Improving Static Dependency Pairs for Higher-Order Rewriting

Carsten Fuhs1 and Cynthia Kop2

\textbf{Abstract}

We revisit the static dependency pair method for termination of higher-order term rewriting. In this extended abstract, we propose a static dependency pair framework based on an extended notion of computable dependency chains that harnesses the computability-based reasoning used in the soundness proof of static dependency pairs. This allows us to propose a new termination proving technique to use in combination with static DPs: the \textit{computable} subterm criterion.

\textbf{1 Introduction}

This paper deals with higher-order term rewriting with β-reduction and λ-abstractions. Here a particular topic of interest is termination, the property that all (well-formed) terms have only finite reductions. In the first-order setting, the Dependency Pair (DP) framework [8] has proven to be an extremely successful foundation for automated termination analysis tools. While several DP approaches (static [12, 14] and dynamic [13, 10]) exist for higher-order rewriting, so far a general DP framework has been proposed only in the PhD thesis [9]. We build on ideas from [2, 9] to propose such a DP framework, here specialised to static DPs, and include a completely new processor which can offer a simple syntactic termination criterion.

\textbf{2 Algebraic Functional Systems with Meta-variables}

Henceforth, we shall assume familiarity with term rewriting, simple types and the λ-calculus. We use a simplified version of Algebraic Functional Systems with Meta-variables (AFSMs) that Kop [9] proposes to capture a number of higher-order rewrite formalisms (cf. [9, Ch. 3]).

We fix disjoint sets \mathcal{F} of function symbols and \mathcal{V} of variables, each symbol a equipped with a type σ. We also fix a set \mathcal{M}, disjoint from \mathcal{F} and \mathcal{V}, of \textit{meta-variables}, each equipped with a \textit{type declaration} $[\sigma_1 \times \cdots \times \sigma_k] \to \tau$ (where τ and all σ_i are simple types). \textit{Meta-terms} are expressions s where $s: \sigma$ can be derived for some type σ by the following clauses:

\begin{enumerate}
 \item [(V)] $x: \sigma$ if $x: \sigma \in \mathcal{V}$
 \item [(@)] $s \tau$ if $s: \sigma \Rightarrow \tau$ and $t: \sigma$
 \item [(F)] $f: \sigma$ if $f: \sigma \in \mathcal{F}$
 \item [(A)] $\lambda x.s: \sigma \Rightarrow \tau$ if $x: \sigma \in \mathcal{V}$ and $s: \tau$
 \item [(M)] $Z[s_1, \ldots, s_k]: \tau$ if $Z: [\sigma_1 \times \cdots \times \sigma_k] \to \tau \in \mathcal{M}$ and $s_1 : \sigma_1, \ldots, s_k : \sigma_k$
\end{enumerate}

\textit{Terms} are meta-terms without meta-variables, so derived without clause (M). \textit{Patterns} are meta-terms where all meta-variable occurrences have the form $Z[x_1, \ldots, x_k]$ with all x_i distinct variables. The λ binds variables as in the λ-calculus. Unbound variables are called \textit{free}, $\text{FV}(s)$ is the set of free variables in s, and $\text{FMV}(s)$ is the set of meta-variables occurring in s. A meta-term s is \textit{closed} if $\text{FV}(s) = \emptyset$. Meta-terms are considered modulo α-conversion.

Application (@) is left-associative; abstractions (A) extend as far to the right as possible. A meta-term s has \textit{type} σ if $s: \sigma$; it has \textit{base type} if $\sigma \in \mathcal{S}$, the set of sorts. A meta-term s has a \textit{sub-meta-term} t (\textit{subterm} if t is a term), written $s \triangleright t$, if (a) $s = t$, (b) $s = \lambda x.s'$ and $s' \triangleright t$, (c) $s = s_1 s_2$ and $s_1 \triangleright t$ or $s_2 \triangleright t$, or (d) $s = Z[s_1, \ldots, s_k]$ and some $s_i \triangleright t$.
A meta-substitution is a type-preserving function γ from variables and meta-variables to meta-terms; if $Z : [\sigma_1 \times \cdots \times \sigma_k] \to \tau$ then $\gamma(Z)$ has the form $\lambda y_1 \ldots y_k : \sigma_1 \to \cdots \to \sigma_k \to \tau$. Let $\text{dom}(\gamma) = \{ x \in V \mid \gamma(x) \neq \emptyset \} \cup \{ Z \in \mathcal{M} \mid \gamma(Z) \neq \lambda y_1 \ldots y_k Z[y_1, \ldots, y_k] \}$ (the domain of γ). We let $[b_1 := s_1, \ldots, b_n := s_n]$ be the meta-substitution γ with $\gamma(b_i) = s_i$, $\gamma(z) = z$ for $z \in V \setminus \{b_i\}$, and $\gamma(Z) = \lambda y_1 \ldots y_k Z[y_1, \ldots, y_k]$ for $Z \in \mathcal{M} \setminus \{b_i\}$. A substitution is a meta-substitution mapping everything in its domain to terms. The result s_γ of applying a meta-substitution γ to a meta-term s is obtained recursively (with implicit α-conversion):

