1.0–3.0 s, after which a pattern reversal of the stimulus occurred. This
functioned as a go cue. Participants had to respond as fast and as accu-
rately as possible to the go cue by pressing a button with the right index
finger. Responses had to be made within 700ms. Ten percent of the trials
were catch trials, in which no stimulus change occurred. After the
stimulus change the grating continued to contract for another 750ms,
until the end of the trial. There was no feedback of task performance, but
participants were trained before the experiment to make sure they un-
derstood the task. Participants completed a maximum of thirteen blocks,
each consisting of forty trials, or until 1 h had passed. In between blocks
there was a self-paced break, if needed followed by repositioning of the
subject to the original position (see 2.2.2. Experimental Equipment). In
total, participants completed between 400 and 520 trials.

2.3. Data analysis

2.3.1. MEG preprocessing
The MEG data was preprocessed offline in MATLAB (2015b, Math-

works, RRID: SCR_001622) using FieldTrip toolbox (Oostenveld et al.,
2011), RRID: SCR_004849) and custom written code. First, excessively
noisy channels and trials were removed from the data by visual inspec-
tion. Additionally, trials with squid jumps or muscle artifacts were
removed from the data. Eyetracker data was visually inspected to discard
trials with eye blinks within the latency window of interest, and trials
where the gaze direction exceeded 5� from the fixation dot were removed
as well.

The data were demeaned, and high pass filtered at 1 Hz using a finite
impulse response windowed sinc (FIRWS; Widmann, 2006) filter. Power
line interference (50 Hz) and its harmonics were removed using a
discrete Fourier transform (DFT) filter. Further, signals relating to cardiac
activity or eye blinks and eye movements were identified and removed
from the data using independent component analysis (ICA). Lastly, the
trials of interest were defined as those where a stimulus change was
present and where a behavioral response was made within 700ms of that
event.

Eye tracker data were sampled at 1000Hz, resampled at 1200Hz and
saved as separate channels in the MEG data. Gaze direction was trans-
formed from onscreen x- and y-coordinates into visual angle relative to
the fixation cross. Pupil diameter had arbitrary units but mapped linearly
to physical units (Hayes and Petrov, 2016).

2.3.2. MRI processing
MRI data were co-registered to the MEG-based coordinate system

using the head-positioning coils and the digitized scalp surface. Using
SPM8 (Penny et al., 2011) we created volume conduction models of the
head, and individual meshes of dipole positions, consisting of a cortically
constrained surface-based mesh with 15,784 dipole locations. These
meshes were created using Freesurfer (RRID: SCR_001847) and HCP
workbench (RRID: SCR_008750). The dipole positions were used for the
identification of a virtual channel with the strongest gamma-band
response or low frequency response (see 2.3.5. Single-trial power), and
evoked responses were modelled on a parcellated version of this mesh.
The vertices were grouped into 374 parcels based on a refined version of
the Conte 69 atlas (Van Essen et al., 2012) in order to reduce the
dimensionality of the data (similar to Schoffelen et al., 2017). Forward
models were computed using single-shell volume conductor models that
were derived from individual structural MR images (Nolte, 2003).

2.3.3. Time-frequency analysis
Time-resolved spectral power was estimated for low (2–30 Hz) and
705
high (28–100 Hz) frequencies after padding the data with zeros to 6 s. For
low frequencies, a Hanning tapered 500ms sliding time window was
used in steps of 50ms, with 2 Hz resolution. High frequency power was
estimated using a DPSS multi-taper approach with a sliding time window
of 250ms and steps of 50ms, 4 Hz resolution and 8 Hz smoothing. Time-
frequency activity was expressed relative to a baseline, defined as
[-1.0–0.25] seconds, time locked to stimulus onset. For initial explora-
tion, spectral decomposition was performed on synthetic planar gradient
data (Bastiaansen and Kn€osche, 2000), and combined into a single
spectrum per sensor. This way, power spectra could easily be averaged
across subjects for visualization purposes.

