The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/198131

Please be advised that this information was generated on 2019-09-06 and may be subject to change.
Measurement of dijet azimuthal decorrelations in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector and determination of the strong coupling

M. Aaboud et al.* \\
(ATLAS Collaboration)

(Rceived 15 May 2018; published 7 November 2018)

A measurement of the rapidity and transverse momentum dependence of dijet azimuthal decorrelations is presented, using the quantity $R_{\Delta \phi}$. The quantity $R_{\Delta \phi}$ specifies the fraction of the inclusive dijet events in which the azimuthal opening angle of the two jets with the highest transverse momenta is less than a given value of the parameter $\Delta \phi_{\text{max}}$. The measurement uses event sample corresponding to an integrated luminosity of 20.2 fb\(^{-1}\) collected with the ATLAS detector at the CERN Large Hadron Collider. Predictions of a perturbative QCD calculation at next-to-leading order in the strong coupling with corrections for nonperturbative effects are compared to the data. The theoretical predictions describe the data in the whole kinematic region. The data are used to determine the strong coupling α_s and to study its running for momentum transfers from 260 GeV to above 1.6 TeV. Analysis that combines data at all momentum transfers results in $\alpha_s(m_Z) = 0.1127^{+0.0063}_{-0.0037}$.

DOI: 10.1103/PhysRevD.98.092004

I. INTRODUCTION

In high-energy particle collisions, measurements of the production rates of hadronic jets with large transverse momentum p_T relative to the beam direction can be employed to test the predictions of perturbative quantum chromodynamics (pQCD). The results can also be used to determine the strong coupling α_s, and to test the pQCD predictions for the dependence of α_s on the momentum transfer Q (the “running” of α_s) by the renormalization group equation (RGE) \cite{1,2}. Previous tests of the RGE through α_s determinations in hadronic final states have been performed using data taken in ep collisions ($5 < Q < 60$ GeV) \cite{3-5}, in e^+e^- annihilation ($10 < Q < 210$ GeV) \cite{6,7}, in pp collisions ($50 < Q < 400$ GeV) \cite{8-10}, and in pp collisions ($130 < Q < 1400$ GeV) \cite{11-15}. The world average value is currently $\alpha_s(m_Z) = 0.1181 \pm 0.0011$ \cite{16}.

Recent α_s results from hadron collisions are limited by theoretical uncertainties related to the scale dependence of the fixed-order pQCD calculations. The most precise $\alpha_s(m_Z)$ result from hadron collision data is $\alpha_s(m_Z) = 0.1161^{+0.0041}_{-0.0048}$ \cite{9}, obtained from inclusive jet cross-section data, using pQCD predictions beyond the next-to-leading order (NLO). However, when the cross-section data are used in α_s determinations, the extracted α_s results are directly affected by our knowledge of the parton distribution functions (PDFs) of the proton, and their Q dependence. The PDF parametrizations depend on assumptions about α_s and the RGE in the global data analyses in which they are determined. Therefore, in determinations of α_s and its Q dependence from cross-section data the RGE is already assumed in the inputs. Such a conceptual limitation when using cross-section data can largely be avoided by using ratios of multijet cross sections in which PDFs cancel to some extent. So far, the multijet cross-section ratios $R_{\Delta \phi}$ \cite{10} and $R_{\phi_{1,2}}$ \cite{11} have been used for α_s determinations at hadron colliders. In this article, α_s is determined from dijet azimuthal decorrelations, based on the multijet cross-section ratio $R_{\Delta \phi}$ \cite{17}. The RGE predictions are tested up to $Q = 1.675$ TeV.

The decorrelation of dijets in the azimuthal plane has been the subject of a number of measurements at the Fermilab Tevatron Collider \cite{18} and the CERN Large Hadron Collider (LHC) \cite{19,20}. The variable $\Delta \phi_{\text{dijet}}$ investigated in these analyses is defined from the angles in the azimuthal plane (the plane perpendicular to the beam direction) $\phi_{1,2}$ of the two highest-p_T jets in the event as $\Delta \phi_{\text{dijet}} = |\phi_1 - \phi_2|$. In exclusive high-$p_T$ dijet final states, the two jets are correlated in the azimuthal plane with $\Delta \phi_{\text{dijet}} = \pi$. Deviations from this ($\Delta \phi_{\text{dijet}} < \pi$) are due to additional activity in the final state, as described in pQCD by processes of higher order in α_s. Due to kinematic constraints, the phase space in $2 \rightarrow 3$ processes is restricted to $\Delta \phi_{\text{dijet}} > 2\pi/3$ \cite{21} and lower $\Delta \phi_{\text{dijet}}$ values are only accessible in $2 \rightarrow 4$ processes. Measurements of dijet production with $2\pi/3 < \Delta \phi_{\text{dijet}} < \pi$ ($\Delta \phi_{\text{dijet}} < 2\pi/3$)
The quantity $R_{\Delta \phi}$ is defined as the fraction of all inclusive dijet events in which $\Delta \phi_{\text{dijet}}$ is less than a specified value $\Delta \phi_{\text{max}}$. This quantity can be exploited to extend the scope of the previous analyses towards studies of the rapidity dependence of dijet azimuthal decorrelations. Since $R_{\Delta \phi}$ is defined as a ratio of multijet cross sections for which the PDFs cancel to a large extent, it is well suited for determinations of α_S and for studies of its running.

The quantity $R_{\Delta \phi}$ has so far been measured in $p\bar{p}$ collisions at a center-of-mass energy of $\sqrt{s} = 1.96$ TeV at the Fermilab Tevatron Collider [22]. This article presents the first measurement of $R_{\Delta \phi}$ in pp collisions, based on data at $\sqrt{s} = 8$ TeV taken with the ATLAS detector during 2012 at the LHC, corresponding to an integrated luminosity of $20.2 \pm 0.4 \text{ fb}^{-1}$ [23]. The data are corrected to “particle level” [24], and are used to extract α_S and to study its running over a range of momentum transfers of $262 < Q < 1675$ GeV.

II. DEFINITION OF $R_{\Delta \phi}$ AND THE ANALYSIS PHASE SPACE

The definitions of the quantity $R_{\Delta \phi}$ and the choices of the variables that define the analysis phase space are taken from the proposal in Ref. [17]. Jets are defined by the anti-k_t jet algorithm as implemented in FASTJET [25,26]. The anti-k_t jet algorithm is a successive recombination algorithm in which particles are clustered into jets in the E-scheme (i.e., the jet four-momentum is computed as the sum of the particle four-momenta). The radius parameter is chosen to be $R = 0.6$. This is large enough for a jet to include a sufficient amount of soft and hard radiation around the jet axis, thereby improving the properties of pQCD calculations at fixed order in α_S, and it is small enough to avoid excessive contributions from the underlying event [27]. An inclusive dijet event sample is extracted by selecting all events with two or more jets, where the two leading-p_T jets have $p_T > p_{T \text{ min}}$. The dijet phase space is further specified in terms of the variables y_{boost} and y^*, computed from the rapidities, y_1 and y_2, of the two leading-p_T jets as $y_{\text{boost}} = (y_1 + y_2)/2$ and $y^* = |y_1 - y_2|/2$, respectively. In $2 \rightarrow 2$ processes, the variable y_{boost} specifies the longitudinal boost between the dijet and the proton-proton center-of-mass frames, and y^* (which is longitudinally boost invariant) represents the absolute value of the jet rapidities in the dijet center-of-mass frame. The dijet phase space is restricted to $|y_{\text{boost}}| < y_{\text{boost}}^{\text{max}}$ and $y^* < y_{\text{max}}^*$. The variable H_T is defined as the scalar sum of the jet p_T for all jets i with $p_{T i} > p_{T \text{ min}}$ and $|y_i - y_{\text{boost}}| < y_{\text{max}}^*$. Furthermore, the leading-p_T jet is required to have $p_{T 1} > H_T/3$. The values of the parameters $p_{T \text{ min}}, y_{\text{boost}}^{\text{max}}$, and y_{max}^* ensure that jets are well measured in the detector within $|y| < 2.5$ and that contributions from nonperturbative corrections and pileup (additional proton-proton interactions within the same or nearby bunch crossings) are small. The requirement $p_{T 1} > H_T/3$ ensures (for a given H_T) a well-defined minimum $p_{T 1}$ which allows single-jet triggers to be used in the measurement. It also reduces the contributions from events with four or more jets, and therefore pQCD corrections from higher orders in α_S. The values of all parameters are specified in Table I. The quantity $R_{\Delta \phi}$ is defined in this inclusive dijet event sample as the ratio

