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Abstract
Clinical genomic sequencing can identify pathogenic variants unrelated to the initial clinical question, but of medical
relevance to the patients and their families. With ongoing discussions on the utility of disclosing or searching for such
variants, it is of crucial importance to obtain unbiased insight in the prevalence of these incidental or secondary findings, in
order to better weigh potential risks and benefits. Previous studies have reported a broad range of secondary findings ranging
from 1 to 9%, merely attributable to differences in study design, cohorts tested, sequence technology used and genes
analyzed. Here, we analyzed WES data of 1640 anonymized healthy Dutch individuals to establish the frequency of
medically actionable disease alleles in an outbred population of European descent. Our study shows that 1 in 38 healthy
individuals (2.7%) has a (likely) pathogenic variant in one of 59 medically actionable dominant disease genes for which the
American College of Medical Genetics and Genomics (ACMG) recommends disclosure. Additionally, we identified 36
individuals (2.2%) to be a carrier of a recessive pathogenic disease allele. Whereas these frequencies of secondary findings
are in line with what has been reported in the East-Asian population, the pathogenic variants are differently distributed across
the 59 ACMG genes. Our results contribute to the debate on genetic risk factor screening in healthy individuals and the
discussion whether the potential benefits of this knowledge and related preventive options, outweigh the risk of the
emotional impact of the test result and possible stigmatization.

Introduction

Clinical genomic sequencing can identify pathogenic var-
iants unrelated to the initial clinical question, that are of
medical relevance to the patient and their families [1]. To
promote standardized reporting of these incidental (unin-
tentionally detected in analysis) and/or secondary findings
(deliberate analysis of available data), the American College
of Medical Genetics and Genomics (ACMG) published a
list of 59 medically actionable genes recommended for
return of such findings [2]. The potential impact of reporting
actionable variants in these genes would be significant and
far-reaching as it presents opportunities to prevent disease.

There is an ongoing debate among medical genetic
societies worldwide, and the general public, on whether,
how, and when, incidental findings and/or secondary find-
ings are to be disclosed or screened for [3]. Simultaneously,
discussions on obligatory genetic testing of employees and
disclosure of the results to their employers are taking place.
Some important arguments in favor of routine screening of
genomic data are potential improvement of an individual’s
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health, contribution to scientific progress and circumventing
expensive treatments. Arguments against routine screening
include possible harm to a person by complications of
(unnecessary) medical interventions, stigmatization, and
negative psychosocial impact [4]. Yet, with the decreasing
costs for genome sequencing and a growing commercial
(direct-to-consumer) market, genetic testing of healthy
individuals might eventually be inevitable.

It is of importance to obtain unbiased insight in the
potential risks and benefits of opportunistic screening, and
to develop adequate education for the general public. To
foster such discussions, knowledge on the prevalence of
secondary findings in medically actionable genes in the
general population is required. Recently, multiple studies
have reported frequencies of secondary findings ranging
from 1 to 9% in various populations [5–13]. This broad
range of reported frequencies is largely explained by the
cohorts tested (e.g., inclusion of individuals more prone to
have a pathogenic variant) in combination with differences
in sequence technology (e.g., whole-exome sequencing
(WES) of inferior quality), classification of variants, and
amount of genes for which pathogenic variants are taken
into account. To the best of our knowledge, an unbiased
prevalence of secondary findings in healthy individuals of
European descent identifiable using clinical WES has not
yet been described. Here, we analyzed clinical grade WES
data of >1500 healthy individuals to establish the frequency
of medically actionable disease alleles in the general Dutch
population.

Material and methods

In our tertiary clinical genetic center in the Netherlands,
1640 healthy parents (50% males) received family based
WES to allow for the interpretation of de novo mutations as
cause of the intellectual disability observed in their child
[14]. The parents were predominantly of Caucasian origin
and from an outbred, nonconsanguineous population [14].
For the purpose of this exploratory and observational study,
parental exome data were anonymized. None of these par-
ents carried a known detrimental allele for intellectual
disability.

