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Abstract 

Attention-Deficit/Hyperactivity Disorder (ADHD) is a highly heritable childhood behavioral 

disorder affecting 5% of school-age children and 2.5% of adults. Common genetic variants 

contribute substantially to ADHD susceptibility, but no individual variants have been robustly 

associated with ADHD. We report a genome-wide association meta-analysis of 20,183 ADHD 

cases and 35,191 controls that identifies variants surpassing genome-wide significance in 12 

independent loci, revealing new and important information on the underlying biology of ADHD. 

Associations are enriched in evolutionarily constrained genomic regions and loss-of-function 

intolerant genes, as well as around brain-expressed regulatory marks. These findings, based on 

clinical interviews and/or medical records are supported by additional analyses of a self-reported 

ADHD sample and a study of quantitative measures of ADHD symptoms in the 

population.  Meta-analyzing these data with our primary scan yielded a total of 16 genome-

wide  significant loci. The results support the hypothesis that clinical diagnosis of ADHD is an 

extreme expression of one or more continuous heritable traits. 

 

Background 

Attention-Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental psychiatric disorder, 

that affects around 5% of children and adolescents and 2.5% of adults worldwide1. ADHD is 

often persistent and markedly impairing with increased risk of harmful outcomes such as 

injuries2, traffic accidents3, increased health care utilization4,5, substance abuse6, criminality7, 

unemployment8, divorce4, suicide9, AIDS risk behaviors8, and premature mortality10. 

Epidemiologic and clinical studies implicate genetic and environmental risk factors that affect 
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the structure and functional capacity of brain networks involved in behavior and cognition1, in 

the etiology of ADHD. 

 

Consensus estimates from over 30 twin studies indicate that the heritability of ADHD is 70-80% 

throughout the lifespan11,12 and that environmental risks are those not shared by siblings13.  Twin 

studies also suggest that diagnosed ADHD represents the extreme tail of one or more heritable 

quantitative traits14. Additionally, family and twin studies report genetic overlap between ADHD 

and other conditions including antisocial personality disorder/behaviours15, 

cognitive impairment16, autism spectrum disorder17,18, schizophrenia19, bipolar disorder20, and 

major depressive disorder21.  

 

Thus far genome-wide association studies (GWASs) to identify common DNA variants that 

increase the risk of ADHD have not been successful22. Nevertheless, genome-wide SNP 

heritability estimates range from 0.10 - 0.2823,24 supporting the notion that common variants 

comprise a significant fraction of the risk underlying ADHD25 and that with increasing sample 

size, and thus increasing statistical power, genome-wide significant loci will emerge.  

 

Previous studies have demonstrated that the common variant risk, also referred to as the single 

nucleotide polymorphism (SNP) heritability, of ADHD is also associated with depression25, 

conduct problems26, schizophrenia27, continuous measures of ADHD symptoms28,29 and other 

neurodevelopmental traits29 in the population. Genetic studies of quantitative ADHD symptom 

scores in children further support the idea that ADHD is the extreme of a quantitative trait30. 
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Here we present a genome-wide meta-analysis identifying the first genome-wide significant loci 

for ADHD using a combined sample of 55,374 individuals from an international collaboration. 

We also strengthen the case that the clinical diagnosis of ADHD is the extreme expression of one 

or more heritable quantitative traits, at least as it pertains to common variant genetic risk, by 

integrating our results with previous GWAS of ADHD-related behavior in the general 

population. 

 

Genome-wide significantly associated ADHD risk loci 

Genotype array data for 20,183 ADHD cases and 35,191 controls were collected from 12 cohorts 

(Supplementary Table 1). These samples included a population-based cohort of 14,584 cases and 

22,492 controls from Denmark collected by the Lundbeck Foundation Initiative for Integrative 

Psychiatric Research (iPSYCH), and 11 European, North American and Chinese cohorts 

aggregated by the Psychiatric Genomics Consortium (PGC). ADHD cases in iPSYCH were 

identified from a national research register and diagnosed by psychiatrists at a psychiatric 

hospital according to ICD10 (F90.0), and genotyped using Illumina PsychChip. Designs for the 

PGC cohorts has been described previously24,25,31,32,22 (see Supplementary Information for 

detailed cohort descriptions).  

 

Prior to analysis, stringent quality control procedures were performed on the genotyped markers 

and individuals in each cohort using a standardized pipeline33 (see Online Methods). Related 

individuals were removed, and genetic outliers were excluded based on principal component 

analysis. Non-genotyped markers were imputed using the 1000 Genomes Project Phase 3 

reference panel34 (see Online Methods).  
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GWAS was conducted in each cohort using logistic regression with the imputed additive 

genotype dosages. Principal components were included as covariates to correct for population 

stratification35 (see Supplementary Information), and variants with imputation INFO score < 0.8 

or minor allele frequency (MAF) < 0.01 were excluded. The GWAS were then meta-analyzed 

using an inverse-variance weighted fixed effects model36. Association results were considered 

only for variants with an effective sample size greater than 70% of the full meta-analysis, leaving 

8,047,421 variants in the final meta-analysis. A meta-analysis restricted to European-ancestry 

individuals (19,099 cases, 34,194 controls) was also performed to facilitate secondary analyses.  