2.3.4. Peak frequency
Subject-specific gamma power was estimated on the individualized

gamma peak frequency. In order to estimate peak frequencies, the power
spectrum after stimulus onset was contrasted with the pre-stimulus
baseline. First, trials were separated into baseline and stimulus presen-
tation epochs, where the first 400ms of stimulus presentation were dis-
carded in order to prevent spectral effects of evoked activity. Next, trial
epochs were cut into 500ms snippets, with fifty percent overlap. Spectral
power was then estimated on these snippets in the 30–90Hz range, after
tapering with a Hanning window. Finally, the gamma peak frequency
was determined at the maximum power ratio of stimulus presentation
over baseline period, averaged over occipital MEG channels. A similar
approach was used for low frequencies, in the 2–30Hz range, but here
the negative peak (i.e. showing the largest power reduction from base-
line) was used.

2.3.5. Single-trial power
To get an optimal estimate of single-trial gamma power, we created

subject-specific virtual channels, using a DICS beamformer (Gross et al.,
2001), scanning the cortically constrained mesh of dipole positions. The
750ms of data before the stimulus change were used to ensure the best
signal-to-noise ratio, while at the same time ensuring that the estimate of
gamma-band activity was as little as possible affected by evoked activity.
These 750ms epochs were padded with zeros to 1 s, and a multi-taper
Fast Fourier transform (FFT) with 8 Hz spectral smoothing was applied
to these data. The same was done for a 750ms baseline window. Spatial
filters were created for each of the dipole locations, using the
cross-spectral density estimated from the concatenated data, at the
subject-specific peak frequencies, and a regularization of 5% of the mean
sensor-level power. Next, the virtual channel was selected as the dipole
location that showed the largest increase in gamma power, relative to
baseline (i.e. the dipole location with the highest t-value resulting from a
T-test).

Next, the single-trial gamma power was estimated on these virtual
channels, in the 200ms just before the ERF window (see 2.3.6. Single-trial
event-related responses; the window in which power was estimated ended
20ms before the manually picked ERF latency peak), using a spatial filter
with fixed dipole orientation, optimized for this time window. Spectral
smoothing was adapted to the bandwidth of the induced gamma-band
response (with a minimum of 10 Hz), which was determined by visual
inspection of the time-frequency spectrum.

To estimate single-trial power estimates for the alpha-beta band, a
similar procedure was used. The cross-spectral density matrix was esti-
mated at individual peak-frequency with 2 Hz smoothing, based on the
750ms before the stimulus change. Since the induced low frequency
response was a power decrease relative to baseline, the dipole location
that showed the largest decrease was selected as the virtual channel.
Power values were computed on these virtual channels, on subject's peak
frequencies, with 2.5 Hz spectral smoothing and in the window of 400ms
before the ERF window.

2.3.6. Single-trial event-related responses
The event-related response to the stimulus change was modelled

using a Linearly Constrained Minimum Variance (LCMV) beamformer on
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the cortically-constrained meshes of dipole positions, followed by a
parcellation based on an anatomical atlas (see 2.3.2. MRI preprocessing).
Data, time locked to stimulus change, were selected and baseline cor-
rected based on 100ms prior to the change. For each anatomical parcel,
the source time courses of the dipoles belonging to this parcel were
concatenated, and subjected to a principal component analysis (PCA).
The first spatial component that explained most variance in the signal
was used as a representation of single-trial activity for this parcel. In
order to account for the beamformer's depth bias, the data were
normalized by an estimate of the noise using the covariance matrix of the
200ms prior to the go cue. The resulting time courses were low-pass
filtered at 30 Hz using a finite impulse response (FIR) windowed sync
function. The data were filtered from right to left, to avoid leakage of pre-
change signal into the post-change estimates. Next, the amplitudes of the
single-trial visual evoked responses were estimated in a time window
showing the most prominent peak in the trial averaged ERF, in the first
100ms after stimulus change, on a subjects-by-subject basis. These
windows were manually defined by visual inspection of the source-level
activity time courses.