WES was performed following our routine diagnostic
procedures [15]. In essence, DNA was outsourced to BGI
(Copenhagen, Denmark) where exomes were captured
using Agilent Sureselect v4 and sequenced to a median
coverage of 75-fold on an Illumina HiSeq instrument with
101-bp paired-end reads. Sequence reads were aligned to
the hg19 using BWA version 0.5.9-r16. Variants were
called in-house using GATK unified genotyper (version
3.2–2) and annotated using custom diagnostic annotation
pipeline, using Human Genome Variant Society

nomenclature [16]. Variant interpretation was limited to
high quality variants (GATK quality score ≥ 500) eliminat-
ing false-positive calls [17], and to those that occurred in the
59 medically actionable genes [2]. Of note, 97.7% of the
coding sequence for these genes was covered ≥20-fold.
Variants in these genes were prefiltered for truncating,
canonical splice sites, insertion deletion and/or missense
variants based on frequency of occurrence in dbSNPv137
(<5%), ExACr0.2 (<1%) and our in-house database (<1%)
containing exome data of 12,244 exomes. Remaining var-
iants were classified according to the ACMG guidelines for
diagnostic variant interpretation [18]. Variants classified as
pathogenic and likely pathogenic, referring to the potential
of the variant to cause disease in a specific context, were
considered medically actionable, and percentages referred
to in our study are based on these classifications.

Results

In a cohort of 1640 anonymized healthy individuals, we
classified all variants in the 59 ACMG medically actionable
genes, including 56 dominant and 3 recessive genes, using
the standardized ACMG interpretation and classification
variant guidelines [18].

In total, 44 individuals (2.7%) of our cohort had a
dominant medically actionable variant, including 33 unique
variants, which were detected in 18 out of the 56 dominant
actionable genes. Six of 33 variants were detected in more
than one individual. Disease alleles in genes for cardiac
disease were most frequently observed (24 individuals,
1.5%), with variants in MYBPC3 (NM_000256.3), respon-
sible for hypertrophic cardiomyopathy, most often reported
(seven individuals). Pathogenic variants in genes predis-
posing to hereditary cancer were detected in 11 individuals
(0.7%), including five individuals with a pathogenic variant
in BRCA1 (NM_007300.3) and three others in BRCA2
(NM_000059.3), both associated with hereditary breast and
ovarian cancer. None of the individuals had more than one
dominant high-risk disease allele.

In addition to dominant disease alleles, we also identified
36 individuals (2.2%) to be carriers of a high-risk disease
allele in two of the three recessive actionable genes (Fig. 1;
Supplementary Table S1). Pathogenic variants were
observed in MUTYH (NM_001128425.1; 31 individuals)
and ATP7B (NM_000053.2; five individuals), known to
cause MUTYH Associated Polyposis and Wilson disease,
respectively, when present in compound heterozygous or
homozygous state. None of the 36 individuals carried
homozygous or compound heterozygous recessive high-risk
disease alleles. One carrier of a heterozygous recessive
high-risk disease allele also had a dominant high-risk dis-
ease allele.
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Discussion

On March 8 2017, the US House of Representatives
approved a Bill that would allow companies to require
employees to undergo genetic testing and disclose the

results to their employers [19]. As a response, the European
Society of Human Genetics provided a statement that
strongly argued against obligatory genetic testing as deci-
sions on whether or not to undergo genetic testing must be a
voluntary choice of the individual [20]. For both obligatory

Cohort
(n=1640 individuals)
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and voluntary testing of healthy individuals, it is, however,
important to know the prevalence of medically actionable
disease alleles in an unbiased population. In this study, we
set out to determine this frequency by screening for sec-
ondary findings in a healthy population of European descent
using existing (anonymized) WES data. From our data we
conclude that 2.7% of healthy Dutch individuals has a
(likely) pathogenic variant in a medically actionable domi-
nant disease allele for which returning of secondary findings
is indicated by the ACMG. These individuals are predis-
posed to develop for instance cancer or cardiomyopathy.