 

In total, 304 genetic variants in 12 loci surpassed the threshold for genome-wide significance 

(P<5´10-8; Figure 1, Table 1, Supplementary Figure 3.A2 – 3.M2). No marker demonstrated 

significant heterogenety between studies (Supplementary Figure 6 and 7). Conditional analysis 

within each locus did not identify any independent secondary signals meeting genome-wide 

significance (see Online Methods, Supplementary Table 2).   

 

Homogeneity of effects between cohorts 

No genome-wide significant heterogeneity was observed in the ADHD GWAS meta-analysis 

(see Supplementary Information). Genetic correlation analysis (see Online Methods) provided 

further evidence that effects were consistent across different cohort study designs. The estimated 

genetic correlation between the European ancestry PGC samples and the iPSYCH sample from 

LD score regression37 was not significantly less than 1 (rg = 1.17, SE = 0.2). The correlation 
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between European ancestry PGC case/control and trio cohorts estimated with bivariate GREML 

was close to one (rg = 1.02; SE = 0.32).  

 

Polygenic risk scores (PRS)38 also show consistency over target samples. PRS computed in each 

PGC study using iPSYCH as the training sample were consistently higher in ADHD cases as 

compared to controls or pseudo-controls (see Supplementary Figure 11). Increasing deciles of 

PRS in the PGC were associated with higher odds ratio (OR) for ADHD (Figure 2). A similar 

pattern was seen in five-fold cross validation in the iPSYCH sample, with PRS for each subset 

computed from the other four iPSYCH subsets and the PGC samples used as training samples 

(see Online Methods; Figure 2). Across iPSYCH subsets, the mean of the maximum variance 

explained by the estimated PRS (Nagelkerke’s R2) was 5.5% (SE = 0.0012). The difference in 

standardized PRS between cases and controls was stable across iPSYCH subsets (OR = 1.56, 

95% confidence interval (CI): 1.53 – 1.60); Supplementary Figure 9). These results further 

support the highly polygenic architecture of ADHD and demonstrate that the risk is significantly 

associated with the individual PRS burden in a dose-dependent manner.  

 

Polygenic Architecture of ADHD  

To assess the proportion of phenotypic variance explained by common variants we applied LD 

score regression37 in the European ancestry meta-analysis (Online Methods). Assuming a 

population prevalence of 5% for ADHD39, we estimate that the liability-scale SNP heritability 

h2
snp=0.216 (SE=0.014; P=8.18´10-54). These estimated polygenic effects account for 88% 

(SE=0.0335) of observed genome-wide inflation of the test statistics in the meta-analysis; the 
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remaining inflation, which may reflect confounding factors such as cryptic relatedness and 

population stratification, is significant but modest (intercept=1.0362, SE=0.0099; P=2.27´10-4).   

 

To further characterize the patterns of heritability from the genome-wide association data, we 

performed partitioning based on the functional annotations described in Finucane et al.40 (see 

Online Methods). The analysis revealed significant enrichment in the heritability by SNPs 

located in conserved regions (P = 8.49 x 10-10) (Supplementary Figure 12), supporting the 

general biological importance of conserved regions and the potential impact on ADHD of 

variants located in these regions. Additionally enrichment in the heritability of SNPs located in 

cell-type-specific regulatory elements was evaluated by using the cell-type-specific group 

annotations described in Finucane et al40. The analysis revealed a significant enrichment of the 

average per SNP heritability for variants located in central nervous system specific regulatory 

elements (enrichment = 2.44 (SE=0.35); P = 5.81 x 10-5) (Supplementary Figures 13 and 14).  

 

Genetic correlation with other traits 

Pairwise genetic correlation with ADHD was estimated for 220 phenotypes using LD score 

regression41,42 (Online Methods, Supplementary eTable 5). Thirty-eight phenotypes 

demonstrated significant genetic overlap with ADHD (P<2.27´10-4), including major depressive 

disorder(submitted), educational outcomes43-46, obesity-related phenotypes47-52, smoking53-55, 

reproductive success56, and mortality57 (Figure 3; Supplementary Table 11). In each case the 

genetic correlation is supported in GWAS of multiple related phenotypes. For the positive 

genetic correlation with major depressive disorder (rg=0.42, P= 7.38´10-38), we also observe a 

positive correlation with depressive symptoms (rg=0.45, P= 7.00´10-19), neuroticism (rg=0.26, P= 
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1.02´10-8) and a negative correlation with subjective well-being (rg=-0.28, P= 3.73´10-9). The 

positive genetic correlations with ever smoking (rg=0.48, P= 4.33´10-16) and with number of 

cigarettes smoked (rg=0.45, P= 1.07´10-5) are reinforced by significant positive correlation with 

lung cancer (rg=0.39, P= 6.35´10-10). Similarly, genetic correlations related to obesity include 

significant relationships with body mass index (BMI; rg= 0.26, P= 1.68´10-15), waist-to-hip ratio 

(rg=0.30, P= 1.16´10-17), childhood obesity (rg= 0.22, P= 3.29´10-6), HDL cholesterol (rg= -0.22, 

P= 2.44´10-7), and Type 2 Diabetes (rg= 0.18, P= 7.80´10-5). Additionally the negative 

correlation with years of schooling (rg = -0.53, P= 6.02x10-80) is supported by a negative genetic 

correlation with childhood IQ (-0.41, P= 1.24x10-6). 