2.3.7. Correlation of single-trial power and ERF amplitude
Correlations between ERF amplitude, alpha-beta power and gamma

power, and response speed, and between gamma power, response speed
and trial length were computed at the single-subject level using Spear-
man's rank correlation coefficient. We also computed partial correlations
between alpha-beta/gamma power and response speed, each time ac-
counting for trial length and power values in the other frequency band.
Additionally, we computed partial correlations between gamma power
and ERF amplitude, accounting for pupil diameter and gaze direction.

2.3.8. Statistical analysis
The correlation between alpha-beta power and gamma power,

response speed and trial length was statistically evaluated using a para-
metric t-test (against 0) on the distribution of correlation coefficients
over subjects (alpha¼ 0.05).

Statistical significance of the correlation between alpha-beta/gamma
power and ERF amplitude, and between ERF amplitude and reaction
times was assessed using non-parametric permutation tests (based on
10,000 permutations) combined with spatial clustering for family-wise
error control (Maris and Oostenveld, 2007). Under the null hypothesis
of no systematic relationship across participants between gamma power
and the ERF amplitude, we created a reference distribution of the
group-level t-statistic of the correlation against zero, using sign swapping
of the correlation for random subsets of subjects. Spatially adjacent
parcels with t-values corresponding to a nominal alpha threshold of 0.05
(0.01 for the correlation between ERF amplitude and RT) were grouped
into clusters, and cluster-level statistics were computed as the sum of
t-values within a cluster. The null-hypothesis was rejected if the
maximum cluster-level statistic in the observed data was in the positive
tail of the permutation distribution of cluster-level statistics for the cor-
relation between ERF amplitude and gamma power, and in the negative
tail for the correlation between alpha-beta power and ERF amplitude,
and between ERF amplitude and reaction times, at a level of <0.05
one-sided.

3. Results

Out of the 400–520 completed trials per subject, on average fifty of
themwere catch trials, i.e. these trials did not require a response. Overall,
the subjects performed with a mean accuracy of 94% (SD¼ 5.8%).
Excluding catch trials and trials with artifacts or excessive eye move-
ments, on average 339 trials per subject (SD¼ 61) were considered for
further analysis. Of this pool, the mean performance rate was 94%
(SD¼ 5.5%) and the mean reaction time over subjects was 371ms
(SD¼ 56ms).
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3.1. Stimulus protocol leads to reliable stimulus-induced changes in gamma
power and visual event-related responses

The contracting grating stimuli used here are known to robustly
induce gamma-band synchronization (Hoogenboom et al., 2006; Swet-
tenham et al., 2009; Van Pelt and Fries, 2013). In order to verify the
spectral characteristics of the stimulus-onset induced neuronal response,
we conducted a time-frequency analysis at the channel-level. We con-
trasted spectral power after stimulus onset with the average spectrum in
the baseline window. Fig. 2 shows the average spectral power for all
subjects in the gamma-frequency range (30–90Hz). As expected, it was
highest in occipital channels and it remained high throughout the whole
stimulus presentation. Sources of the activity were localized to early vi-
sual areas (see Fig. 2e). In order to assess the gamma power increase
quantitatively we estimated the power increase from baseline at the in-
dividual gamma peak frequency (Fig. 2d) and at the occipital channel
that showed maximal increase. Over subjects, gamma power increased
on average with 124% (mean, SD¼ 124%) during stimulation (Fig. 2d,
right). Besides a gamma-band increase, a decrease in power was gener-
ally observed in the alpha/low beta band (8–20 Hz). This phenomenon
presented itself mainly in occipital channels, and was also strongest in
occipital source parcels (see Fig. 3).

In addition to the stimulus inducing a robust gamma-band response,
the stimulus change caused an event-related field (ERF). Fig. 4a shows
the ERF of an example subject over trials, together with the topography of
the trial average of the P100 response in Fig. 4c. The signal-to-noise ratio
(SNR) of the evoked response is relatively poor at the single-trial level.
Also, the spatial topography was variable over subjects (data not shown).
In order to reduce the spatial variability over subjects and to boost the
SNR, all further analyses were conducted on the source level. Fig. 4b
shows a superior SNR for single trials on the source level compared to the
channel level, together with the source topography in Fig. 4d. Despite the
large variability of the response evoked by the stimulus change and the
percentage increase in induced gamma, all subjects did show the
neuronal response that was expected.