$$R_{\Delta \phi}(H_T, y^*, \Delta \phi_{\text{max}}) = \frac{\frac{d^2 \sigma_{\text{dijet}}(\Delta \phi_{\text{dijet}} < \Delta \phi_{\text{max}})}{dH_T dy^*}}{\frac{d^2 \sigma_{\text{dijet}}(\text{inclusive})}{dH_T dy^*}},$$

where the denominator is the inclusive dijet cross section in the phase space defined above, in bins of the variables H_T and y^*. The numerator is given by the subset of the denominator for which $\Delta \phi_{\text{dijet}}$ of the two leading-p_T jets obeys $\Delta \phi_{\text{dijet}} < \Delta \phi_{\text{max}}$. The measurement of the y^* dependence of $R_{\Delta \phi}$ allows a test of the rapidity dependence of the pQCD matrix elements. The value of $\Delta \phi_{\text{max}}$ is directly related to the hardness of the jet(s) produced in addition to the two leading-p_T jets in the event. The transverse momentum sum H_T is one possible choice that can be related to the scale at which α_S is probed. The measurement is made as a function of H_T in three different regions H_T, y^*, and $\Delta \phi_{\text{max}}$ regions in which $R_{\Delta \phi}(H_T, y^*, \Delta \phi_{\text{max}})$ is measured.

Table I. The values of the parameters and the requirements that define the analysis phase space for the inclusive dijet event sample.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{T \text{ min}}$</td>
<td>100 GeV</td>
</tr>
<tr>
<td>$y_{\text{max}}^{\text{boost}}$</td>
<td>0.5</td>
</tr>
<tr>
<td>y_{max}^*</td>
<td>2.0</td>
</tr>
<tr>
<td>$p_{T 1}/H_T$</td>
<td>$>1/3$</td>
</tr>
</tbody>
</table>

Table II. The H_T, y^*, and $\Delta \phi_{\text{max}}$ regions in which $R_{\Delta \phi}(H_T, y^*, \Delta \phi_{\text{max}})$ is measured.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_T bin boundaries (in TeV)</td>
<td>0.45, 0.6, 0.75, 0.9, 1.1, 1.4, 1.8, 2.2, 2.7, 4.0</td>
</tr>
<tr>
<td>y^* regions</td>
<td>0.0–0.5, 0.5–1.0, 1.0–2.0</td>
</tr>
<tr>
<td>$\Delta \phi_{\text{max}}$ values</td>
<td>$7\pi/8$, $5\pi/6$, $3\pi/4$, $2\pi/3$</td>
</tr>
</tbody>
</table>
y^s regions and for four different values of Δφ\textsubscript{max} (see Table II).

III. THEORETICAL PREDICTIONS

The theoretical predictions in this analysis are obtained from perturbative calculations at fixed order in α\textsubscript{s} with additional corrections for nonperturbative effects.

The pQCD calculations are carried out using NLOJET++ [28,29] interfaced to FASTNLO [30,31] based on the matrix elements for massless quarks in the \(\overline{\text{MS}}\) scheme [32]. The renormalization and factorization scales are set to \(\mu_\text{r} = \mu_\text{f} = \mu_0 = H_\text{T}/2\). In inclusive dijet production at leading order (LO) in pQCD this choice is equivalent to other common choices: \(\mu_0 = \bar{p}_\text{T} = (p_{T1} + p_{T2})/2\) and \(\mu_0 = p_{T1}\). The evolution of \(\alpha_\text{s}\) is computed using the numerical solution of the next-to-leading-logarithmic (2-loop) approximation of the RGE.

The pQCD predictions for the ratio \(R_{\Delta\phi}\) are obtained from the ratio of the cross sections in the numerator and denominator in Eq. (1), computed to the same relative order (both either to NLO or to LO). The pQCD predictions for the cross section in the denominator by NLOJET++ are available up to NLO. For \(\Delta\phi = 7\pi/8, 5\pi/6, 3\pi/4 (2\pi/3)\) the numerator is a three-jet (four-jet) quantity for which the pQCD predictions in NLOJET++ are available up to NLO (LO) [21].

The PDFs are taken from the global analyses MMHT2014 [NLO] [33,34], CT14 (NLO) [35], and NNPDFv2.3 (NLO) [36]. For additional studies, the PDF sets ABMP16 (NNLO) [38] and HERAPDF 2.0 (NLO) [39] are used, which were obtained using data from selected processes only. All of these PDF sets were obtained for a series of discrete \(\alpha_\text{s}(m_Z)\) values, in increments of \(\Delta\alpha_\text{s}(m_Z) = 0.001\) (or \(\Delta\alpha_\text{s}(m_Z) = 0.002\) for NNPDFv2.3). In all calculations in this paper, the PDF sets are consistently chosen to correspond to the value of \(\alpha_\text{s}(m_Z)\) used in the matrix elements. The extraction of \(\alpha_\text{s}\) from the experimental \(R_{\Delta\phi}\) data requires a continuous dependence of the pQCD calculations on \(\alpha_\text{s}(m_Z)\). This is obtained by cubic interpolation (linear extrapolation) for \(\alpha_\text{s}(m_Z)\) values inside (outside) the ranges provided by the PDF sets. The central predictions that are compared to the data use \(\alpha_\text{s}(m_Z) = 0.118\), which is close to the current world average, and the MMHT2014 PDFs. The MMHT2014 PDFs also provide the largest range of \(\alpha_\text{s}(m_Z)\) values (0.108 ≤ \(\alpha_\text{s}(m_Z)\) ≤ 0.128). For these reasons, the MMHT2014 PDFs are used to obtain the central results in the \(\alpha_\text{s}\) determinations.

The uncertainties of the perturbative calculation are estimated from the scale dependence (as an estimate of missing higher-order pQCD corrections) and the PDF uncertainties. The former is evaluated from independent variations of \(\mu_\text{f}\) and \(\mu_\text{r}\) between \(\mu_0/2\) and \(2\mu_0\) (with the restriction \(0.5 \leq \mu_\text{r}/\mu_\text{f} \leq 2.0\)). The PDF-induced uncertainty is computed by propagating the MMHT2014 PDF uncertainties. In addition, a “PDF set” uncertainty is included as the envelope of the differences of the results obtained with CT14, NNPDFv2.3, ABMP16, and HERAPDF 2.0, relative to those obtained with MMHT2014.

The pQCD predictions based on matrix elements for massless quarks also depend on the number of quark flavors, in gluon splitting (\(g \rightarrow q \bar{q}\)), \(n_t\), which affects the tree-level matrix elements and their real and virtual corrections, as well as the RGE predictions and the PDFs obtained from global data analyses. The central results in this analysis are obtained for a consistent choice \(n_t = 5\) in all of these contributions. Studies of the effects of using \(n_t = 6\) in the matrix elements and the RGE, as documented in Appendix A, show that the corresponding effects for \(R_{\Delta\phi}\) are between −1% and +2% over the whole kinematic range of this measurement. Appendix A also includes a study of the contributions from the \(t\bar{t}\) production process, concluding that the effects on \(R_{\Delta\phi}\) are less than 0.5% over the whole analysis phase space.

The corrections due to nonperturbative effects, related to hadronization and the underlying event, were obtained in Ref. [17], using the event generators PYTHIA 6.426 [40] and HERWIG 6.520 [41,42]. An estimate of the model uncertainty is obtained from a study of the dependence on the generator’s parameter settings (tunes), based on the PYTHIA tunes AMBT1 [43], DW [44], A [45], and S-Global [46], which differ in the parameter settings and the implementations of the parton-shower and underlying-event models. All model predictions for the total nonperturbative corrections lie below 2% (4%) for \(\Delta\phi = 7\pi/8\) and \(5\pi/6\) \((\Delta\phi = 3\pi/4\) and \(2\pi/3\)) and different models agree within 2% (5%) for \(\Delta\phi = 7\pi/8\) and \(5\pi/6\) \((\Delta\phi = 3\pi/4\) and \(2\pi/3\)).

