
to colonize such niches (26–29, 31, 79, 80). As hypoxia has been shown to affect the
expression of cell wall genes and proteins in C. albicans (26, 36), we hypothesized that
this host input might affect cell wall architecture, and in particular, PAMP exposure at
the C. albicans cell surface. We tested this and showed that hypoxia induces significant
changes in the thickness of the inner glucan-chitin and outer mannan layers of the cell
wall (Fig. 1) and that hypoxia also induces �-glucan masking (Fig. 2).

Previously we showed that host-derived lactate triggers �-glucan masking in C.
albicans (9). We reasoned that, given the different nature of these host inputs, lactate
and hypoxia might mediate �-glucan masking via different upstream regulators. As we
predicted, hypoxia-induced �-glucan masking is not dependent on the lactate receptor
Gpr1 (Fig. 3) (9). However, the Gpr1-associated G-alpha protein, Gpa2, does contribute
to both lactate-induced (9) and hypoxia-induced �-glucan masking (Fig. 3). This implies
that Gpa2 must also be regulated by Gpr1-independent mechanisms.

Our data suggest that the hypoxic signal is mediated via the mitochondrion (Fig. 10),

FIG 9 Growth under hypoxia attenuates immune responses against C. albicans. Wild-type C. albicans
cells (SC5314 [Table S1]) were grown for 5 h under normoxic (blue) or hypoxic conditions (red) and fixed.
(A) At t � 0, these C. albicans cells were mixed with murine bone marrow-derived macrophages (BMDMs)
at a ratio of 3:1 (yeast cells/macrophages), and the host-fungus interactions monitored by time-lapse
video microscopy. The proportion of BMDMs that had phagocytosed at least one C. albicans cell (percent
phagocytic macrophages) was quantified at t � 1, 2, 3, and 4 h. Also, the number of C. albicans cells
phagocytosed per BMDM were quantified at t � 1 and 2 h. (B) Duplicate samples of human PBMCs from
6 different individuals were mixed with the C. albicans cells (ratio of 5:1, yeast cells/PBMCs), and TNF-�,
MIP-1�, IL-10, and RANTES levels were assayed after 24 h. These data were analyzed using ANOVA with
Bonferroni’s post hoc test: *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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which would be consistent with data from fungal, plant, and mammalian systems (57,
58, 81–84). First, the inhibition of mitochondrial functionality in C. albicans (goa1, upc2)
blocked hypoxia-induced �-glucan masking (Fig. 6).

Second, C. albicans cells that lack the mitochondrial alternative oxidase, Aox1,
display enhanced hypoxia-induced �-glucan masking (Fig. 6). In C. albicans and other
fungi and in plants, alternative oxidases such as Aox1 limit the superoxide generation
in the respiratory chain, thereby protecting the mitochondrion against oxidative dam-
age (60–64). Therefore, hypoxia-induced �-glucan masking is probably enhanced in
response to the elevated superoxide levels in the mitochondrion of aox1Δ cells.

Third, the masking phenotype is blocked in sod1� cells, but not in C. albicans cells
that lack any of the other superoxide dismutases (Fig. 7). Sod1 is the only superoxide
dismutase that localizes to the mitochondrial intermembrane space (62). This is par-
ticularly significant because respiratory complex III releases superoxide into the mito-
chondrial intermembrane space (57, 85–87) and complex III is critical for hypoxic
signaling (57, 58, 81, 84, 88, 89). Normally, in wild-type cells, Sod1 converts the charged,
nondiffusible superoxide anion into the diffusible ROS, hydrogen peroxide. Thus, in
sod1Δ cells, hydrogen peroxide production would be lowered in the mitochondrial
intermembrane space.