3.2. Pre-stimulus gamma power correlates with reaction times

In order to evaluate the effect of pre-stimulus gamma power on
behavior, we calculated the correlation between reaction times and the
gamma power preceding the stimulus change. Gamma power was esti-
mated on a virtual channel in source space. There was a relatively weak
but highly significant, negative correlation of �0.072 (SD ¼ 0.064,
t(31) ¼ �6.3, p ¼ 5.1*10�7), which is in line with previous research
(Hoogenboom et al., 2010; Womelsdorf et al., 2006). For illustration
purposes, Fig. 5 shows the spatial distribution of the correlation between
gamma power and reaction times as the average spearman correlation
over subjects. This correlation is specific to posterior cortex, and highest
in occipital areas.

One potential factor that might explain the correlation between
gamma power and reaction times is stimulus jitter (i.e., the time between
stimulus onset and the stimulus change). Stimulus jitter was uniformly
distributed, and by consequence the instantaneous probability of a
reversal event (hazard rate) increased over time. There could be a com-
mon dependence of gamma power and reaction times on stimulus ex-
pectancy. In order to investigate this possibility, we computed partial
correlations between reaction time, gamma power and stimulus jitter,
each time accounting for the third variable. Since we also found a
stimulus-induced power reduction in the alpha-beta band, there is also a
possibility that the correlation between gamma power and reaction times
is actually caused by a common dependence on power in this frequency
band. Therefore, we also partialled out power in the alpha-beta band.
Reaction times correlated negatively with both gamma power
(M ¼ �0.068, t(31) ¼ �6.1, p ¼ 8.9 * 10�7, uncorrected) and stimulus
jitter (M ¼ �0.17, t(31) ¼ �7.0, p ¼ 6.9 * 10�8, uncorrected), but there
was no correlation between gamma power and stimulus jitter



Fig. 2. Stimulus induces strong gamma synchronization. A) Group-average time-frequency spectrum. Gamma (50–70 Hz) power peaks right after stimulus onset and is
sustained throughout stimulus presentation. B) Topography of the stimulus-induced gamma-band activity. Circles reflect selected channels, shown in A. C) Power
spectrum in the gamma band relative to pre-stimulus baseline. Stimulus-induced power was estimated on a window 400ms post stimulus onset until stimulus reversal.
Individual (gray line) and group-average (black line) power spectra on the channel level. D) Left: gamma peak frequencies. Generally, peak frequencies were in the
40–70 Hz range. Right: power changes (right) at individual gamma peak frequencies. Power changes were highly variable. Small circles (dots) represent individual
subjects; open circles indicate outliers, which fall outside 1.5 times the interquartile range, from the 25th and 75th percentiles. E) Source level activity of induced
gamma the group average t-value. Induced gamma activity was strongest in occipital regions. Black spheres indicate location of virtual gamma channel for indi-
vidual subjects.
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(t(31)¼ 0.85, p¼ 0.40, uncorrected). Additionally, no significant corre-
lation was found between reaction times and low frequency power when
accounting for gamma power and stimulus jitter (t(31)¼ 1.1, p¼ 0.27,
uncorrected), nor between low frequency power and gamma power
(t(31)¼ 0.03, p¼ 0.97, uncorrected). These results indicate that the
correlation between gamma power and reaction times is not likely to be
the result of a build-up in expectancy, nor a result of power correlations
between frequency bands. Further, there is no effect of low frequency
power on reaction times, above and beyond the effect of gamma.