 

Biological annotation of significant loci 

For the 12 genome-wide significant loci, Bayesian credible sets were defined to identify the set 

of variants at each locus most likely to include a causal effect (see Online Methods, 

Supplementary eTable 1). Biological annotations of the variants in the credible set were then 

considered to identify functional or regulatory variants, common chromatin marks, and variants 

associated with gene expression (eQTLs) or in regions with gene interactions observed in Hi-C 

data (see Online Methods, Supplementary eTable 2). Broadly, the significant loci do not coincide 

with candidate genes proposed to play a role in ADHD58. 

 

Here we highlight genes that are identified in the regions of association (see also Supplementary 

Table 4). The loci on chromosomes 2, 7, and 10 each have credible sets localized to a single gene 

with limited additional annotations. In the chromosome 7 locus, FOXP2 encodes a 

forkhead/winged-helix transcription factor and is known to play an important role in synapse 
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formation and neural mechanisms mediating the development of speech and learning59-61. 

Comorbidity of ADHD with specific developmental disorders of language and learning is 

common (7-11%)62,63, and poor language skills have been associated with higher 

inattention/hyperactivity symptoms in primary school64.  

 

Genome-wide significant loci on chromosomes 12 and 15 have biological annotations supporting 

the co-localized genes. The credible set on chromosome 12 spans DUSP6, and includes an 

annotated missense variant in the first exon and an insertion near the transcription start site, 

though neither is the lead variant in the locus (Supplementary eTable 3). The chromosome 15 

locus is located in SEMA6D, and the majority of variants in the credible set are strongly 

associated with expression of SEMA6D in fibroblasts65. DUSP6 encodes a dual specificity 

phosphatase66, and may play a role in regulating neurotransmitter homeostasis by affecting 

dopamine levels in the synapses67,68. Regulation of dopamine levels is likely to be relevant to 

ADHD since widely used ADHD medications have dopaminergic targets69,70 that increases the 

availability of synaptic dopamine. SEMA6D is active in the brain during embryonic 

development, and may play a role in neuronal wiring71. Variants in SEMA6D have previously 

been associated with eduational attainment72.  

 

Credible set annotations at the remaining loci are more diverse (Supplementary eTable 2). The 

most strongly associated locus on chromosome 1 (index variant rs112984125) covers a gene-rich 

250kb region of strong LD.  The index variant is intronic to ST3GAL3, and most SNPs in the 

credible set are strongly associated with expression of ST3GAL3 in whole blood73 

(Supplementary eTable 2). Missense mutations in ST3GAL3 have been shown to cause 
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autosomal recessive intellectual disability74. Hi-C and eQTL annotations suggest multiple 

alternative genes however (Supplementary eTable 3). The locus also includes an intergenic 

variant, rs11210892, that has previously been associated with schizophrenia33.  

 

On chromosome 5, the credible set includes links to LINC00461 and TMEM161B 

(Supplementary eTable 2). The function of LINC00461 is unclear, but the RNA has highly 

localized expression in the brain75 and the genome-wide significant locus overlaps with variants 

in LINC00461 associated with educational attainment72.  Alternatively, a genome-wide 

significant SNP in this locus (rs304132) is located in MEF2C-AS1, of strong interest given 

previous associations between MEF2C and severe intellectual disability,76-78 cerebral 

malformation77, depression79, schizophrenia33 and Alzheimer´s disease80, but the corresponding 

variant is not supported by the credible set analysis. Credible set annotations for other significant 

loci are similarly cryptic.  

 

Analysis of gene sets  

Competitive gene based tests were performed for FOXP2 target genes, highly constrained genes, 

and for all Gene Ontology terms81 from  MsigDB 6.082 using MAGMA83 (Online Methods). 

Association results for individual genes are consistent with the genome-wide significant loci for 

the GWAS (Supplementary Table 5). Three independent sets of FOXP2 downstream target 

genes84,85 were tested (Online Methods), none of which demonstrated significant association to 

ADHD (Supplementary Table 7). The lack of association, might be caused by unknown 

functions of FOXP2 driving ADHD risk; insufficient power to detect relevant downstream genes 
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or that only a small subset of biological functions regulated by FOXP2 are relevant to ADHD 

pathogenesis. 

 

Consistent with the partitioning of heritability, a set of 2,932 genes that are highly constrained 

and show high intolerance to loss of function86 showed significant association with ADHD 

(beta=0.062, P=2.6x10-4).  We also find little evidence for effects in previously proposed 

candidate genes for ADHD58; of the nine proposed genes only SLC9A9 showed weak association 

with ADHD (P=3.4´10-4; Supplementary Table 6). None of the Gene Ontology gene sets were 

significant after correction for multiple testing, , but the top pathways did include interesting and 

nominally significant pathways such as “dopamine receptor binding” (p=0.0010) and “Excitatory 

Synapse” (P = 0.0088).(Supplementary eTable 4). 

 

Replication of GWAS loci 

 
Here we describe the comparison of the GWAS meta-analysis of ADHD with two other ADHD-

related GWASs: a 23andMe self-report cohort (5,857 cases and 70,393 controls) and a meta-

analysis of childhood rating scales of ADHD symptoms performed by the EAGLE consortium 

(17,666 children < 13 years of age)30. We observed moderate concordance of genome-wide 

results between the ADHD GWAS and the cohort with a self-reported history of diagnosis for 

ADHD or Attention Deficit Disorder genotyped by 23andMe (see Supplementary Information). 