Taken together, these data suggest that the transduction of the hypoxic signal
depends on the generation of hydrogen peroxide in the mitochondrial intermembrane
space (Fig. 10). Hydrogen peroxide is viewed as a candidate signaling molecule because
of its relatively long half-life, its membrane permeability, and its ability to oxidize
cysteines in target proteins (90, 91). Certainly, cysteine oxidative modifications have
been shown to regulate the activities of key proteins in involved in gene expression,
metabolism, cell differentiation, and growth (92, 93). Indeed, perturbations of cyto-
chrome c oxidase or cytochrome c itself could conceivably trigger downstream signal-
ing events, as the inactivation of these proteins has been shown to affect signaling in
other systems (94, 95). Therefore, we suggest that hydrogen peroxide might trigger
downstream signaling events in hypoxic C. albicans cells.

The downstream transduction of the mitochondrial signal generated is not depen-
dent on Hog1 signaling or Efg1 (Fig. 4), which has been implicated previously in

FIG 10 Mechanisms by which hypoxia induces �-glucan masking in C. albicans. Combining our
observations with those of others, we propose the following working model. Hypoxia triggers an increase
in the formation of mitochondrial superoxide by the respiratory apparatus (57, 58). Inactivating Goa1 or
Upc2, which promote mitochondrial functionality, reduces overall respiration rates and hence mitochon-
drial ROS production. The alternative oxidase (Aox1) acts to limit mitochondrial ROS production (60–62)
and therefore inactivating Aox1 enhances the signal. Superoxide dismutase within the mitochondrial
inner membrane space (IMS) converts superoxide into diffusible hydrogen peroxide, which leads to the
generation of a mitochondrial signal that transduces to the cytoplasm (see text). This possibly leads to
the activation of adenylyl cyclase (Cyr1) and cAMP-PKA (Tpk1/2) signaling, which triggers remodelling of
the cell wall and masking of cell surface �-glucan by mechanisms that remain to be elaborated.
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transcriptional responses to hypoxia (26, 29, 45, 46). Instead, hypoxic signal transduc-
tion is dependent on the cAMP-PKA pathway (Fig. 5, 8, and 10). It is conceivable that,
in some way, the mitochondrial and cAMP-PKA pathways act in parallel. However,
hypoxia-induced glucan �-masking is dependent upon both signaling modules.

The involvement of cAMP-PKA signaling in �-glucan masking is entirely consistent
with previous work showing that this pathway influences cell wall gene expression and
integrity (52, 55, 56). Furthermore, our observations reinforce the view that the mito-
chondrion and adenylyl cyclase control virulence phenotypes in C. albicans (96). The
mechanisms by which �-glucan masking is achieved at the cell surface remain obscure
and are under investigation. However, transcript profiling studies of adenylyl cyclase
and PKA mutants suggest that this pathway modulates the synthesis and assembly of
cell wall mannoproteins and mannan (ALS1, ALS2, ALS4, CCW14, CSP37, ECM4, KTR1,
SCW10, WSC1), glucan (KRE6, KRE9, PHR2) as well as chitin (CHS7, CHT3) (52, 55),
potentially providing clues as to these mechanisms.

Changes in �-glucan exposure on C. albicans cells have been observed in vivo,
during systemic infection (8), and in vitro in response to changes in ambient pH or
host-derived lactate (9, 10). It is well-known that �-glucan recognition by Dectin-1 plays
a major role in fungal recognition by innate immune cells (4, 13–16, 97). It has been
reported that C. albicans cells grown overnight under hypoxia with high carbon dioxide
levels (5% CO2) display enhanced immune recognition (17). Here we report that
exponentially growing C. albicans cells, which were exposed specifically to hypoxia
before fixing, elicit attenuated immune responses (Fig. 9), like cells exposed to lactate
(9). We reason that differences in CO2 concentration, cell morphology, and/or growth
state might account for the different immunological outputs in these two studies.
Certainly, high CO2 concentrations are known to affect C. albicans morphology and
physiology (98), and C. albicans morphology affects innate immune responses (99, 100).