\[
x_\gamma = \gamma(x) \quad \text{if} \quad x \in V \quad (s \ t)_\gamma = (s\gamma) \ (t\gamma)
\]

\[
f_\gamma = f \quad \text{if} \quad f \in \mathcal{F} \quad (\lambda x. s)_\gamma = \lambda x. (s_\gamma) \quad \text{if} \quad \gamma(x) = x \land x \notin \text{FV}(s_\gamma)
\]

\[
Z[s_1, \ldots, s_k]_\gamma = t[x_1 := s_1\gamma, \ldots, x_k := s_k\gamma] \quad \text{if} \quad \gamma(Z) = \lambda x_1 \ldots x_k. t
\]

Essentially, applying a meta-substitution with meta-variables in its domain combines a substitution with a β-development, e.g., $X[\text{nil}, 0][X := \lambda x. \text{plus}(\text{len} \ x)]$ equals $\text{plus}(\text{len} \ \text{nil})$ 0.

A rule is a pair $\ell \Rightarrow r$ of closed meta-terms of the same type both in β-normal form with ℓ a pattern of the form $f \ell_1 \cdots \ell_n$ with $f \in \mathcal{F}$, and $\text{FMV}(r) \subseteq \text{FMV}(\ell)$. A set of rules \mathcal{R} induces a rewrite relation $\Rightarrow_{\mathcal{R}}$ as the smallest monotonic relation on terms that includes β-reduction (denoted as \Rightarrow_{β}) and has $\ell \beta \Rightarrow_{\mathcal{R}} r \delta$ whenever $\ell \Rightarrow_{\mathcal{R}} r$ and δ is a substitution on domain $\text{FMV}(\ell)$. Rewriting is allowed at any position of a term, even below a λ. \mathcal{R} is terminating if there is no infinite reduction $s_0 \Rightarrow_{\mathcal{R}} s_1 \Rightarrow_{\mathcal{R}} \cdots$. The set $\mathcal{D} \subseteq \mathcal{F}$ of defined symbols consists of all $f \in \mathcal{F}$ such that a rule $f \ell_1 \cdots \ell_n \Rightarrow r$ exists.

An AFSM is a pair $(\mathcal{F}, \mathcal{R})$; types of (meta-)variables can be derived from context.

Example 1 (Ordinal recursion). Let \mathcal{F} contain at least $0 : \text{ord}$, $s : \text{ord} \to \text{ord}$, $\text{lim} : (\text{nat} \to \text{ord}) \to \text{ord}$ for ordinals, $\text{zero} : \text{nat}$, $\text{suc} : \text{nat} \to \text{nat}$ for \mathbb{N}, and the symbol $\text{rec} : \text{ord} \to (\text{ord} \to (\text{nat} \to \text{nat}) \to (\text{nat} \to \text{ord}) \to (\text{nat} \to \text{nat}) \to \text{nat}$.

Let \mathcal{R} be:

\[
\text{rec } 0 \ K \ F \ G \ \Rightarrow \ K, \quad \text{rec } (s \ x) \ K \ F \ G \ \Rightarrow \ F \ X \ (\text{rec } X \ K \ F \ G),
\]

\[
\text{rec } (\text{lim } H) \ K \ F \ G \ \Rightarrow \ G \ H \ (\lambda m. \text{rec } (H \ m)) \ K \ F \ G
\]

Then $\text{rec } (s \ 0) \ (\lambda v. z) \ (\lambda x. \text{zero}) \Rightarrow_{\beta} (\lambda v. z) \ (\text{zero} \ (\lambda v. z) \ (\lambda x. \text{zero}))$.

Computability

A common technique in higher-order termination is Tait and Girard’s computability notion [15]. There are several ways to define computability predicates; here we follow, e.g., [1, 3, 4, 5] in considering accessible meta-variables using a form of the computability closure [3]:

Definition 2 (Accessible arguments). We fix a quasi-ordering \succeq^S on the set of sorts (base types) S with well-founded strict part $\succ^S := \succeq^S \setminus \succeq^S$. For $\sigma \equiv \sigma_1 \to \cdots \to \sigma_m \to \kappa$ (with $\kappa \in S$) and sort ℓ, let $\ell \succeq^S \sigma$ if $\ell \succeq^S \kappa$ and each $\ell \succ^S \sigma_i$, and let $\ell \succ^S \sigma$ if $\ell \succeq^S \kappa$ and each $\ell \succeq^S \sigma_i$. (The relation $\ell \succeq^S \sigma$ corresponds to “ℓ occurs only positively in σ” in [1, 4, 5].)