The estimated genetic correlation between the two analyses was strong (rg=0.653, SE=0.114), 

but significantly less than 1 (P=2.35´10-3). Of 94 clumped loci with P<1x10-5 in the ADHD 

GWAS meta-analysis, 71 had effects in the same direction in the 23andMe GWAS, significantly 

more concordant than expected by chance (P=1.25´10-6; Online Methods; Supplementary Table 
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12). We also observe a striking genetic correlation between the ADHD GWAS meta-analysis and 

quantitative measures of ADHD-related behavior in the general population as assembled by the 

EAGLE Consortium (rg=0.943, SE = 0.204). The direction of effect in EAGLE was concordant 

for 65 of 94 clumped loci with P<1x10-5 in the ADHD GWAS (P=3.06´10-4; Supplementary 

Table 12). For the 12 genome-wide significant loci in the ADHD GWAS meta-analysis, seven of 

the 11 loci present in the 23andMe GWAS had effects in the same direction (P=0.386 for sign 

concordance; Supplementary Table 13). In EAGLE, the direction of effect is concordant for 10 

of 11 genome-wide significant loci from the ADHD GWAS meta-analysis (P =0.0159).  

 

We then meta-analyzed the ADHD GWAS with the 23andMe and EAGLE results. For EAGLE, 

we developed a model to meta-analyze the GWAS of the continuous measure of ADHD with the 

clinical diagnosis in the ADHD GWAS. In brief, we perform a Z-score based meta-analysis 

using a weighting scheme based on the heritability and effective sample size for each phenotype 

(detailed description in Supplementary Information). 

 

All 12 genome-wide significant loci from the ADHD GWAS meta-analysis maintained genome-

wide significance after meta-analysis with EAGLE (Supplementary Figure 18), though the 

EAGLE data does not contribute to significance at two of those loci. Meta-analysis with EAGLE 

also yielded three additional loci surpassing genome-wide signficance  (Supplementary eTable 

6). Eight of the 12 ADHD loci were significant after inverse variance-weighted meta-analysis of 

the ADHD GWAS with 23andMe (Supplementary Figure 15), including two loci without 

23andMe results. Joint meta-analysis of the ADHD, 23andMe, and EAGLE GWASs yielded 
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significance for 10 of the 12 genome-wide significant ADHD loci and a total of 16 significant 

loci (Supplementary eTable 6, Supplementary Figure 21).  

 

Consistent with the genetic correlation results, there is evidence of heterogeneity between the 

ADHD GWAS meta-analysis results and 23andMe GWAS. Genome-wide significant 

heterogeneity was observed at the lead chromosome 1 locus from the ADHD GWAS meta-

analysis (rs12410155: I2=97.2, P=2.29´10-9; Supplementary Figure 17). No genome-wide 

significant heterogeneity was observed in the meta-analysis of ADHD and EAGLE 

(Supplementary Figure 20).  

 

Discussion 

GWAS meta-analysis of ADHD revealed the first genome-wide significant risk loci, and 

indicates an important role for common variants in the polygenic architecture of ADHD. Several 

of the loci are located in or near genes that implicate neurodevelopmental processes that are 

likely to be relevant to ADHD, including FOXP2 and DUSP6. Future work may focus on 

refining the source of the strong association in each locus, especially the lead locus on 

chromosome 1 which is complicated by broad LD and substantial heterogeneity between ADHD 

meta-analysis and analysis of self-reported ADHD status in 23andMe. 

 

The 12 significant loci are compelling, but only capture a tiny fraction of common variant risk 

for ADHD. The odds ratios for the risk increasing allele at the index SNPs in the 12 significant 

loci are modest, ranging from 1.077 to 1.198 (Table 1).  This is within the range of effect sizes 

for common genetic variants that has been observed for other  highly polygenic psychiatric 
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disorders e.g. schizophrenia33. A considerably larger proportion of the heritability of ADHD can 

be explained by all common variants (h2
snp

 = 0.22, SE = 0.01).  This is consistent with previous 

estimates of h2
snp for ADHD in smaller studies (h2

snp: 0.1-0.28)23,24, and also comparable to what 

has been found for schizophrenia (h2
snp 0.23 - 0.26)23,24. As would be hypothesized for a 

psychiatric disorder, these effects are enriched in conserved regions and regions containing 

enhancers and promoters of expression in the central nervous system tissues, consistent with 

previous observations in schizophrenia and bipolar disorder40. 

 

Along with polygenicity, selection and evolutionary pressures may be an important feature of the 

architecture of ADHD genetics. We observe that ADHD risk variants are strongly enriched in 

genomic regions conserved in mammals87, and constrained genes likely to be intolerant of loss-

of-function mutations86 are associated with ADHD. The directionality of potential selective 

effect is unclear: we find that common variant risk for ADHD is genetically correlated with 

having children younger and having more children, but is also correlated with a family history of 

parental mortality at a younger age. Given the documented association between ADHD and 

educational underachievement88,89, reinforced by genetic correlation of ADHD with educational 

attainment and childhood IQ43 observed in this study, selective pressure on the genetics of 

ADHD would be consistent with recent work suggesting that variants associated with 

educational attainment are under negative selection in Iceland90. Future studies of rare and de 

novo variants may provide more insight on selective pressures in ADHD-associated loci.  

 

The observed genetic correlations with educational outcomes and other phenotypes suggest a 

strong genetic component to the epidemiological correlates of ADHD. The significant positive 
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genetic correlation of ADHD with major depressive disorder and depressive symptoms supports 

previous findings suggesting a positive genetic overlap between those phenotypes24,42, as well as 

the broader genetic overlap of psychiatric disorders23,24. Positive genetic correlations between 

ADHD and health risk behaviors such as smoking and obesity are consistent with the observed 

increase in those behaviors among individuals with ADHD91-94 and indicates a shared genetic 

basis across these traits.   