For this analysis, the central results are taken to be the average values obtained from PYTHIA with tunes AMBT1 and DW. The corresponding uncertainty is taken to be half of the difference (the numerical values are provided in Ref. [47]). The results obtained with PYTHIA tunes A and S-Global as well as HERWIG are used to study systematic uncertainties.

IV. ATLAS DETECTOR

ATLAS is a general-purpose detector consisting of an inner tracking detector, a calorimeter system, a muon spectrometer, and magnet systems. A detailed description of the ATLAS detector is given in Ref. [47]. The main components used in the \(R_{\Delta\phi}\) measurement are the inner detector, the calorimeters, and the trigger system.
The position of the \(pp \) interaction is determined from charged-particle tracks reconstructed in the inner detector, located inside a superconducting solenoid that provides a 2 T axial magnetic field. The inner detector, covering the region \(|\eta| < 2.5 \), consists of layers of silicon pixels, silicon microstrips, and transition radiation tracking detectors.

Jet energies and directions are measured in the three electromagnetic and four hadronic calorimeters with a coverage of \(|\eta| < 4.9 \). The electromagnetic liquid argon (LAr) calorimeters cover \(|\eta| < 1.475 \) (barrel), \(1.375 < |\eta| < 3.2 \) (endcap), and \(3.1 < |\eta| < 4.9 \) (forward). The regions \(|\eta| < 0.8 \) (barrel) and \(0.8 < |\eta| < 1.7 \) (extended barrel) are covered by scintillator/steel sampling hadronic calorimeters, while the regions \(1.5 < |\eta| < 3.2 \) and \(3.1 < |\eta| < 4.9 \) are covered by the hadronic endcap with LAr/Cu calorimeter modules, and the hadronic forward calorimeter with LAr/W modules.

During 2012, for \(pp \) collisions, the ATLAS trigger system was divided into three levels, labeled L1, L2, and the event filter (EF) [48,49]. The L1 trigger is hardware-based, while L2 and EF are software based and impose increasingly refined selections designed to identify events of interest. The jet trigger identifies electromagnetically and hadronically interacting particles by reconstructing the energy deposited in the calorimeters. The L1 jet trigger uses a sliding window of \(\Delta \eta \times \Delta \phi = 0.8 \times 0.8 \) to find jets and requires these to have transverse energies \(E_T \) above a given threshold, measured at the electromagnetic scale. Jets triggered by L1 are passed to the L2 jet trigger, which reconstructs jets in the same region using a simple cone jet algorithm with a cone size of 0.4 in (\(\eta, \phi \)) space. Events are accepted if a L2 jet is above a given \(E_T \) threshold. In events which pass L2, a full event reconstruction is performed by the EF. The jet EF constructs topological clusters [50] from which jets are then formed, using the anti-\(k_T \) jet algorithm with a radius parameter of \(R = 0.4 \). These jets are then calibrated to the hadronic scale. Events for this analysis are collected either with single-jet triggers with different minimum \(E_T \) requirements or with multijet triggers based on a single high-\(E_T \) jet plus some amount of \(H_T \) (the scalar \(E_T \) sum) of the multijet system. The trigger efficiencies are determined relative to fully efficient reference triggers, and each trigger is used above an \(H_T \) threshold where it is more than 98% efficient. The triggers used for the different \(H_T \) regions in the offline analysis are listed in Table III.

<table>
<thead>
<tr>
<th>(H_T) range [GeV]</th>
<th>Trigger type</th>
<th>Integrated luminosity [pb(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>450–600</td>
<td>Single-jet</td>
<td>9.6 ± 0.2</td>
</tr>
<tr>
<td>600–750</td>
<td>Single-jet</td>
<td>36 ± 1</td>
</tr>
<tr>
<td>750–900</td>
<td>Multi-jet</td>
<td>546 ± 11</td>
</tr>
<tr>
<td>> 900</td>
<td>Multi-jet</td>
<td>((20.2 ± 0.4) \times 10^3)</td>
</tr>
</tbody>
</table>

The detector response for the measured quantities is determined using a detailed simulation of the ATLAS detector in GEANT 4 [51,52]. The particle-level events, subjected to the detector simulation, were produced by the PYTHIA event generator [53] (version 8.160) with CT10 PDFs. The PYTHIA parameters were set according to the AU2 tune [54]. The “particle-level” jets are defined based on the four-momenta of the generated stable particles (as recommended in Ref. [24], with a proper lifetime \(\tau \) satisfying \(\tau > 10 \) mm, including muons and neutrinos from hadron decays). The “detector-level” jets are defined based on the four-momenta of the simulated detector objects.

V. MEASUREMENT PROCEDURE

The inclusive dijet events used for the measurement of \(R_{\Delta \phi} \) were collected between April and December 2012 by the ATLAS detector in proton-proton collisions at \(\sqrt{s} = 8 \) TeV. All events used in this measurement are required to satisfy data-quality criteria which include stable beam conditions and stable operation of the tracking systems, calorimeters, solenoid, and trigger system. Events that pass the trigger selections described above are included in the sample if they contain at least one primary collision vertex with at least two associated tracks with \(p_T > 400 \) MeV, in order to reject contributions due to cosmic-ray events and beam background. The primary vertex with highest \(\sum p_T^2 \) of associated tracks is taken as the event vertex.

Jets are reconstructed offline using the anti-\(k_T \) jet algorithm with a radius parameter \(R = 0.6 \). Input to the jet algorithm consists of locally calibrated three-dimensional topological clusters [50] formed from sums of calorimeter cell energies, corrected for local calorimeter response, dead material, and out-of-cluster losses for pions. The jets are further corrected for pileup contributions and then calibrated to the hadronic scale, as detailed in the following. The pileup correction is applied to account for the effects on the jet response from additional interactions within the same proton bunch crossing (“in-time pileup”) and from interactions in bunch crossings preceding or following the one of interest (“out-of-time pileup”). Energy is subtracted from each jet, based upon the energy density luminosity of the data sample collected with the highest threshold triggers is \(20.2 ± 0.4 \) fb\(^{-1}\).
in the event and the measured area of the jet [55]. The jet energy is then adjusted by a small residual correction depending on the average pileup conditions for the event. This calibration restores the calorimeter energy scale, on average, to a reference point where pileup is not present [56]. Jets are then calibrated using an energy- and \(\eta \)-dependent correction to the hadronic scale with constants derived from data and Monte Carlo samples of jets produced in multi-jet processes. A residual calibration, based on a combination of several \textit{in situ} techniques, is applied to take into account differences between data and Monte Carlo simulation. In the central region of the detector, the uncertainty in the jet energy calibration is derived from the transverse momentum balance in Z + jet, \(\gamma + \) jet or multijet events measured \textit{in situ}, by propagating the known uncertainties of the energies of the reference objects to the jet energies. The energy uncertainties for the central region are then propagated to the forward region by studying the transverse momentum balance in dijet events with one central and one forward jet [57]. The energy calibration uncertainty in the high-\(p_T \) range is estimated using the \textit{in situ} measurement of the response to single isolated hadrons [58]. The jet energy calibration’s total uncertainty is decomposed into 57 uncorrelated contributions, of which each is fully correlated in \(p_T \). The corresponding uncertainty in jet \(p_T \) is between 1% and 4% in the central region (\(|\eta| < 1.8\)), and increases to 5% in the forward region (\(1.8 < |\eta| < 4.5\)).

The jet energy resolution has been measured in the data using the bisector method in dijet events [59–61] and the Monte Carlo simulation is seen to be in good agreement with the data. The uncertainty in the jet energy resolution is affected by selection parameters for jets, such as the amount of nearby jet activity, and depends on the \(\eta \) and \(p_T \) values of the jets. Further details about the determinations of the jet energy scale and resolution are given in Refs. [58,59,62].

The angular resolution of jets is obtained in the Monte Carlo simulation by matching particle-level jets with detector-level jets, when their distance in \(\Delta R = \sqrt{(\Delta \eta^2 + \Delta \phi^2)} \) is smaller than the jet radius parameter. The jet \(\eta \) and \(\phi \) resolutions are obtained from a Gaussian fit to the distributions of the difference between the detector-level and particle-level values of the corresponding quantity. The difference between the angular resolutions determined from different Monte Carlo simulations is taken as a systematic uncertainty for the measurement result, which is about 10%–15% for \(p_T < 150 \) GeV and decreases to about 1% for \(p_T > 400 \) GeV. The bias in jet \(\eta \) and \(\phi \) is found to be negligible.