For $f : \sigma_1 \to \cdots \to \sigma_m \to \ell \in \mathcal{F}$, let $\text{Acc}(f) = \{ i \mid 1 \leq i \leq m \land \ell \succeq^S \sigma_i \}$. For $x : \sigma_1 \to \cdots \to \sigma_m \to \ell \in V$, let $\text{Acc}(x) = \{ i \mid 1 \leq i \leq m \land \sigma_i \}$ has the form $\tau_1 \to \cdots \to \tau_n \to \kappa$ for some $n \in \mathbb{N}$ with $\ell \succeq^S \kappa$. We write $s \succeq^\text{acc} t$ if either $s = t$, or $s = \lambda x. s'$ and $s' \succeq^\text{acc} t$, or $s = a \ s_1 \cdots s_n$ with $a \in \mathcal{F} \cup V$ and $s_i \succeq^\text{acc} t$ for some $i \in \text{Acc}(a)$.

Theorem 3 (R-computability). For \mathcal{R} a set of rules, there exists a predicate “R-computable” on terms which satisfies the following properties:

- $s : \sigma \to \tau$ is R-computable if $s \ t$ is R-computable whenever $t : \sigma$ is R-computable;
- $s : i$ for a sort is R-computable iff (1) s is terminating under $\Rightarrow_{\mathcal{R}} \cup \Rightarrow_1$ and (2) if $s \Rightarrow^*_\mathcal{R}$ $f \ s_1 \cdots s_m$ then s_i is R-computable for all $i \in \text{Acc}(f)$. Here, $f \ s_1 \cdots s_m \Rightarrow_1 s_i$, $t_1 \cdots t_n$, if both sides have (possibly different) base types, $i \in \text{Acc}(f)$, and all t_j are R-computable.
The above notion of computability is adapted from [1, 3, 4, 5] to account for AFSMs. It is an instance of a strong computability predicate following [11], identified by a syntactic criterion. This instance gives a more liberal restriction (in our Def. 9) than their default predicate SC, which is directly used to define the “plain function passing” criterion in [12, 14].

Example 4. Consider a quasi-ordering \succeq^S such that $\text{ord} \succeq^S \text{nat}$. In Ex. 1, we then have $\text{ord} \succeq^S \text{nat} \to \text{ord}$. Therefore, $1 \in \text{Acc}(\lim)$, which gives $\lim H \subseteq_{\text{acc}} H$.

4 Static DPs for Accessible Function Passing AFSMs

We will adapt static DPs to our AFSM formalism and propose an alternative applicability criterion. Similar to DPs in the first-order setting, static DPs employ marked symbols:

Definition 5 (Marked symbols, DPs). Define $\mathcal{F}^s := \mathcal{F} \cup \{f^s : \sigma \mid f : \sigma \in \mathcal{D}\}$. For a meta-term s, let $s^s := f^s s_1 \cdots s_k$ if $s = f s_1 \cdots s_k$ with $f \in \mathcal{D}$; let $s^s := s$ otherwise. A DP is a pair $\ell \Rightarrow p$ where ℓ is a closed pattern $f \ell_1 \cdots \ell_m$, p is a meta-term $g p_1 \cdots p_k$, and both ℓ and p and β-normal and have (possibly different) base types.

The original static approaches define DPs as pairs $\ell \Rightarrow p^\ell$ with $\ell \Rightarrow r$ a rule and p a subterm $g p_1 \cdots p_k$ of r (their rules use terms, not meta-terms). This can set bound variables from r free in p. Here, we replace such variables by meta-variables. (So our “variables” mimic λ-bound variables in functional programming, and our “meta-variables” free variables.)

Definition 6 (SDP). For a meta-term s, $\text{metafy}(s)$ denotes s with all free variables replaced by corresponding fresh meta-variables. For an AFSM $(\mathcal{F}, \mathcal{R})$, $\text{SDP}(\mathcal{R}) = \{\ell \Rightarrow \text{metafy}(p^\ell) \mid \ell \Rightarrow r \in \mathcal{R} \land r \succeq p \land \ell$ and p have base types $\land p$ has the form $g p_1 \cdots p_k$ for some $g \in \mathcal{D}\}$.