Given the wide range of reported secondary findings, we
systematically compared our results to studies published
previously from other populations [5–13] in order to explain
the differences in frequencies observed, focussing on (i) the
sequence technology used, (ii) the cohort tested, (iii) the
certainty of pathogenicity of variants, as well as (iv) the
genes for which pathogenic variants were assessed. This
comparison yielded three distinct categories: those studies
reporting lower [5, 7, 10, 11, 13], higher [6, 8, 9], or
comparable [12] frequencies of secondary findings when
compared to our observation of 2.7%.

In comparison to the first studies reporting incidental
findings [5, 7, 10, 11], the frequency identified in our cohort
is elevated up to twice as high. This could partially be
explained by the presence of Dutch founder mutations.
From the 33 unique dominant risk alleles detected, two have
been reported as founder mutation for the Dutch population
(BRCA1 (c.2685_2686del) and BRCA2 (c.9672dup)) [21].
However, both variants were observed in a single individual
in our cohort, thus not accounting for the higher frequency
observed in our study. We then examined whether the dif-
ferences are explained by experimental design and data
analysis, previous versions of databases for variant filtering
and interpretation, absence of ethnicity specific variation
information and a shorter list of ACMG medically action-
able genes for disclosing secondary findings. However, all
variants identified in our study were also present in data-
bases at time of the initial studies, and also, the extension of
the ACMG genes with 3 additional genes to 59 as analyzed
here, is not sufficient to explain our observed higher

frequency. It thus is more likely that the increased sequence
coverage in our study allowed more sensitive detection of
(likely) pathogenic variants. It is, however, noteworthy that,
Thompson et al. [13] also identified a relatively low fre-
quency (1.5%) of secondary findings when based on (likely)
pathogenic variants in the 59 ACMG genes, despite using
WES at an average sequence depth of 71×, covering 80% of
bases at least 20-fold [13, 22]. Whether this coverage is also
achieved for the coding sequencing of the 59 genes is,
however, not reported [13], but any deviation from this,
could potentially explain the differences observed. Overall,
since also other recent publications report higher fre-
quencies than the 1–1.5% previously reported, it seems
reasonable to conclude that the frequencies initially reported
are too low.

Higher prevalence of secondary findings compared to our
2.7% for the Dutch population have also been reported [6,
8, 9]. For instance, Dewey et al. (2016) reported 49 variants
in the 59 ACMG genes in 1415 individuals (3.5%). Their
cohort, however, consisted of patients of whom some were
affected with conditions likely attributable to the disease
alleles in the ACMG genes, thus creating bias towards
higher frequency. When excluding this bias, their findings
are more in line with our frequency. Interestingly, several
papers report frequencies of over 5% [8, 9]. Since these
studies were conducted at the same time as ours, the dif-
ference cannot be explained by the previously mentioned
issues like sequence coverage and availability of newer
releases of databases for variant filtering. As was also noted
by Tang et al. [12], the high frequency reported in these
studies is mainly due to improper classification of variants
as pathogenic. For instance, the NM_198056.2:c.3575G >
A variant in SCN5A reported by Lawrence et al. [9] is
present in 6% of the Asian population (including homo-
zygotes) and truncating variants in the RYR1
(NM_000540.2) gene are not causative for malignant
hyperthermia susceptibility, as proposed by Jang et al. [8].

Importantly, the frequency of secondary findings
observed in our cohort is almost identical to the prevalence
of 2.5% published by Tang et al. [12], who tested a cohort
of 954 East-Asian individuals using WGS. Interestingly,
however, the distribution of pathogenic variants over the
genes differs markedly despite the overall the frequency of
secondary findings in the cardiogenetic genes and onco-
genes being similar; that is, Tang et al. [12] reported 36% of
their pathogenic variants in seven of the 59 ACMG genes in
which no pathogenic variants were detected in our cohort.
Conversely, in our Dutch cohort 48% of the detected
pathogenic variants were in nine of the 59 ACMG genes in
which no pathogenic variants were detected by Tang et al.
Hence, this may indicate that, although the frequency of
secondary findings is similar between different ethnicities,
different genes contribute to their prevalence.