3.3. Pre-stimulus gamma power predicts ERF amplitude

Considering the vast amount of variability in the evoked response
over subjects at the channel level, and the low signal-to-noise ratio of
single trial event-related responses, we estimated the single trial
707
responses to the stimulus change at the source-level, before quantifying
the relation between gamma power and ERF amplitude. The time courses
of the evoked response were projected into source space with an LCMV
beamformer and combined into parcels according to an anatomical brain
atlas (Van Essen et al., 2012). The relation between gamma power and
the ERF was quantified as a Spearman rank correlation at the single
subject level and can be seen in Fig. 6. Group statistical evaluation
showed that the correlation differed significantly from zero (M¼ 0.025,
p¼ 0.021, nonparametric permutation test, corrected). This difference
was supported by a cluster of positive correlation in source parcels in
occipital and parietal areas (Fig. 6a), supporting the hypothesis that
increased gamma power leads to an increased amplitude of the
stimulus-evoked transient. However, a spurious correlation between the
variables of interest might have resulted from the common influence of a
third variable. Specifically, gaze direction and arousal could have a



Fig. 3. Stimulus induces desynchronization in alpha-beta band (8–20 Hz). Similar to Fig. 2 but for low frequencies. Power in de alpha and low beta range decreased
after stimulus onset, which was strongest in occipital parts of the cortex.
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similar effect on gamma power and ERF amplitude. The subject's gaze
direction might affect the exact part of the visual cortex that is activated
by the stimulus. Further, the amount of light entering the eye is affected
by pupil dilation and might affect cortical activation as well. In order to
account for these possibilities, we recomputed the correlation, now ac-
counting for gaze direction and pupil diameter. The correlation between
gamma power and ERF amplitude remained significant (M¼ 0.024,
p¼ 0.029, nonparametric permutation test, corrected), indicating that
this effect was not purely caused by gaze direction or pupil diameter.

To investigate whether the effect found was specific to the gamma
band, we correlated alpha-beta power with ERF amplitude. In addition to
a gamma power increase, the stimulation used in this experiment also
induced an alpha-beta power decrease. Conform this decrease, if any, a
negative correlation was expected between low frequency power and
ERF amplitude. This correlation was not significant at the group level
(p¼ 0.66, nonparametric permutation test, corrected). Taken together,
these results suggest that the correlation between ongoing oscillatory
activity and ERF amplitude are specific to the gamma band.

According to our hypothesis, an increase in ERF amplitude as a
consequence of high gamma power is an intermediate neuronal correlate
708
that subserves the shortening of reaction times. This would imply that the
amplitude of the ERF also correlates with reaction times. To investigate
this, we correlated ERF amplitude with reaction times (Fig. 7b). This
correlation was significantly lower than zero (M¼�0.027, p¼ 0.037,
nonparametric permutation test, corrected), indicating that a higher
amplitude of early evoked activity leads to a faster behavioral response.
The cluster that contributed to this significant difference predominantly
consisted of source parcels belonging to the visual cortex of the left
hemisphere (Fig. 7a), conform our hypothesis.

4. Discussion

In this experiment, we investigated the neuronal consequences of
trial-by-trial variability in induced gamma-band activity, using a visual
stimulus change detection paradigm. We hypothesized that higher
gamma power before a go cue would facilitate the efficiency of the
processing of the response cue, leading to a more strongly synchronized
response in early visual areas, as reflected by higher early latency ERF
amplitudes. In turn, the increased processing efficiency would lead to a
faster behavioral response.



Fig. 4. Signal-to-noise ratio of evoked activity is higher at the source level than at the channel level. A–B: single-trial time courses of evoked activity for the channel/
parcel depicted in C/D, for a representative subject. C–D: topography of the P100 (depicted in A/B), evoked by the stimulus change.

Fig. 5. Reaction times correlate negatively with gamma power. The color scale
indicates the average Spearman correlation over subjects for each dipole loca-
tion. The correlation between gamma power and reaction times is specific to
posterior cortex, predominantly occipital areas.
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We computed single trial estimates of gamma power in visual areas,
in the time window just prior to the stimulus change, and replicated the
finding that higher gamma amplitude leads to faster reaction times in
response to the go cue (Hoogenboom et al., 2010). Moreover, we
correlated the single-trial gamma power with the amplitude of early
709
latency source-reconstructed event-related activity, and observed a sig-
nificant group-level effect, where the early latency event-related
response in parieto-occipital areas correlated positively with
pre-stimulus gamma power. In turn, the amplitude of event-related
response in visual areas correlated negatively with reaction times.
These findings are consistent with the hypothesis that strong local
gamma-band synchronization facilitates the neuronal response to a
change in the stimulus, which eventually leads to improved behavioral
performance.