All jets within the whole detector acceptance, \(|\eta| < 4.9\), are considered in the analysis. Data-quality requirements are applied to each reconstructed jet according to its properties, to reject spurious jets not originating from hard-scattering events. In each \(H_T \) bin, events from a single trigger are used and the same trigger is used for the numerator and the denominator of \(R_{\Delta \phi} \). In order to test the stability of the measurement results, the event sample is divided into subsamples with different pileup conditions. The \(R_{\Delta \phi} \) results for different pileup conditions are compatible within the statistical uncertainties without any systematic trends. The measurement is also tested for variations resulting from loosening the requirements on the event- and jet-data-quality conditions, and the observed variations are also consistent within the statistical uncertainties.

The distributions of \(R_{\Delta \phi}(H_T, y^*, \Delta \phi_{\text{max}}) \) are corrected for experimental effects, including detector resolutions and inefficiencies, using the simulation. To ensure that the simulation describes all relevant distributions, including the \(p_T \) and \(y \) distributions of the jets, the generated events are reweighted, based on the properties of the generated jets, to match these distributions in data, and to match the \(H_T \) dependence of the observed inclusive dijet cross section as well as the \(R_{\Delta \phi} \) distributions and their \(H_T \) dependence. To minimize migrations between \(H_T \) bins due to resolution effects, the bin widths are chosen to be larger than the detector resolution. The bin purities, defined as the fraction of all reconstructed events that are generated in the same bin, are 65%–85% for \(\Delta \phi_{\text{max}} = 7\pi/8 \) and \(5\pi/6 \), and 50%–75% for \(\Delta \phi_{\text{max}} = 3\pi/4 \) and \(2\pi/3 \). The bin efficiencies, defined as the fraction of all generated events that are reconstructed in the same bin, have values in the same ranges as the bin purities. The corrections are obtained bin by bin from the generated Pythia events as the ratio of the \(R_{\Delta \phi} \) results for the particle-level jets and the detector-level jets. These corrections are typically between 0% and 3%, and never outside the range from −10% to +10%. Uncertainties in these corrections due to the modeling of the migrations by the simulation are estimated from the changes of the correction factors when varying the reweighting function. In most parts of the phase space, these uncertainties are below 1%. The results from the bin-by-bin correction procedure were compared to the results when using a Bayesian iterative unfolding procedure [63], and the two results agree within their statistical uncertainties.

The uncertainties of the \(R_{\Delta \phi} \) measurements include two sources of statistical uncertainty and 62 sources of systematic uncertainty. The statistical uncertainties arise from the data and from the correction factors. The systematic uncertainties are from the correction factors (two independent sources, related to variations of the reweighting of the generated events), the jet energy calibration (57 independent sources), the jet energy resolution, and the jet \(\eta \) and \(\phi \) resolutions. To avoid double counting of statistical fluctuations, the \(H_T \) dependence of the uncertainty distributions is smoothed by fitting either linear or quadratic functions in \(\log(H_T/\text{GeV}) \). From all 62 sources of experimental correlated uncertainties, the dominant systematic uncertainties are due to the jet energy calibration. For \(\Delta \phi_{\text{max}} = 7\pi/8 \) and \(5\pi/6 \) the jet energy calibration uncertainties are typically between 1.0% and 1.5% and always less than 3.1%.
smaller values of $\Delta\phi_{\text{max}}$ they can be as large as 4% (for $\Delta\phi_{\text{max}} = 3\pi/4$) or 9% (for $\Delta\phi_{\text{max}} = 2\pi/3$).

VI. MEASUREMENT RESULTS

The measurement results for $R_{\Delta\phi}(H_T, y^*, \Delta\phi_{\text{max}})$ are corrected to the particle level and presented as a function of H_T, in different regions of y^* and for different $\Delta\phi_{\text{max}}$ requirements. The results are listed in Appendix B in Tables VI–IX, and displayed in Fig. 1, at the arithmetic center of the H_T bins. At fixed (y^*, $\Delta\phi_{\text{max}}$), $R_{\Delta\phi}(H_T, y^*, \Delta\phi_{\text{max}})$ decreases with increasing H_T and increases with increasing y^* at fixed (H_T, $\Delta\phi_{\text{max}}$). At fixed (H_T, y^*), $R_{\Delta\phi}$ decreases with decreasing $\Delta\phi_{\text{max}}$.

Theoretical predictions based on NLO pQCD (for $\Delta\phi_{\text{max}} = 7\pi/8$, $5\pi/6$, and $3\pi/4$) or LO (for $\Delta\phi_{\text{max}} = 2\pi/3$) with corrections for nonperturbative effects, as described in Sec. III, are compared to the data. The ratios of data to theoretical predictions are displayed in Fig. 2. To provide further information about the convergence of the pQCD calculation, the inverse of the NLO K-factors are also shown (defined as the ratio of predictions for $R_{\Delta\phi}$ at NLO and LO, $K = R_{\Delta\phi}^{\text{NLO}} / R_{\Delta\phi}^{\text{LO}}$). In all kinematical regions, the data are described by the theoretical predictions, even for $\Delta\phi_{\text{max}} = 2\pi/3$, where the predictions are only based on LO pQCD and have uncertainties of about 20% (dominated by the dependence on μ_R and μ_F). The data for $\Delta\phi_{\text{max}} = 7\pi/8$ and $5\pi/6$ allow the most stringent tests of the theoretical predictions, since for these $\Delta\phi_{\text{max}}$ values the theoretical uncertainties are typically less than ±5%.

 VII. SELECTION OF DATA POINTS FOR THE α_S EXTRACTION

The extraction of $\alpha_S(Q)$ at different scales $Q = H_T/2$ is based on a combination of data points in different kinematic regions of y^* and $\Delta\phi_{\text{max}}$, with the same H_T. The data points are chosen according to the following criteria.

1. Data points are used only from kinematic regions in which the pQCD predictions appear to be most reliable, as judged by the renormalization and factorization scale dependence, and by the NLO K-factors.
2. For simplicity, data points are only combined in the α_S extraction if they are statistically independent, i.e., if their accessible phase space does not overlap.
3. The preferred data points are those for which the cancellation of the PDFs between the numerator and the denominator in $R_{\Delta\phi}$ is largest.
4. The experimental uncertainty at large H_T is limited by the sample size. If the above criteria give equal preference to two or more data sets with overlapping phase space, the data points with smaller statistical uncertainties are used to test the RGE at the largest possible momentum transfers with the highest precision.

Based on criterion (1), the data points obtained for $\Delta\phi_{\text{max}} = 2\pi/3$ are excluded, as the pQCD predictions in NLOJET++ are only available at LO. Furthermore, it is

![Graph](092004-6)
observed that the points for $\Delta \phi_{\text{max}} = 3\pi/4$ have a large scale dependence, which is typically between $+15\%$ and -10%. For the remaining data points with $\Delta \phi_{\text{max}} = 7\pi/8$ and $5\pi/6$ at larger y^* ($1 < y^* < 2$), the NLO corrections are negative and (with a size of 5\%–23\%) larger than those at smaller y^*, indicating potentially larger corrections from not yet calculated higher orders. The conclusion from criterion (1) is therefore that the pQCD predictions are most reliable in the four kinematic regions $0 < y^* < 0.5$ and $0.5 < y^* < 1$, for $\Delta \phi_{\text{max}} = 7\pi/8$ and $\Delta \phi_{\text{max}} = 5\pi/6$, where the NLO K-factors are typically within $\pm 5\%$ of unity.

The requirement of statistically independent data points according to criterion (2) means that the data points from different y^* regions can be combined, but not those with different $\Delta \phi_{\text{max}}$. The choice whether to use the data with $\Delta \phi_{\text{max}} = 7\pi/8$ or $5\pi/6$ (in either case combining the data for $0 < y^* < 0.5$ and $0.5 < y^* < 1$) is therefore based on criteria (3) and (4).