 

The current results further support the hypothesis that ADHD is the extreme expression of one or 

more heritable quantitative traits. We observe strong concordance between the GWAS of ADHD 

and previous GWAS of ADHD-related traits in the population from the EAGLE Consortium30, 

both in terms of genome-wide genetic correlation and concordance at individual loci. Polygenic 

risk for ADHD has previously been associated with inattentive and hyperactive/impulsive trait 

variation below clinical thresholds in the population29. Shared genetic risk with health risk 

behaviors may similarly be hypothesized to reflect an impaired ability to self-regulate and inhibit 

impulsive behavior95,96. 

 

In summary, we report 12 independent genome-wide significant loci associated with ADHD in 

GWAS meta-analysis of 55,374 individuals from 12 study cohorts. The GWAS meta-analysis 

implicates FOXP2, DUSP6, and other constrained regions of the genome as important 

contributors to the eitiology of ADHD. The results also highlight strong overlap with the 

genetics of ADHD-related traits and health risk behaviors in the population, encouraging a 

dimensional view of ADHD. 
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Online Methods 

 

GWAS meta-analysis 

Quality control, imputation and primary association analyses were done using the bioinformatics 

pipeline Ricopili (available at https://github.com/Nealelab/ricopili), developed by the Psychiatric 

Genomics Consortium (PGC)33. In order to avoid potential study effects the 11 PGC samples and 

the 23 genotyping batches within iPSYCH were each processed separately unless otherwise 

stated (see Supplementary Information). 

Stringent quality control was applied to each cohort following standard procedures for GWAS, 

including filters for call rate, Hardy-Weinberg equilibrium, and heterozygosity rates (see 

Supplementary Information). Each cohort was then phased and imputed using the 1000 Genomes 

Project phase 3 (1KGP3)34,97 imputation reference panel using SHAPEIT98 and IMPUTE299, 

respectively. For trio cohorts, pseudocontrols were defined from phased haplotypes prior to 

imputation. 

Cryptic relatedness and population structure were evaluated using a set of high quality markers 

pruned for linkage disequilibrium (LD). Genetic relatedness was estimated using PLINK 

v1.9100,101 to identify first and second-degree relatives (! > 0.2) and one individual was excluded 

from each related pair. Genetic outliers were identified for exclusion based on principal 

component analyses using EIGENSOFT35,102. This was done separately for each of the PGC 

samples and on a merged set of genotypes for the iPSYCH sample (see Supplementary 

Information). Across studies, a total of 20,183 cases and 35,191 controls remained for analysis 

after QC. 
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Genome-wide association analyses for the 11 PGC samples and the 23 waves in iPSYCH were 

performed using logistic regression model with the imputed marker dosages in PLINK 

v1.9100,101. Principal components were included as covariates to control for population 

stratification35,102, along with relevant study-specific covariates where applicable (see 

Supplementary Information). Subsequently the results were meta-analysed using an inverse-

variance weighted fixed effects model, implemented in METAL (version 2011-03-25) 36. 

Variants were filtered and included for imputation quality (INFO score) > 0.8 and MAF > 0.01. 

Only markers supported by an effective sample size Neff = 2/(1/Ncases + 1/Ncontrols)103 greater than 

70% were included. After filtering, the meta-analysis included results for 8,047,421 markers.   

 

Conditional analysis 

Twelve independent genome-wide significant loci were identified by LD clumping and merging 

loci within 400 kb (see Supplementary Information). In two of these loci a second index variant 

persisted after LD clumping. The two putative secondary signals were evaluated by considering 

analysis conditional on the lead index variant in each locus. In each cohort, logistic regression 

was performed with the imputed genotype dosage for the lead index variant included as a 

covariate. All covariates from the primary GWAS (e.g. principle components) were also 

included. The conditional association results were then combined in an inverse-variance 

weighted meta-analysis. 

 

Genetic correlations between ADHD samples 

Genetic correlation between the European-ancestry PGC and iPSYCH GWAS results was 

calculated using LD Score regression37. The regression was performed using pre-computed LD 
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scores for HapMap3 SNPs calculated based on 378 European-ancestry individuals from the 1000 

Genomes Project (available on https://github.com/bulik/ldsc). Only results for markers with an 

imputation INFO score > 0.90 were included in the analysis. In addition, a bivariate GREML 

analysis was conducted using GCTA104 in order to estimate the genetic correlation between PGC 

case/control and trio study designs. 

 

Polygenic Risk Scores for ADHD 

The iPSYCH sample were split into five groups, and subsequently five leave-one-out association 

analyses were conducted, using four out of five groups and the PGC samples as training 

datasets38. PRS were estimated for each target sample using variants passing a range of 

association P-value thresholds in the training samples. PRS were calculated by multiplying the 

natural log of the odds ratio of each variant by the allele-dosage (imputation probability) and 

whole-genome polygenic risk scores were obtained by summing values over variants for each 

individual.  