Here, the effect of oscillatory activity on the subsequent neuronal
response was specific to the gamma band. We also analyzed the effect of
alpha/beta activity on the event-related response, since activity in these
frequency bands was also prominently modulated by the onset of the
visual stimulus. In contrast to the gamma band, we did not observe a
significant association between trial-by-trial power fluctuations in these
lower frequencies, and trial-by-trial fluctuations in the event-related
response, and response speed.

Although Hoogenboom et al. (2010) did not specifically investigate
the relation between gamma-band activity and the ERF, the authors did
quantify the relation between ERF amplitude and reaction times, and
found no significant effect. This latter null-finding is in contrast with our
analysis of the current data. Most likely this discrepancy is due to the fact
that the aforementioned study used a temporally ill-defined stimulus
change (change in drift speed). This did not elicit prominent evoked
activity and thus prohibited the reliable estimation of evoked activity. In
contrast, we used a pattern reversal as stimulus change, precisely because
this is known to elicit prominent evoked activity (Barnikol et al., 2006; Di



Fig. 6. Occipital gamma power correlates with ERF amplitude. A) Group statistic of the correlation between gamma power and ERF amplitude. B) boxplot (left) of
correlation values and individual correlations (right) in increasing order of raw correlation value. Raw correlations in black, corresponding partial correlations in gray.
For each subject, correlations were averaged over those parcels belonging to the largest spatial cluster.

Fig. 7. ERF amplitude in occipital cortex correlates with reaction times. A) Group statistic of the correlation between ERF amplitude and reaction times. B) boxplot
(left) of correlation values and individual correlations (right). For each subject, correlations were averaged over those parcels belonging to the largest spatial cluster.
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Russo et al., 2005; Nakamura et al., 1997; Perfetti et al., 2007). Because
of this, we were able to reliably estimate the amplitude of early visual
components on single trials and demonstrate a positive correlation be-
tween gamma power and ERF amplitude, and a negative correlation
between ERF amplitude and reaction times, in support of our hypothesis.

One possible concern that might confound a mechanistic interpreta-
tion of the relation between gamma-band activity, response speed, and
the event-related transients could be a latent variable that correlates with
these measures, causing spurious, indirect correlations. Specifically, the
time interval between a warning cue and an upcoming stimulus is well
known to be a determinant of response speed (Beck et al., 2014; Schof-
felen et al., 2005), and temporally better predictable stimuli are associ-
ated with higher amplitudes in early components of evoked activity
(Dassanayake et al., 2016; Doherty, 2005; Lange et al., 2006). Addi-
tionally, the hazard rate has been shown to correlate with spectral
characteristics in alpha/beta and gamma band (Rohenkohl and Nobre,
2011; Rolke and Hofmann, 2007; Schoffelen et al., 2005; Tsunoda and
Kakei, 2008), and low frequency spectral responses have been shown to
be anti-correlated with high frequency responses (Hoogenboom et al.,
2006; Scheeringa et al., 2011; Spaak et al., 2012; Womelsdorf et al.,
2006). Therefore, variability in the low frequency response, and/or
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stimulus expectancy might be a common determinant for gamma power
and response speed. We checked for these possibilities by estimating the
partial correlation between gamma power and reaction time, controlling
for differences in stimulus expectancy and power in low frequencies. The
partial correlations were still significant, and specifically there was no
additional effect of low frequency power on reaction times. This further
corroborates the absence of a trial-by-trial effect of low frequency
alpha/beta activity on the ERF amplitude. These results highlight the
relevance and uniqueness of gamma power in behavior, and are in sup-
port of a model in which gamma-band activity modulates neuronal
processing in order to affect behavior.