The cancellation of the PDFs, as addressed in criterion (3), is largest for those data points for which the phase space of the numerator in Eq. (1) is closest to that of the denominator. Since the numerator of $R_{\Delta \phi}$ is a subset of the denominator, this applies more to the data at larger values of $\Delta \phi_{\text{max}}$. For those points, the fractional contributions from different partonic subprocesses ($gg \rightarrow \text{jets}$, $gq \rightarrow \text{jets}$, $qq \rightarrow \text{jets}$), and the ranges in the accessible proton momentum fraction x are more similar for the numerator and denominator, resulting in a larger cancellation of PDFs in $R_{\Delta \phi}$. This argument, based on the third criterion, leads to the same conclusion as the suggestion of criterion (4), to use the data set with smallest statistical uncertainty.

Based on the four criteria, α_S is therefore extracted combining the data points in the rapidity regions $0 < y^* < 0.5$ and $0.5 < y^* < 1$ for $\Delta \phi_{\text{max}} = 7\pi/8$. Extractions of α_S from the data points in other kinematical regions in y^* and $\Delta \phi_{\text{max}}$ are used to investigate the dependence of the final results on those choices.

VIII. Determination of α_S

The $R_{\Delta \phi}$ measurements in the selected kinematic regions are used to determine α_S and to test the QCD predictions for its running as a function of the scale $Q = H_T/2$. The α_S results are extracted by using MINUIT [64], to minimize the χ^2 function specified in Appendix C. In this approach, the experimental and theoretical uncertainties that are correlated between all data points are treated in the Hessian method [65] by including a nuisance parameter for each uncertainty source, as described in Appendix C. The only exceptions are the uncertainties due to the PDF set and the $\mu_{h,T}$ dependence of the pQCD calculation. These uncertainties are determined from the variations of the α_S results.
when repeating the α_S extractions for different PDF sets and for variations of the scales $\mu_{R,F}$ as described in Sec. III.

Results of $\alpha_S(Q)$ (with $Q = H_T/2$, taken at the arithmetic centers of the H_T bins) are determined from the $R_{\Delta \phi}$ data for $\Delta \phi_{\max} = 7\pi/8$, combining the data points in the two y^* regions of $0 < y^* < 0.5$ and $0.5 < y^* < 1.0$. Nine $\alpha_S(Q)$ values are determined in the range $262 < Q < 1675$ GeV. A single χ^2 minimization provides the uncertainties due to the statistical uncertainties, the experimental correlated uncertainties, the uncertainties due to the nonperturbative corrections, and the MMHT2014 PDF uncertainty. Separate χ^2 minimizations are made for variations of μ_R and μ_F (in the ranges described in Sec. III), and also for the CT14, NNPDFv2.3, ABMP16, and HERAPDF 2.0 PDF sets. The largest individual variations are used to quantify the uncertainty due to the scale dependence and the PDF set, respectively. The so-defined PDF set uncertainty may partially double count some of the uncertainties already taken into account by the MMHT2014 PDF uncertainties, but it may also include some additional systematic uncertainties due to different approaches in the PDF determinations. The $\alpha_S(Q)$ results are displayed in Fig. 3 and listed in Table IV.

In addition, assuming the validity of the RGE, all 18 data points in $0 < y^* < 0.5$ and $0.5 < y^* < 1.0$ for $\Delta \phi_{\max} = 7\pi/8$ are used to extract a combined $\alpha_S(m_Z)$ result. The combined fit (for MMHT2014 PDFs at the default scale) gives $\chi^2 = 21.7$ for 17 degrees of freedom and a result of $\alpha_S(m_Z) = 0.1127$ (the uncertainties are detailed in Table V). The fit is then repeated for the CT14, NNPDFv2.3, ABMP16, and HERAPDF 2.0 PDF sets, for which the $\alpha_S(m_Z)$ results differ by $+0.0001, +0.0022, +0.0026$, and $+0.0029$, respectively. Fits for various choices of μ_R and μ_F result in variations of the $\alpha_S(m_Z)$ results between -0.0019 and $+0.0052$.

Further dependence of the α_S results on some of the analysis choices is investigated in a series of systematic studies.

(i) Changing the $\Delta \phi_{\max}$ requirement.—Based on the criteria outlined in Sec. VII it was decided to use the data for $\Delta \phi_{\max} = 7\pi/8$ in the α_S analysis. If, instead, the data with $\Delta \phi_{\max} = 5\pi/6$ are used, the $\alpha_S(m_Z)$ result changes by $+0.0052$ to $\alpha_S(m_Z) = 0.1179$, with an uncertainty of $+0.0065$ and -0.0045 due to the scale dependence.

(ii) Extending the y^* region.—For the central α_S results, the data points with $1 < y^* < 2$ are excluded. If $\alpha_S(m_Z)$ is determined only from the data points for $1 < y^* < 2$ (with $\Delta \phi_{\max} = 7\pi/8$) the $\alpha_S(m_Z)$ result changes by -0.0018, with an increased scale dependence, to $\alpha_S(m_Z) = 0.1109^{+0.0071}_{-0.0031}$ with $\chi^2 = 13.8$ for 7 degrees of freedom. If the data points for $1 < y^* < 2$ are combined with those

![Figure 3: The α_S results determined from the $R_{\Delta \phi}$ data for $\Delta \phi_{\max} = 7\pi/8$ in the y^* regions $0 < y^* < 0.5$ and $0.5 < y^* < 1.0$ in the range of $262 < Q < 1675$ GeV. The inner error bars indicate the experimental uncertainties and the sum in quadrature of experimental and theoretical uncertainties is displayed by the total error bars. The $\alpha_S(Q)$ results (top) are displayed together with the prediction of the RGE for the $\alpha_S(m_Z)$ result obtained in this analysis. The individual $\alpha_S(Q)$ values are then evolved to $Q = m_Z$ (bottom).](https://example.com/figure3)

<table>
<thead>
<tr>
<th>Q [GeV]</th>
<th>$\alpha_S(Q)$</th>
<th>Total uncertainty</th>
<th>Statistical</th>
<th>Experimental correlated</th>
<th>Nonperturbative corrections</th>
<th>MMHT2014 uncertainty</th>
<th>PDF set</th>
<th>$\mu_{R,F}$ variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>262.5</td>
<td>0.1029</td>
<td>-6.0</td>
<td>-2.8</td>
<td>$+6.0$</td>
<td>$+1.6$</td>
<td>$+0.4$</td>
<td>$+1.3$</td>
<td>-5.3</td>
</tr>
<tr>
<td>337.5</td>
<td>0.0970</td>
<td>-2.8</td>
<td>$+6.0$</td>
<td>-1.5</td>
<td>$+1.1$</td>
<td>$+0.3$</td>
<td>$+1.0$</td>
<td>$+0.2$</td>
</tr>
<tr>
<td>412.5</td>
<td>0.0936</td>
<td>-2.6</td>
<td>-1.5</td>
<td>-1.3</td>
<td>-1.2</td>
<td>-0.3</td>
<td>-1.5</td>
<td>-0.7</td>
</tr>
<tr>
<td>500.0</td>
<td>0.0901</td>
<td>-2.6</td>
<td>$+0.9$</td>
<td>-1.3</td>
<td>-1.2</td>
<td>-0.3</td>
<td>-1.0</td>
<td>-0.9</td>
</tr>
<tr>
<td>625.0</td>
<td>0.0890</td>
<td>-2.2</td>
<td>$+0.6$</td>
<td>-1.2</td>
<td>$+0.3$</td>
<td>$+0.3$</td>
<td>$+1.7$</td>
<td>$+3.3$</td>
</tr>
<tr>
<td>800.0</td>
<td>0.0850</td>
<td>-2.2</td>
<td>$+0.5$</td>
<td>$+0.3$</td>
<td>-0.2</td>
<td>-0.3</td>
<td>-1.0</td>
<td>-0.3</td>
</tr>
<tr>
<td>1000</td>
<td>0.0856</td>
<td>-2.4</td>
<td>$+0.6$</td>
<td>$+0.3$</td>
<td>-0.2</td>
<td>$+0.4$</td>
<td>$+1.4$</td>
<td>$+3.4$</td>
</tr>
<tr>
<td>1225</td>
<td>0.0790</td>
<td>-2.4</td>
<td>$+1.2$</td>
<td>$+0.1$</td>
<td>$+0.3$</td>
<td>$+0.4$</td>
<td>$+1.7$</td>
<td>$+3.3$</td>
</tr>
<tr>
<td>1675</td>
<td>0.0723</td>
<td>-7.0</td>
<td>$+2.5$</td>
<td>$+1.3$</td>
<td>< -0.1</td>
<td>$+0.5$</td>
<td>$+1.7$</td>
<td>$+2.8$</td>
</tr>
</tbody>
</table>
for $0 < y^* < 0.5$ and $0.5 < y^* < 1$, the result is $\alpha_S(m_Z) = 0.1135^{+0.0051}_{-0.0025}$.