Fig. 1 Schematic representation of actionable (likely) pathogenic
variants identified in 1640 healthy individuals in the 59 ACMG genes.
Data is visualized by type of disease (cardiogenetic, oncogenetic,
connective tissue, and other). Mode of inheritance is represented in
blue for dominant disease genes and orange for recessive disease
genes. X-linked genes are indicated by #. All detected (likely)
pathogenic variants and their classification according to HGVS
recommendations [16] and ACMG-AMP guidelines [18], respectively,
are provided in Supplementary Table 1. Abbreviations: HCM hyper-
trophic cardiomyopathy; DCM dilated cardiomyopathy; ARVC
arrhythmogenic right ventricular cardiomyopathy; TSC tuberous
sclerosis complex; HBOC hereditary breast and ovarian cancer; n.a.
not applicable
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We also identified 2.2% of the population to be a carrier
of a recessive pathogenic disease allele in one of the 59
ACMG genes. Whereas the identification of carriers of
recessive disease alleles in the population is not unexpected
given our study set up, our unbiased analysis of these alleles
in the healthy population elicits discussion on their return.
The ACMG recommends to only return bi-allelic patho-
genic variants, but one may wonder whether it is not rele-
vant to return carrier status (e.g., for reproductive
decisions). Using the carrier frequency determined in our
cohort, we can now determine that ~1 in 3000 and ~1 in
100,000 couples are both carrier of a heterozygous disease
allele in MUTYH or ATP7B, respectively. For comparison,
in March 2017 the Committee on Genetics of the American
College of Obstetricians and Gynecologists stated that
cystic fibrosis screening, with a carrier frequency of 1 in 30
in the Caucasian population, should be offered to all preg-
nant women, or ideally before pregnancy [23]. Our data do
not only contribute to the discussion on genes that could be
selected for preconception carrier screening based
on absolute carrier frequency, such as here presented for
MUTYH (~1:50), but also reopens the discussion whether
or not more prevalent diseases, such as cystic fibrosis
(~1:30), should be included in secondary screening
programs.

Routine screening of healthy individuals for secondary
findings in the 59 ACMG medically actionable dominant
disease genes will impact at least 1 in 38 individuals. These
individuals have an increased risk for life-threatening dis-
ease, and could profit from early monitoring and possible
preventive treatment. On the other hand, some of the indi-
viduals in whom an incidental findings is identified may
spend their lives worrying about a disease that may never
manifest itself. This is mostly due to a highly variable
disease penetrance for these conditions, ranging from 20 to
100%. Our study design did not allow to link the secondary
findings to individuals and their families, but it can be
expected that the penetrance is even lower in the absence of
a positive family history. In terms of policy decisions about
reporting and counseling of individuals in whom an inci-
dental and/or secondary finding is observed, this may lead
to a redefinition of what is perceived as a “medically
actionable disease allele”. Also, individuals at risk may face
difficulties—or may even be unable to—acquire job posi-
tions, obtain mortgages, and/or health and/or life insur-
ances. These implications not only affect the individuals in
whom the incidental or secondary finding was uncovered,
but will also directly impact their blood relatives and
extended families. Apart from practical implications, such
as the impact on the health care system to screen healthy
individuals, it is presently unclear whether the potential
benefits of early monitoring and possible preventive

treatment outweigh the risks of the emotional impact of the
test result and possible stigmatization.

Taken together, we believe that our conclusion that 2.7%
of healthy Dutch individuals has a dominant acting disease
allele, is expected to be representative for the European
population given the current guidelines on variant inter-
pretation and the limited number of genes studied. Yet, with
genetic knowledge still advancing, the number of genes and
medically actionable variants for which disclosure could be
considered will likely continue to expand. In addition,
improvements in sequencing technology will likely allow
detection of more variants, and simultaneously, increasing
clinical interpretation of the noncoding parts of the genome
will allow for the detection of more pathogenic variation.
Hence, it may be expected that our estimate that 1 in 38
healthy individuals is genetically affected with a dominant
high-risk disease is an underrepresentation for the true
prevalence of dominant medically actionable disease alleles
in the population.
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