We observed different phagocytic responses for BMDMs toward hypoxic C. albicans
cells compared to normoxic control cells. Hypoxic cells evaded phagocytic uptake
despite numerous contacts between yeast cells and phagocytes during their dynamic
interactions over the period examined (see Movies S1 and S2 in the supplemental
material). This was presumably because of the reduced availability of fungal target sites
for host cell Dectin-1 engagement. The impact of hypoxia upon innate immune
responses against C. albicans cells was more subtle than for those previously observed
for lactate exposure. Exposing the fungal cells to lactate led to significant reductions in
the levels of TNF-� and MIP1� released by human macrophages (9). Hypoxia-grown C.
albicans cells also elicited reduced levels of these cytokines compared to control
normoxic cells, but these changes were less dramatic and not statistically significant
(Fig. 9). However, statistically significant decreases in IL-10 and RANTES production
were observed for hypoxic cells (Fig. 9), indicating that hypoxia does affect immune
responses against C. albicans. These differences in cytokine responses between lactate-
and hypoxia-treated C. albicans cells might relate to the different signaling mechanisms
that are activated in response to these host inputs (above). No doubt these different
signaling mechanisms drive subtly different patterns of cell wall remodelling, in addi-
tion to the common �-glucan masking phenotype we have described.

We argue that the effects of hypoxia on �-glucan masking by C. albicans and upon
the innate immune responses against this pathogen will almost certainly have a
significant impact upon host-fungus interactions during colonization and infection. This
view is supported by the accompanying paper (101), which shows that oxygen depri-
vation enhances the successful colonization of host niches by C. albicans in vivo.

MATERIALS AND METHODS
Strains and growth conditions. Strains are listed in Table S1 in the supplemental material. All C.

albicans strains were grown overnight at 30°C and 200 rpm in minimal medium (GYNB [2% glucose,
0.65% yeast nitrogen base without amino acids, containing the appropriate supplements]) (102). On the
day of an experiment, overnight cultures were diluted into fresh minimal medium to an OD600 of 0.2, and
incubated at 30°C at 200 rpm for 5 h for analysis. Normoxic cells were grown with aeration, whereas
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hypoxic cells were grown in screw cap conical flasks under nitrogen. Dissolved O2 was measured using
a Thermo Fisher Scientific Orion RDO probe 3M (087010MD).

Microscopy. For fluorescence microscopy, cells were fixed in 50 mM thimerosal (Sigma-Aldrich) and
stained for �-glucan (1.5 �g/ml Fc-Dectin-1 plus anti-human IgG conjugated to Alexa Fluor 488; green),
chitin (50 �g/ml wheat germ agglutinin conjugated to Alexa Fluor 350; blue), and mannan (25 �g/ml
concanavalin A conjugated to Texas Red; red). All samples were examined by phase differential
interference contrast (DIC) and fluorescence microscopy using a Zeiss Axioplan 2 microscope. Images
were recorded digitally using the Openlab system (Openlab v 4.04: Improvision, Coventry, UK) with a
Hamamatsu C4742- 95 digital camera (Hamamatsu Photonics, Hamamatsu, Japan).

High-pressure freeze substitution transmission electron microscopy on normoxic and hypoxic C. albicans
cells was performed as described previously (103, 104), cutting ultrathin sections of 100 nm in thickness.
Samples were imaged with a Philips CM10 transmission microscope (FEI, United Kingdom) equipped with a
Gatan Bioscan 792 camera, and the images were recorded using a Digital Micrograph (Gatan, Abingdon Oxon,
United Kingdom). The thicknesses of the inner chitin-glucan and outer mannan layers of the cell wall were
measured by averaging �30 measurements for each cell (n � 30 cells) using ImageJ.