For each of the five groups of target samples, PRS were normalized and the significance of the 

case-control score difference was tested by standard logistic regression including principle 

components. For each target group and for each P-value threshold the proportion of variance 

explained (i.e. Nagelkerke’s R2) was estimated by comparing the regression with PRS to a 

reduced model with covariates only. The OR for ADHD within each PRS decile group was 

estimated based on the normalized score across groups (using the P-value threshold with the 

highest Nagelkerke’s R2 within each target group) (Figure 3). OR was also estimated using 

logistic regression on the continuous scores for each target group separately and an OR based on 

all samples using the normalized PRS score across all groups (Supplementary Figure 9). 
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Additionally PRS were evaluated in the PGC samples using the iPSYCH sample as training 

sample, following the approach described above (see Supplementary Information). 

 

SNP heritability and intercept evaluation 

LD score regression37 was used to evaluated the relative contribution of polygenic effects and 

confounding factors, such as cryptic relatedness and population stratification, to deviation from 

the null in the genome-wide distribution of GWAS "# statistics. Analysis was performed using 

pre-computed LD scores from European-ancestry samples in the 1000 Genomes Project 

(available on https://github.com/bulik/ldsc) and summary statistics for the European-ancestry 

ADHD GWAS to ensure matching of population LD structure. The influence of confounding 

factors was tested by comparing the estimated intercept of the LD score regression to one, it’s 

expected value under the null hypothesis of no confounding from e.g. population stratification. 

The ratio between this deviation and the deviation of the mean "# from one (i.e. it’s expected 

value under the null hypothesis of no association) was used to estimate the proportion of 

inflation in "# attributable to confounding as opposed to true polygenic effects (ratio = 

(intercept-1)/(mean "#-1)).  SNP heritability was estimated based on the slope of the LD score 

regression, with heritability on the liability scale calculated assuming a 5% population 

prevalence of ADHD39.  

 

Partitioning of the heritability 

SNP heritability was partitioned by functional category and tissue association using LD score 

regression40. Partitioning was performed for 53 overlapping functional categories, as well as 220 

cell-type-specific annotations grouped into 10 cell-type groups, as described in Finucane et al. 40. 
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For both sets of annotations we used previously computed LD scores and allele frequencies from 

European ancestry samples in the 1000 Genomes Project (available on 

https://data.broadinstitute.org/alkesgroup/LDSCORE/).  

Additionally we expanded the cell-type specific heritability analysis by including an annotation 

based on information about H3K4Me1 imputed gapped peaks excluding the broad MHC-region 

(chr6:25-35MB), generated by the Roadmap Epigenomics Mapping Consortium105,106 (see 

Supplementary Information). The analyses were restricted to the European GWAS meta-analysis 

results to ensure matching of population LD structure. Results for each functional category were 

evaluated based on marginal enrichment, defined as the proportion of SNP heritability explained 

by SNPs in the annotation divided by the proportion of genome-wide SNPs in the annotation40. 

For each cell-type group and each H3K4Me1 cell-type annotations, the contribution to SNP 

heritability was tested conditional on the baseline model containing the 53 functional categories.   

 

Genetic correlations of ADHD with other traits 

The genetic correlation of ADHD with other traits were evaluated using LD Score regression42. 

For a given pair of traits, LD score regession estimates the expected population correlation 

between the best possible linear SNP-based predictor for each trait, restricting to common SNPs. 

Such correlation of genetic risk may reflect a combination of colocalization, pleiotropy, shared 

biological mechanisms, and causal relationships between traits.   Correlations were tested for 219 

phenotypes with publically available GWAS summary statistics using LD Hub41 (see 

Supplementary Information). Correlation with Major Depressive Disorder was tested using 

GWAS results from an updated analysis of 130,664 cases and 330,470 controls from the 

Psychiatric Genomics Consortium (submitted). As in the previous LD score regression analyses, 
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this estimation was based on summary statistics from the European GWAS meta-analysis, and 

significant correlations reported are for traits analysed using individuals with European ancestry.  

 

Credible set analysis 

We defined a credible set of variants in each locus using the method described by Maller et al.107 

(see Supplementary Information), implemented by a freely available R script 

(https://github.com/hailianghuang/FM-summary). Under the assumption that (a) there is one 

causal variant in each locus, and (b) the causal variant is observed in the genotype data, the 

credible set can be considered to have a 99% probability of containing the causal variant. For 

each the 12 genome-wide significant loci, variants within 1MB and in LD with correlation  r2 > 

0.4  to the index variant were considered for inclusion in the credible set analysis. The credible 

set analysis was done using the European GWAS meta-analysis to ensure consistent LD structure 

in the analyzed cohorts.  

 

Biological annotation of variants in credible set 

The variants in the credible set for each locus, were annotated based on external reference data in 

order to evaluate potential functional consequences. In particular, we identify: (a) Gene and 

regulatory consequences annotated by Variant Effect Predictor (VEP) using Ensembl with 

genome build GRCh37108. We exclude upstream and downstream consequences, and 

consequences for transcripts that lack a HGNC gene symbol (e.g. vega genes). (b) Variants 

within 2kb upstream of the transcription start site (TSS) of at least one gene isoform based on 

Gencode v19109. (c) Variants annotated as interacting with a given gene in Hi-C data from 

samples of developing human cerebral cortex during neurogenesis and migration110. Annotations 
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are considered for both the germinal zone (GZ), primarily consisting of actively dividing neural 

progenitors, and the cortical and subcortical plate (CP), primarily consisting of post-mitotic 

neurons. (d) Variants identified as eQTLs based on gene expression in GTEx111 or BIOS73. 