Right-hand sides of static DPs may contain meta-variables that do not occur on the left:

Example 7. For Ex. 1, we obtain $\text{SDP}(\mathcal{R}) = \{\text{rec}^2 (s \ X) X F G \Rightarrow \text{rec}^2 X X F G, \text{rec}^2 (\lim H) X F G \Rightarrow \text{rec}^2 (H M) X F G\}$.

Definition 8 (Dependency chain, minimal chain). Let \mathcal{P} be a set of DPs and \mathcal{R} be a set of rules. A (finite or infinite) $(\mathcal{P}, \mathcal{R})$-dependency chain (or just $(\mathcal{P}, \mathcal{R})$-chain) is a sequence $[p_0, s_0, t_0], (p_1, s_1, t_1), \ldots$ where each $p_i \in \mathcal{P}$ and all s_i, t_i are terms, such that for all i:

1. if $p_i = \ell_i \Rightarrow p_i$, then there exists a substitution γ on domain $FMV(\ell_i) \cup FMV(p_i)$ such that $s_i = \ell_i \gamma$ and $t_i = p_i \gamma$; and
2. we can write $t_i = f u_1 \cdots u_n$ with $f \in \mathcal{F}^s, s_{i+1} = f w_1 \cdots w_n$ and each $u_j \Rightarrow^{\mathcal{R}} w_j$.

A $(\mathcal{P}, \mathcal{R})$-chain is minimal if the strict subterms of all t_i are terminating under $\Rightarrow^{\mathcal{R}}$.

Static DPs are sound if the AFSM’s rules are accessible function passing (AFP). Intuitively: meta-variables of a higher type may occur only in “safe” places in the left-hand sides of rules.

Definition 9 (Accessible function passing). An AFSM $(\mathcal{F}, \mathcal{R})$ is accessible function passing (AFP) if there exists a sort ordering \succeq^S following Def. 2 such that:

1. all function symbols f are fully applied in \mathcal{R}, i.e., they occur only with the maximum number of arguments permitted by their type;
2. for all $f \ell_1 \cdots \ell_m \Rightarrow r \in \mathcal{R}$ and all $Z \in FMV(r)$: there are some variables x_1, \ldots, x_k and some i such that $\ell_i \subseteq_{\text{acc}} Z[x_1, \ldots, x_k]$.

This definition is strictly more liberal than the notions of plain function passing in [12, 14] as adapted to AFSMs; this lets us handle examples like ordinal recursion (Ex. 1) not covered by [12, 14]. However, [12, 14] consider a different formalism, with polymorphism and rules whose left-hand side is not a pattern. Our restriction is closer to the “admissible” rules in [2], which
are defined using a pattern computability closure [1]. It is also an instance of the ATRFP notion [11], which is parametrised by a strong computability predicate and accessibility relation.

Example 10. The AFSM from Ex. 1 is AFP because of the sort ordering $\text{ord} \supset^{S} \text{nat}$ (see also Ex. 4), yet it is not plain function passing following [14].

Theorem 11. If (F, R) is non-terminating and AFP, then there is an infinite minimal $(SDP(R), R)$-chain.

This theorem corresponds to results in [2, 11, 12], but imposes a different admissibility restriction: our notion is strictly more liberal than the syntactic criterion in [12], is likely less liberal than the semantic restriction in [11] (although we could not find an example that is ATRFP but not AFP), and mostly (although not entirely) implies the restriction in [2].

The computability inherent in dependency chains using SDP lets us strengthen Thm. 11: rather than considering minimal chains, we require (some) subterms of all to be computable:

Definition 12. A (P, R)-chain $\{ (\ell_0 \Rightarrow p_0, s_0, t_0), (\ell_1 \Rightarrow p_1, s_1, t_1), \ldots \}$ is U-computable for a set of rules U if $\Rightarrow_U \supseteq \Rightarrow_R$, for all i there exists a substitution γ_i with $s_i = \ell_i \gamma_i$ and $t_i = p_i \gamma_i$, and $(\lambda x_1 \ldots x_n. v) \gamma_i$ is U-computable for all v such that $p_i \supseteq v$ and $\text{FV}(v) = \{ x_1, \ldots, x_n \}$.

Theorem 13. (a) If an AFSM (F, R) is non-terminating and AFP, then there is an infinite R-computable $(SDP(R), R)$-chain. (b) Every U-computable (P, R)-chain is minimal.

This theorem does not have a true counterpart in the literature. The main result of [11] does require the immediate arguments of each s_i, t_i to be computable, but not other sub-metaterms. Note that the reverse of (a) does not hold: terminating AFSMs R with infinite R-computable $(SDP(R), R)$-chains do exist [7, Ex. 3.23 (report version 1)].