�-Glucan exposure. To assess the exposure of �-glucan on the C. albicans cell surface, strains were
grown in YNB plus 2% glucose overnight and then grown in fresh medium for 5 h under hypoxic or
normoxic conditions. These exponentially growing cells were fixed immediately with 50 mM thimerosal
(Sigma-Aldrich, Dorset, UK) to capture the cell surface architecture. They were then stained for �-glucan
exposure using Fc-Dectin-1 and anti-human IgG conjugated to Alexa Fluor 488, and their fluorescence
was quantified using a BD Fortessa flow cytometer as described previously (9). The plots represent three
biological replicate experiments, in each of which 10,000 events were acquired. Normoxic cells of the
congenic wild-type control were used as a control for each run. As a secondary control, cells were treated
as descrbied above but without the addition of Fc-Dectin-1. Median fluorescence intensities (MFI) were
determined using FlowJo v. 10 software.

Cytokine assays. Cytokine assays on PBMCs were performed as described previously (9). Briefly,
PBMCs were isolated from nonheparinized whole-blood samples (20 ml) collected from healthy donors
using Ficoll-Paque centrifugation according to the manufacturer’s instructions (Sigma-Aldrich). Purified
PBMCs were cultured for 5 days in MACS medium (Dulbecco’s modified Eagle’s medium containing 10%
serum, 2 mM glutamine, 5 mg/ml penicillin and streptomycin). Normoxic and hypoxic C. albicans cells
were fixed with 50 mM thimerosal (Sigma) and washed 4 times with sterile 1� PBS (Sigma-Aldrich). These
yeast cells were incubated with PBMCs (ratio of 5:1, yeast cells/PBMCs) for 24 h, whereupon 100 �l of
supernatant was collected and the cytokines and chemokines were quantified using the Luminex
screening kit (R&D Systems, Abingdon, UK) in the BioPlex 200 system (Bio-Rad, Watford, UK) according
to the manufacturer’s recommendations.

Phagocytosis assays. Bone marrow-derived macrophages (BMDMs) were prepared following ex-
traction of bone marrow from the femurs and tibias of 12-week-old male C57BL/6 mice aged and
differentiated for 7 days as described previously (105). Normoxic and hypoxic C. albicans cells were fixed
with thimerosal (described above), mixed with macrophages at a ratio of 3:1 (yeast cells/macrophages),
and imaged at 1-min intervals for up to 4 h using established protocols with a Nikon Eclipse Ti UltraVIEW
VoX spinning disk microscope (99, 106, 107). The C. albicans cells were fixed to allow subsequent
confirmation, by cytometry, that these specific hypoxic cell populations displayed �-glucan masking. The
percentages of macrophages phagocytosing yeast cells and the number of yeast cells engulfed per
macrophage were quantified at hourly time intervals. The difference between conditions for each time
point was determined using ANOVA with Bonferroni’s post hoc test.

Ethics statement. Blood samples from healthy volunteers were collected with the informed consent
of these donors and according to local guidelines and regulations that were approved by the College
Ethics Review Board of the University of Aberdeen (CERB/2012/11/676).

Three 7-week-old male C57BL/6 mice were used for the preparation of BMDMs. These mice, which
were selected randomly, were bred in-house, housed in stock cages under specific-pathogen-free
conditions. They underwent no surgical procedures prior to culling by cervical dislocation. All animal
experimentation was approved by the UK Home Office and by the University of Aberdeen Animal Welfare
and Ethical Review Body.

Statistical analyses. Statistical analyses were performed in GraphPad Prism 5. Results from inde-
pendent replicate experiments are expressed as means � standard deviations. One-way ANOVA (Tukey’s
multiple-comparison test) was used to test the statistical difference between two sets of data with a
nonparametric distribution. The following P values were considered statistically significant and indicated
as follows: *, P � 0.05; **, P �0.01; ***, P � 0.001; ****, P � 0.0001.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.01318-18.
FIG S1, PDF file, 0.2 MB.
TABLE S1, PDF file, 0.1 MB.
MOVIE S1, AVI file, 18.4 MB.
MOVIE S2, AVI file, 18.3 MB.
MOVIE S3, AVI file, 18.6 MB.
MOVIE S4, AVI file, 18.9 MB.
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