(iii) **Smoothing the systematic uncertainties.**—In the experimental measurement, the systematic uncertainties that are correlated between different data points were smoothed in order to avoid double counting of statistical fluctuations. For this purpose, the systematic uncertainties were fitted with a linear function in $\log(H_T/\text{GeV})$. If, alternatively, a quadratic function is used, the central $\alpha_S(m_Z)$ result changes by -0.0006, and the experimental uncertainty is changed from $+0.0018$ to $+0.0017$ to -0.0016.

(iv) **Stronger correlations of experimental uncertainties.**—The largest experimental uncertainties are due to the jet energy calibration. These are represented by contributions from 57 independent sources. Some of the correlations are estimated on the basis of prior assumptions. In a study of the systematic effects these assumptions are varied, resulting in an alternative scenario with stronger correlations between some of these sources. This changes the combined $\alpha_S(m_Z)$ result by -0.0004, while the experimental correlated uncertainty is reduced from $+0.0018$ to $+0.0012$.

(v) **Treatment of nonperturbative corrections.**—The central α_S results are obtained using the average values of the nonperturbative corrections from PYTHIA tunes ABT1 and DW, and the spread between the average and the individual models is taken as a correlated uncertainty, which is treated in the Hessian approach by fitting a corresponding nuisance parameter. Alternatively, the $\alpha_S(m_Z)$ result is also extracted by fixing the values for the nonperturbative corrections to the individual model predictions from HERWIG (default) and PYTHIA with tunes AMBT1, DW, S Global, and A, and to unity (corresponding to zero nonperturbative corrections). The corresponding changes of the $\alpha_S(m_Z)$ result for the different choices are between -0.0004 and $+0.0011$.

(vi) **Choice of $n_\ell = 6$ versus $n_\ell = 5$.**—The choice of $n_\ell = 6$ corresponds to the rather extreme approximation in which the top quark is included as a massless quark in the pQCD calculation. The effect of using $n_\ell = 6$ instead of $n_\ell = 5$ in the pQCD matrix elements and the RGE and the corresponding impact on $R_{\Delta \phi}$ are discussed in Appendix A. The effects on the extracted α_S results are also studied and are found to be between $+1.3\%$ (at low H_T) and -1.1% (at high H_T) for the nine $\alpha_S(Q)$ results. The combined $\alpha_S(m_Z)$ result changes by -0.0006 from 0.1127 (for $n_\ell = 5$) to 0.1121 (for $n_\ell = 6$).

(vii) **A scan of the renormalization scale dependence.**—Unlike all other uncertainties which are treated in the Hessian approach, the uncertainty due to the renormalization and factorization scale dependence is obtained from individual fits in which both scales are set to fixed values. To ensure that the largest variation may not occur at intermediate values, a scan of the renormalization scale dependence in finer steps is made. For each of the three variations of μ_R by factors of $x_{\mu_R} = 0.5, 1.0, 2.0$, the renormalization scale is varied by nine logarithmically equal-spaced factors of $x_{\mu_R} = 0.5, 0.596, 0.708, 0.841, 1.0, 1.189, 1.413, 1.679, 2.0$.

It is seen that the largest upward variation (of $+0.0052$) is obtained for the correlated variation $x_{\mu_R} = x_{\mu_F} = 2.0$. The lowest variation (of -0.0027) is obtained for the anti-correlated variation $x_{\mu_R} = 0.5$ and $x_{\mu_F} = 2.0$, which is, however, outside the range $0.5 \leq x_{\mu_R}/x_{\mu_F} \leq 2$. The lowest variation within this range (-0.0014) is obtained for $x_{\mu_R} = 0.5$ and $x_{\mu_F} = 1.0$.

(viii) **Effects of the Hessian method.**—In the Hessian approach, a fit can explore the multidimensional uncertainty space to find the χ^2 minimum at values of the nuisance parameters associated to the sources of systematic uncertainties, that do not represent the best knowledge of the corresponding sources. While in this analysis the shifts of the nuisance parameters are all small, it is still interesting to study their effects on the α_S fit results. Therefore, the $\alpha_S(m_Z)$ extraction is repeated, initially including the uncorrelated (i.e., statistical) uncertainties only. Then, step by step, the experimental correlated uncertainties, the uncertainties of the nonperturbative corrections, and the PDF uncertainties are included. These fits produce $\alpha_S(m_Z)$ results that differ by less than ±0.0004 from the central result.

These systematic studies show that the α_S results are rather independent of the analysis choices and demonstrate the stability of the α_S extraction procedure. These variations are not treated as additional uncertainties because their resulting effects are smaller than the other theoretical uncertainties. The largest variation of the $\alpha_S(m_Z)$ result,
by $+0.0052$, is obtained when using the data with $\Delta \phi_{\text{max}} = 5\pi/6$ instead of $\Delta \phi_{\text{max}} = 7\pi/8$. This difference may be due to different higher-order corrections to the NLO pQCD results for different $\Delta \phi_{\text{max}}$ values. This assumption is consistent with the observed scale dependence of the $\alpha_S(m_{\overline{\text{MS}}})$ results, within which the results for both choices of $\Delta \phi_{\text{max}}$ agree (0.1127 ± 0.0052 versus $0.1179 - 0.0045$ for $\Delta \phi_{\text{max}} = 5\pi/6$ and $7\pi/8$, respectively). It is therefore concluded from the systematic studies that no further uncertainties need to be assigned.

The final result from the combined fit is $\alpha_S(m_{\overline{\text{MS}}}) = 0.1127^{+0.0063}_{-0.0027}$ with the individual uncertainty contributions given in Table V. This result and the corresponding RGE prediction are also shown in Fig. 3. For all α_S results in Tables IV and V, the uncertainties are dominated by the μ_R dependence of the NLO pQCD calculation.

Within the uncertainties, the $\alpha_S(m_{\overline{\text{MS}}})$ result is consistent with the current world average value of $\alpha_S(m_{\overline{\text{MS}}}) = 0.1181 \pm 0.0011$ [16] and with recent α_S results from multijet cross-section ratio measurements in hadron collisions, namely from the D0 measurement of $R_{\Delta \phi}$ [10] ($\alpha_S(m_{\overline{\text{MS}}}) = 0.1191^{+0.0071}_{-0.0074}$), and from the CMS measurements of $R_{3/2}$ [11] ($\alpha_S(m_{\overline{\text{MS}}}) = 0.1148 \pm 0.0055$), the inclusive jet cross section [12,13] ($\alpha_S(m_{\overline{\text{MS}}}) = 0.1185^{+0.0063}_{-0.0042}$), $\alpha_S(m_{\overline{\text{MS}}}) = 0.1164^{+0.0060}_{-0.0043}$, and the three-jet cross section [14] ($\alpha_S(m_{\overline{\text{MS}}}) = 0.1171^{+0.0074}_{-0.0048}$), and the ATLAS measurement of transverse energy–energy correlations [15] ($\alpha_S(m_{\overline{\text{MS}}}) = 0.1163^{+0.0085}_{-0.0071}$), with comparable uncertainties. The compatibility of the results of this analysis, based on the measurements of $R_{\Delta \phi}$, with the world average value of $\alpha_S(m_{\overline{\text{MS}}})$ is demonstrated in Appendix D.

The individual $\alpha_S(Q)$ results are compared in Fig. 4 with previously published α_S results obtained from jet measurements [4−7,9−15] and with the RGE prediction for the combined $\alpha_S(m_{\overline{\text{MS}}})$ result obtained in this analysis. The new results agree with previous $\alpha_S(Q)$ results in the region of overlap, and extend the pQCD tests to momentum transfers up to 1.6 TeV, where RGE predictions are consistent with the $\alpha_S(Q)$ results, as discussed in Appendix E.