5 Static DP Framework & Computable Subterm Criterion Processor

The static DP framework follows the first-order DP framework [8], as an extendable framework for proving termination where new termination methods can easily be added as processors. In Thm. 16, we will propose a new processor: the computable subterm criterion.

Thus far, we have reduced the problem of termination to the non-existence of certain chains. Following the first-order DP framework, we formalise this further via DP problems:

Definition 14 (DP problem). A DP problem is a tuple (P, R, m) with P a set of DPs, R a set of rules, and $m \in \{ \text{minimal, arbitrary} \} \cup \{ \text{computable}_U \mid U \text{ a set of rules} \}$. A DP problem (P, R, m) is finite if there exists no infinite (P, R)-chain that is U-computable if $m = \text{computable}_U$ or minimal if $m = \text{minimal}$. For the different levels of permissiveness, we use a transitive-reflexive relation \supseteq generated by $\text{computable}_U \supseteq \text{minimal} \supseteq \text{arbitrary}$.

Thm. 13 now becomes: an AFSM (F, R) is terminating if (but not only if) it is AFP and $(SDP(R), R, \text{computable}_R)$ is finite. We add a flag value computable_R over the first-order framework for chains with computability restrictions. The core idea of the DP framework is to simplify a set of DP problems stepwise via processors until nothing remains to be proved:

Definition 15 (Processor). A dependency pair processor (or just processor) is a function that takes a DP problem and returns a set of DP problems. A processor Proc is sound if a DP problem M is finite whenever all elements of $\text{Proc}(M)$ are finite.

To prove finiteness of a DP problem M: (1) let $A := \{ M \}$; (2) while $A \neq \emptyset$: select a $Q \in A$ and a sound processor Proc, let $A := (A \setminus \{ Q \}) \cup \text{Proc}(Q)$. If this terminates, M is a finite DP problem. Many processors are possible; here we present an extension of the subterm criterion [12, 10, 11], dubbed computable subterm criterion, that needs the new flag.
Theorem 16 (Computable subterm criterion processor). Let \(M = (\mathcal{P}_1 \cup \mathcal{P}_2, \mathcal{R}, \text{computable}_G) \) be a DP problem. A projection function \(\nu \) maps meta-terms to natural numbers such that for all DPs \(\ell \Rightarrow p \in \mathcal{P}_1 \cup \mathcal{P}_2 \), the function \(\nu \) with \(\nu(f \ s_1 \ldots s_n) = s_{\nu(t)} \) is well-defined for \(\ell \) and \(p \). For meta-terms \(s \) and \(t \) of base types, we define \(s \sqsubseteq t \) if \(s \neq t \) and (a) \(s \sqsubseteq_{\text{acc}} t \) or (b) there exists a meta-variable \(Z \) with \(s \sqsubseteq_{\text{acc}} Z[x_1, \ldots, x_k] \) and \(t = [t_1, \ldots, t_k] \). Then the processor \(\text{Proc}_{\text{compsub}} \) that maps \(M \) to \(\{(\mathcal{P}_2, \mathcal{R}, \text{computable}_G)\} \) is sound if a projection function \(\nu \) exists with \(\nu(\ell) \sqsubseteq \nu(p) \) for all \(\ell \Rightarrow p \in \mathcal{P}_1 \) and \(\nu(\ell) \sqsubseteq \nu(p) \) for all \(\ell \Rightarrow p \in \mathcal{P}_2 \).

Example 17. \(\mathcal{R} \) from Ex. 1 is terminating if \((\mathcal{P}, \mathcal{R}, \text{computable}_G) \) with \(\mathcal{P} = \text{SDP}(\mathcal{R}) \) is finite (see Ex. 7). Consider the projection function \(\nu \) with \(\nu(\text{rec}^2) = 1 \) as \(s \sqsubseteq_{\text{acc}} X \) and \(\lim H \sqsubseteq_{\text{acc}} H \), we have \(s \sqsubseteq X \sqsubseteq X \) and \(\lim H \sqsubseteq H \). So \(\text{Proc}_{\text{compsub}}(\mathcal{P}, \mathcal{R}, \text{computable}_G) = \{(\emptyset, \mathcal{R}, \text{computable}_G)\} \). As there are no DPs left, this implies termination of the original \(\mathcal{R} \).

6 Conclusion

We have extended the static DP method by a more relaxed applicability criterion and the new computable subterm criterion. The full version [7] of the paper has proofs and further extensions, such as formative reductions [6, 10], applications to proving non-termination, and dynamic DPs [10] in a unified DP framework with many other processors.

References