Expression quantitative trait loci were annotated using FUMA (http://fuma.ctglab.nl/). We 

restricted to eQTL associations with false discovery fate (FDR) < 1e-3 within each dataset. (e) 

Chromatin states of each variant based on the 15-state chromHMM analysis of epigenomics data 

from Roadmap112. The 15 states are summarized to annotations of active chromatin marks (i.e. 

Active TSS, Flanking Active TSS, Flanking Transcription, Strong Transcription, Weak 

Transcription, Genic Enhancer, Enhancer, or Zinc Finger [ZNF] gene), chromatin marks 

(Heterochromatin, Bivalent TSS, Flanking Bivalent TSS, Bivalent Enhancer, Repressed 

Polycomb, or Weak Repressed Polycomb), or quiescent. The most common chromatin state 

across 127 tissue/cell types was annotated using FUMA (http://fuma.ctglab.nl/). We also 

evalauted the annotated chromatin state from fetal brain.   

 

Gene-set analyses 

Gene-based association with ADHD was estimated with MAGMA 1.0583 using the summary 

statistics from the European GWAS meta-analysis (Ncases = 19,099; Ncontrols = 34,194; See 

Supplementary Information, Supplementary Information Table 1).  Association was tested using 

the SNP-wise mean model, in which the sum of -log(SNP P-value) for SNPs located within the 

transcribed region (defined using NCBI 37.3 gene definitions) was used as test statistic. 

MAGMA accounts for gene-size, number of SNPs in a gene and LD between markers when 

estimating gene-based P-values. LD correction was based on estimates from the 1000 genome 

phase 3 European ancestry samples34.  
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The generated gene-based P-values were used to analyze sets of genes in order to test for 

enrichment of association signals in genes belonging to specific biological pathways or 

processes. In the analysis only genes on autosomes, and genes located outside the broad MHC 

region (hg19:chr6:25-35M) were included. We used the gene names and locations and the 

European genotype reference panel provided with MAGMA. For gene sets we used sets with 10-

1000 genes from the Gene Ontology sets81 currated from  MsigDB 6.082.  

Targeted FOXP2 downstream target gene sets were analysed for association with ADHD. Three 

sets were examined: 1) Putative target genes of foxp2 that were enriched in wild type compared 

to control foxp2 knockout mouse brains in ChIP-chip experiments (219 genes), 2) Genes 

showing differential expression in wild type compared to foxp2 knockout mouse brains (243 

genes), and 3) FOXP2 target genes that were enriched in either or both basal ganglia (BG) and 

inferior frontal cortex (IFC) from human fetal brain samples in ChIP-chip experiments (258 

genes). Curated short lists of high-confidence genes were obtained from Vernes et al.84 and 

Spiteri et al85. 

A set of evolutionarily highly constrained genes were also analysed. The set of highly 

constrained genes was defined using a posterior probability of being loss-of-function intolerant 

(pLI) based on the observed and expected counts of protein-truncating variants (PTV) within 

each gene in a large study of over 60,000 exomes (the Exome Aggregation Consortium; 

ExAC)86. Genes with pLI ≥0.9 were selected as the set of highly constrained genes (2932 genes).  

 

Replication of GWAS loci 

To replicate the results of the ADHD GWAS meta-analysis we compared the results to analyses 

from 23andMe and EAGLE. We evaluated evidence for replication based on: (a) genetic 
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correlation between the ADHD GWAS and each replication cohort; (b) sign tests of concordance 

between the ADHD GWAS meta-analysis and each replication cohort; (c) meta-analysis of the 

ADHD GWAS meta-analysis results with the results from analyses of the replication cohorts; 

and (d) tests of heterogeneity in the meta-analyses of the ADHD GWAS meta-analysis with the 

replication cohorts.  

Genetic correlations were calculated using LD score regression37 with the same procedure as 

described above. For the sign test, LD clumping was performed for all variants with P < 1 x 10-4 

in the ADHD GWAS meta-analysis using LD estimated from European ancestry individuals 

from 1000 Genomes Phase 3 data. The proportion of variants with a concordant direction of 

effect in the two replication samples (p) was evaluated using a one sample test of the proportion 

with Yates’ continuity correction against a null hypothesis of p = 0.50 (i.e. the signs are 

concordant between the two analyses by chance). This test was done for loci passing P-value 

thresholds of P < 5 x 10-8, P < 1 x 10-7, P < 1x 10-6, P < 1 x 10-5, and P < 1 x 10-4 in the ADHD 

GWAS meta-analysis (see Supplementary Information).  

We performed three meta-analyses based on the ADHD GWAS meta-analysis result and the 

results from the two replication cohorts. First, we performed an inverse variance-weighted meta-

analysis of the ADHD GWAS meta-analysis with the results of the 23andMe GWAS of self-

reported ADHD case status. Second, we performed a meta-analysis combining the results from 

clinically ascertained ADHD with results from GWAS of ADHD-related behavior in childhood 

population samples (the EAGLE data). This was done using a modified sample size-based 

weighting method (see below). Third, we applied the modified sample size-based weighting 

method to meta-analyze the EAGLE GWAS with the ADHD+23andMe GWAS meta-analysis.  
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For meta-analyses including the EAGLE cohort, modified sample size-based weights were 

derived to accounts for the respective heritabilities, genetic correlation, and measurement scale 

of the GWASs (Supplementary Information). To summarize, given z-scores Z1j and Z2j resulting 

from GWAS of SNP j in a dichotomous phenotype (e.g. ADHD) with sample size NI and a 

continuous phenotype (e.g. ADHD-related traits) with sample size N2, respectively, we calculate 