Another variable that might cause spurious correlations between
gamma power and ERF amplitude is arousal. Arousal is known to
enhance both gamma-band (Balconi and Lucchiari, 2008) and evoked
activity (Eason et al., 1969), and to shorten reaction times (Eason et al.,
1969). Thus, fluctuations in arousal could potentially similarly affect
both gamma power and ERF amplitude. We accounted for this possibility,
by recomputing the correlations, taking into account pupil diameter as a
proxy for arousal (Bradley et al., 2008). In addition, in this control
analysis we also accounted for gaze direction, since pupil diameter esti-
mates are confounded by gaze direction (Hayes and Petrov, 2016).
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Further, although we a priori excluded from the analysis those trials,
where gaze direction deviated from central fixation by more than 5 de-
grees of visual angle, fluctuations in the gaze direction affect the retinal
image and thus the cortical activation. Accounting for pupil size and gaze
direction, the correlation between gamma power and ERF amplitude
remained significant. An additional proxy for the level of arousal could
have been the time from the start of the experiment. Since the experiment
was long and monotonous, the subject's engagement could have gradu-
ally decreased, possibly leading to an increase in reaction times late as
compared to early in the experiment. However, the correlation between
trial number and reaction time was negative (M¼ -0.05, p¼ 0.043,
t(31)¼ -2.1, uncorrected). This suggests that, if anything, participants
became overall faster during the course of the experiment, and that
arousal, at least as indicated by changes in RT, did not systematically
decrease over time.

Even though to our knowledge there is no further literature sup-
porting a correlation between reaction times and the amplitude of early
visual evoked components, correlations have been found with their peak
latency (Gerson et al., 2005; Kammer et al., 1999). In contrast to the
current experiment, where the stimulus was constant in every trial and
we made use of the natural variations in the physiological and behavioral
response, these studies manipulated either luminance or natural scenes in
order to do so. Disregarding the source of variation in the physiological
and the behavioral response, it is conceivable that pre-stimulus change
gamma-band activity might also affect the latency of the evoked response
in addition to its amplitude, and the combination of both ultimately af-
fects behavior. This is beyond the scope of the current study, but would
be an interesting topic in future research.

Our main effect is in contrast to Privman et al. (2011). The authors
used a repetition suppression paradigm, and found a reduction in ERP
power in higher order visual areas as a function of gamma power in
response to the second stimulus. The authors hypothesized that the
gamma-band activity caused by the first stimulus might be sustained after
its offset and disrupts synchronization of the neural population, selective
for the second incoming stimulus. Thus, their findings might be specific
to the simulation protocol used, which is further supported by the finding
that the repetition suppression effect is largest when the stimuli are more
similar, leading to larger overlapping neuronal representations (Grill--
Spector et al., 2006).

In this study, we used non-invasive MEG recordings in human par-
ticipants. In contrast to invasive recordings, MEG lacks the high spatial
resolution and high signal-to-noise ratio to allow for a detailed functional
and spatial interpretation of our findings. In contrast to the present
findings, recent work using invasive data from macaques and cats (Ni
et al., 2016), showed that the gain of the multiunit response in primary
visual cortex is dependent on the gamma phase of the local field poten-
tial. However, the authors did not investigate the functional relevance of
gamma amplitude, nor did we study gamma phase. Still, their results and
our results are not contradictive: the amount of synchronization on the
one hand, reflected by gamma power, and high excitability phases on the
other hand, might both contribute to enhanced neuronal gain.

In addition to the relatively limited spatial resolution, the high
spatiotemporal variability in the response across subjects did not allow
for a consistent assignment of even the early ERF components to a spe-
cific subregion in the visual system. The amplitude of the ERF was esti-
mated as the most prominent peak within the first 100ms after the go
cue, which in terms of latency is well beyond the first geniculate input
into primary visual cortex and might even reflect extrastriate activity,
and thus likely reflects a more widespread activation of several cortical
areas. Despite this limitation, our findings indicate that gamma-band
activity increases the neuronal gain to new visual input. In addition,
the fact that this effect can be shown at the spatial scale at which MEG
operates, provides further justification to use gamma-band responses as a
physiologically and mechanistically inspired dependent variable in non-
invasive human cognitive neuroscience experiments.
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