IX. SUMMARY

The multijet cross-section ratio $R_{\Delta \phi}$ is measured at the LHC. The quantity $R_{\Delta \phi}$ specifies the fraction of the inclusive dijet events in which the azimuthal opening angle of the two jets with the highest transverse momenta is less than a given value of the parameter $\Delta \phi_{\text{max}}$. The $R_{\Delta \phi}$ results, measured in 20.2 fb$^{-1}$ of pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, are presented as a function of three variables: the total transverse momentum H_T, the dijet rapidity interval Δy, and the parameter $\Delta \phi_{\text{max}}$. The H_T and Δy dependences of the data are well described by theoretical predictions based on NLO pQCD (for $\Delta \phi_{\text{max}} = 7\pi/8$, $5\pi/6$, and $3\pi/4$), or LO pQCD (for $\Delta \phi_{\text{max}} = 2\pi/3$), with corrections for non-perturbative effects. Based on the data points for $\Delta \phi_{\text{max}} = 7\pi/8$ with $0 < \Delta y < 0.5$ and $0.5 < \Delta y < 1$, nine α_S results are determined, at a scale of $Q = H_T/2$, over the range of $262 < Q < 1675$ GeV. The $\alpha_S(Q)$ results are consistent with the predictions of the RGE, and a combined analysis results in a value of $\alpha_S(m_{\overline{\text{MS}}}) = 0.1127^{+0.0063}_{-0.0027}$, where the uncertainty is dominated by the scale dependence of the NLO pQCD predictions.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC and NRC, Canada; CERN, CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/Irfu, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC Ki, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC,
APPENDIX A: EFFECTS OF TOP QUARK CONTRIBUTIONS ON THE pQCD PREDICTIONS

There are two ways in which contributions from top quarks affect the pQCD predictions for \(R_{\Delta \phi} \). First, the pQCD predictions based on matrix elements for massless quarks also depend on the number of quark flavors in gluon splitting \((g \rightarrow q \bar{q})\). \(n_f \), which affects the tree-level matrix elements and their real and virtual corrections, as well as the RGE predictions. The pQCD predictions for the central analysis are obtained for \(n_f = 5 \). The effects for the measured quantity \(R_{\Delta \phi} \) for the choice \(n_f = 6 \) are computed in this Appendix. Second, since the decay products of hadronically decaying (anti)top quarks are sometimes reconstructed as multiple jets, the \(O(\alpha_S^3) \) \(t \bar{t} \) production process also contributes to three-jet topologies. Since this contribution is of lower order in \(\alpha_S \) as compared to the pQCD \(O(\alpha_S^2) \) three-jet production processes, it is a “super-leading” contribution, which is formally more important. This potentially large contribution and the corresponding effects for \(R_{\Delta \phi} \) are also estimated in this Appendix.

In a pQCD calculation in which quark masses are properly taken into account, the contributions from the massive top quark arise naturally at higher momentum transfers, according to the available phase space. In calculations based on matrix elements for massless quarks, \(n_f \) is a parameter in the calculation. For jet production at the LHC, the alternatives are \(n_f = 5 \), i.e., ignoring the contributions from \(g \rightarrow t \bar{t} \) processes (which is the central choice for this analysis), or \(n_f = 6 \), i.e., treating the top quark as a sixth massless quark. The relative difference between the two alternatives is evaluated from the effects due to the RGE and the matrix elements. For this purpose, the 2-loop solution of the RGE for \(n_f = 5 \) is replaced by the 2-loop solutions for \(n_f = 5 \) and \(n_f = 6 \) with 1-loop matching [67] at the pole mass of the top quark \(m_{\text{pole}} \), assuming that \(m_{\text{pole}} \) is equal to the world average of the measured “Monte Carlo mass” of 173.21 GeV [16]. In addition, the matrix elements are recomputed for \(n_f = 6 \). For a fixed value of \(\alpha_S(\mu_Z) = 0.118 \), the corresponding effects for the pQCD predictions for \(R_{\Delta \phi} \) are in the range of \(-1\% \) to \(+2\% \).

The effects on \(R_{\Delta \phi} \) due to the contributions from hadronically decays of \(t \bar{t} \) final states are estimated using POWHEG-BOX [68] (for the pQCD matrix elements) interfaced with PYTHIA (for the parton shower, underlying event, and hadronization) and CTEQ6L1 PDFs [69]. It is seen that the \(t \bar{t} \) process contributes 0.003–0.2\% to the denominator of \(R_{\Delta \phi} \) (the inclusive dijet cross section), and 0.006–0.5\% to the numerator (with \(\Delta \phi_{\text{max}} = 7\pi/8 \)). The effects for the ratio \(R_{\Delta \phi} \) are 0\%–0.5\% in the analysis phase space, and there are no systematic trends in the considered distributions within the statistical uncertainties of the generated POWHEG-BOX event sample. Since this effect is about four to eight times smaller than the typical uncertainty due to the renormalization scale dependence, the corresponding effects on \(\alpha_S \) are not investigated further.

APPENDIX B: DATA TABLES

The results of the \(R_{\Delta \phi} \) measurements are listed in Tables VI–IX, together with their relative statistical and systematic uncertainties.
TABLE VI. The $R_{\Delta \phi}$ measurement results for $\Delta \phi_{\text{max}} = 7\pi/8$ with their relative statistical and systematic uncertainties.

<table>
<thead>
<tr>
<th>H_T [GeV]</th>
<th>y^*</th>
<th>$R_{\Delta \phi}$</th>
<th>Statistical uncertainties [%]</th>
<th>Systematic uncertainties [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>450–600</td>
<td>0.0–0.5</td>
<td>1.88×10^{-1}</td>
<td>±2.2</td>
<td>+1.8</td>
</tr>
<tr>
<td>600–750</td>
<td>0.0–0.5</td>
<td>1.85×10^{-1}</td>
<td>±2.2</td>
<td>+1.6</td>
</tr>
<tr>
<td>750–900</td>
<td>0.0–0.5</td>
<td>1.82×10^{-1}</td>
<td>±1.3</td>
<td>+1.4</td>
</tr>
<tr>
<td>900–1100</td>
<td>0.0–0.5</td>
<td>1.67×10^{-1}</td>
<td>±0.9</td>
<td>+1.3</td>
</tr>
<tr>
<td>1100–1400</td>
<td>0.0–0.5</td>
<td>1.56×10^{-1}</td>
<td>±0.7</td>
<td>+1.2</td>
</tr>
<tr>
<td>1400–1800</td>
<td>0.0–0.5</td>
<td>1.36×10^{-1}</td>
<td>±1.0</td>
<td>+1.2</td>
</tr>
<tr>
<td>1800–2200</td>
<td>0.0–0.5</td>
<td>1.25×10^{-1}</td>
<td>±1.9</td>
<td>+1.2</td>
</tr>
<tr>
<td>2200–2700</td>
<td>0.0–0.5</td>
<td>1.02×10^{-1}</td>
<td>±4.1</td>
<td>+1.3</td>
</tr>
<tr>
<td>2700–4000</td>
<td>0.0–0.5</td>
<td>0.82×10^{-1}</td>
<td>±9.9</td>
<td>+1.5</td>
</tr>
<tr>
<td>450–600</td>
<td>0.5–1.0</td>
<td>1.97×10^{-1}</td>
<td>±2.2</td>
<td>+1.5</td>
</tr>
<tr>
<td>600–750</td>
<td>0.5–1.0</td>
<td>2.04×10^{-1}</td>
<td>±2.3</td>
<td>+1.3</td>
</tr>
<tr>
<td>750–900</td>
<td>0.5–1.0</td>
<td>1.94×10^{-1}</td>
<td>±1.3</td>
<td>+1.2</td>
</tr>
<tr>
<td>900–1100</td>
<td>0.5–1.0</td>
<td>1.83×10^{-1}</td>
<td>±0.8</td>
<td>+1.2</td>
</tr>
<tr>
<td>1100–1400</td>
<td>0.5–1.0</td>
<td>1.73×10^{-1}</td>
<td>±0.8</td>
<td>+1.3</td>
</tr>
<tr>
<td>1400–1800</td>
<td>0.5–1.0</td>
<td>1.59×10^{-1}</td>
<td>±1.1</td>
<td>+1.4</td>
</tr>
<tr>
<td>1800–2200</td>
<td>0.5–1.0</td>
<td>1.44×10^{-1}</td>
<td>±2.3</td>
<td>+1.7</td>
</tr>
<tr>
<td>2200–2700</td>
<td>0.5–1.0</td>
<td>1.28×10^{-1}</td>
<td>±5.4</td>
<td>+1.9</td>
</tr>
<tr>
<td>2700–4000</td>
<td>0.5–1.0</td>
<td>1.13×10^{-1}</td>
<td>±16</td>
<td>+2.4</td>
</tr>
<tr>
<td>450–600</td>
<td>1.0–2.0</td>
<td>2.42×10^{-1}</td>
<td>±2.3</td>
<td>+2.3</td>
</tr>
<tr>
<td>600–750</td>
<td>1.0–2.0</td>
<td>2.40×10^{-1}</td>
<td>±2.5</td>
<td>+1.9</td>
</tr>
<tr>
<td>750–900</td>
<td>1.0–2.0</td>
<td>2.54×10^{-1}</td>
<td>±1.5</td>
<td>+1.7</td>
</tr>
<tr>
<td>900–1100</td>
<td>1.0–2.0</td>
<td>2.40×10^{-1}</td>
<td>±1.1</td>
<td>+1.6</td>
</tr>
<tr>
<td>1100–1400</td>
<td>1.0–2.0</td>
<td>2.33×10^{-1}</td>
<td>±1.0</td>
<td>+1.6</td>
</tr>
<tr>
<td>1400–1800</td>
<td>1.0–2.0</td>
<td>2.18×10^{-1}</td>
<td>±1.8</td>
<td>+1.6</td>
</tr>
<tr>
<td>1800–2200</td>
<td>1.0–2.0</td>
<td>2.22×10^{-1}</td>
<td>±4.4</td>
<td>+1.6</td>
</tr>
<tr>
<td>2200–2700</td>
<td>1.0–2.0</td>
<td>1.96×10^{-1}</td>
<td>±14</td>
<td>+1.7</td>
</tr>
</tbody>
</table>