$%,'()* =
,-%$-% + ,#%$#%

,-% + ,#%
 

where 

$#% =
$#%

1 + 1 − 12# ,#%ℎ## 4% 5
 

,-% = ,-%
6 1 − 6 	8 9:- ; #

; 1 − ; #  

,#% = ,#%
12#ℎ## ℎ-#

1 + (1 − 12#),#%ℎ##4% 5 

 

The adjusted sample sizes ,- and ,# reflect differences in power between the studies due to 

measurement scale and relative heritability that is not captured by sample size. The calculation of 

$# reduces the contribution of the continuous phenotype’s GWAS to the meta-analysis based on 

imperfect genetic correlation with the dichotomous phenotype of interest (i.e. ADHD). The 

adjustments are computed based on the sample prevalence (P) and population prevalence (K) of 

the dichotomous phenotype, the estimated liability scale SNP heritability of the two phenotypes 

(ℎ-# and ℎ##), and the genetic correlation (rg) between the two phenotypes, as well as the average 

SNP LD score (lj) and the number of SNPs (M). Heritability and genetic correlation values to 
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compute these weights are computed using LD score regression. This meta-analysis weighting 

scheme is consistent with weights alternatively derived based on modelling the joint distribution 

of marginal GWAS beta across traits113. 

To test heterogeneity with each replication cohort, we considered Cochran’s Q test of 

heterogeneity in the first two replication meta-analyses described above. Specifically, we 

evaluated the one degree of freedom test for heterogeneity between the ADHD GWAS meta-

analysis and the replication cohort.  
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Figure legends 

 

Figure 1. Manhattan plot of the results from the GWAS meta-analysis of ADHD. The index 

variants in the 12 genome-wide significant loci are highlighted as a green diamond. Index 

variants located with a distance less than 400kb are considered as one locus. 

 

Figure 2. Odds Ratio (OR) by PRS within each decile estimated for individuals in the PGC 

samples (red dots) and in the iPSYCH sample (blue dots). Error bars indicate 95% confidence 

limits. 

 

Figure 3. Significant genetic correlations between ADHD and other traits reveal overlap of 

genetic risk factors for ADHD across several groups of traits (grouping indicated by a horizontal 

line): educational, psychiatric/personality, weight (and possible weight related traits), smoking 

behaviour/smoking-related cancer, reproductive traits and parental longevity. In total 220 traits 

were tested. Two significant educational phenotypes are omitted due to substantial overlap with 

years of schooling. Error bars indicate 95% confidence limits. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Table 1. Results for the genome-wide significant index variants in the 12 loci associated with ADHD identified in the GWAS meta-

analysis. Index variants are LD independent (r2 < 0.1), and are merged into one locus when located with a distance less than 400kb. The 

location (chromosome [Chr] and base position [BP]), alleles (A1 and A2), allele frequency (A1 Freq), odds ratio (OR) of the effect with 

respect to A1, and association P-value of the index variant are given, along with genes within 50kb of the credible set for the locus. 

 

           
Locus Chr BP Index Variant Genes A1 A2 A1 Freq OR P-value  

1 1 44184192 rs11420276   ST3GAL3, KDM4A, 
KDM4A-AS1, PTPRF, 
SLC6A9, ARTN, DPH2, 
ATP6V0B, B4GALT2, 
CCDC24, IPO13 

G GT 0.696 1.113 2.14 x 10-13  

2 1 96602440 rs1222063  Intergenic A G 0.328 1.101 3.07 x 10-8  

3 2 215181889 rs9677504  SPAG16 A G 0.109 1.124 1.39 x 10-8 
4 3 20669071 rs4858241  Intergenic T G 0.622 1.082 1.74 x 10-8 
5 4 31151456 rs28411770  PCDH7, LINC02497 T C 0.651 1.09 1.15 x 10-8  
6 5 87854395 rs4916723  LINC00461, MIR9-2, 

LINC02060, 
TMEM161B-AS1 

A C 0.573 0.926 1.58 x 10-8 

7 7 114086133 rs5886709  FOXP2, MIR3666 G GTC 0.463 1.079 1.66 x 10-8  
8 8 34352610 rs74760947  LINC01288 A G 0.957 0.835 1.35 x 10-8 
9 10 106747354 rs11591402  SORCS3 A T 0.224 0.911 1.34 x 10-8 
10 12 89760744 rs1427829  DUSP6, POC1B A G 0.434 1.083 1.82 x 10-9 
11 15 47754018 rs281324  SEMA6D T C 0.531 0.928 2.68 x 10-8 
12 16 72578131 rs212178  LINC01572 A G 0.883 0.891 7.68 x 10-9 
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Extended Data 
 
eTable 1. Bayesian credible sets of variants for each of the 12 genome-wide significant loci 
 
eTable 2. Summary of the observed annotations for the credible set at each genome-wide significant 
locus 
 
eTable 3. Variant-level annotations for the credible set at each genome-wied significant locus 
 
eTable 4. Results of gene set analyses using sets from Gene Ontology 
 
eTable 5. Extended results from genetic correlation analyses of ADHD and 220 phenotypes 
 
eTable 6. Genome-wide significant index variants in meta-analyses of iPSYCH, PGC, 23andMe and 
EAGLE 
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