TABLE VII. The $R_{\Delta \phi}$ measurement results for $\Delta \phi_{\text{max}} = 5\pi/6$ with their relative statistical and systematic uncertainties.

<table>
<thead>
<tr>
<th>H_T [GeV]</th>
<th>y^*</th>
<th>$R_{\Delta \phi}$</th>
<th>Statistical uncertainties [%]</th>
<th>Systematic uncertainties [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>450–600</td>
<td>0.0–0.5</td>
<td>1.22×10^{-1}</td>
<td>±2.8</td>
<td>+2.0</td>
</tr>
<tr>
<td>600–750</td>
<td>0.0–0.5</td>
<td>1.13×10^{-1}</td>
<td>±2.9</td>
<td>+1.7</td>
</tr>
<tr>
<td>750–900</td>
<td>0.0–0.5</td>
<td>1.10×10^{-1}</td>
<td>±1.7</td>
<td>+1.5</td>
</tr>
<tr>
<td>900–1100</td>
<td>0.0–0.5</td>
<td>1.00×10^{-1}</td>
<td>±1.3</td>
<td>+1.4</td>
</tr>
<tr>
<td>1100–1400</td>
<td>0.0–0.5</td>
<td>0.92×10^{-1}</td>
<td>±1.0</td>
<td>+1.2</td>
</tr>
<tr>
<td>1400–1800</td>
<td>0.0–0.5</td>
<td>0.78×10^{-1}</td>
<td>±1.4</td>
<td>+1.2</td>
</tr>
<tr>
<td>1800–2200</td>
<td>0.0–0.5</td>
<td>0.72×10^{-1}</td>
<td>±2.6</td>
<td>+1.2</td>
</tr>
<tr>
<td>2200–2700</td>
<td>0.0–0.5</td>
<td>0.55×10^{-1}</td>
<td>±5.7</td>
<td>+1.3</td>
</tr>
<tr>
<td>2700–4000</td>
<td>0.0–0.5</td>
<td>0.51×10^{-1}</td>
<td>±13</td>
<td>+1.6</td>
</tr>
<tr>
<td>450–600</td>
<td>0.5–1.0</td>
<td>1.33×10^{-1}</td>
<td>±2.9</td>
<td>+1.5</td>
</tr>
<tr>
<td>600–750</td>
<td>0.5–1.0</td>
<td>1.27×10^{-1}</td>
<td>±3.1</td>
<td>+1.4</td>
</tr>
<tr>
<td>750–900</td>
<td>0.5–1.0</td>
<td>1.18×10^{-1}</td>
<td>±1.8</td>
<td>+1.3</td>
</tr>
<tr>
<td>900–1100</td>
<td>0.5–1.0</td>
<td>1.11×10^{-1}</td>
<td>±1.2</td>
<td>+1.3</td>
</tr>
<tr>
<td>1100–1400</td>
<td>0.5–1.0</td>
<td>1.03×10^{-1}</td>
<td>±1.2</td>
<td>+1.4</td>
</tr>
<tr>
<td>1400–1800</td>
<td>0.5–1.0</td>
<td>0.93×10^{-1}</td>
<td>±1.5</td>
<td>+1.6</td>
</tr>
<tr>
<td>1800–2200</td>
<td>0.5–1.0</td>
<td>0.85×10^{-1}</td>
<td>±3.2</td>
<td>+1.9</td>
</tr>
<tr>
<td>2200–2700</td>
<td>0.5–1.0</td>
<td>0.74×10^{-1}</td>
<td>±7.3</td>
<td>+2.2</td>
</tr>
</tbody>
</table>

(Note continued)
TABLE VII. (Continued)

<table>
<thead>
<tr>
<th>H_T [GeV]</th>
<th>y^*</th>
<th>$R_{\Delta \phi}$</th>
<th>Statistical uncertainties [%]</th>
<th>Systematic uncertainties [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>450–600</td>
<td>1.0–2.0</td>
<td>1.58×10^{-1}</td>
<td>±2.9</td>
<td>+3.1</td>
</tr>
<tr>
<td>600–750</td>
<td>1.0–2.0</td>
<td>1.54×10^{-1}</td>
<td>±3.3</td>
<td>+2.5</td>
</tr>
<tr>
<td>750–900</td>
<td>1.0–2.0</td>
<td>1.62×10^{-1}</td>
<td>±2.3</td>
<td>+2.1</td>
</tr>
<tr>
<td>900–1100</td>
<td>1.0–2.0</td>
<td>1.53×10^{-1}</td>
<td>±1.6</td>
<td>+1.9</td>
</tr>
<tr>
<td>1100–1400</td>
<td>1.0–2.0</td>
<td>1.47×10^{-1}</td>
<td>±1.4</td>
<td>+1.8</td>
</tr>
<tr>
<td>1400–1800</td>
<td>1.0–2.0</td>
<td>1.36×10^{-1}</td>
<td>±2.6</td>
<td>+1.8</td>
</tr>
<tr>
<td>1800–2200</td>
<td>1.0–2.0</td>
<td>1.41×10^{-1}</td>
<td>±5.8</td>
<td>+1.9</td>
</tr>
<tr>
<td>2200–2700</td>
<td>1.0–2.0</td>
<td>1.35×10^{-1}</td>
<td>±18</td>
<td>+2.0</td>
</tr>
</tbody>
</table>

TABLE VIII. The $R_{\Delta \phi}$ measurement results for $\Delta \phi_{\text{max}} = 3\pi/4$ with their relative statistical and systematic uncertainties.

<table>
<thead>
<tr>
<th>H_T [GeV]</th>
<th>y^*</th>
<th>$R_{\Delta \phi}$</th>
<th>Statistical uncertainties [%]</th>
<th>Systematic uncertainties [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>450–600</td>
<td>0.0–0.5</td>
<td>4.35×10^{-2}</td>
<td>±5.0</td>
<td>+3.4</td>
</tr>
<tr>
<td>600–750</td>
<td>0.0–0.5</td>
<td>3.67×10^{-2}</td>
<td>±5.9</td>
<td>+3.0</td>
</tr>
<tr>
<td>750–900</td>
<td>0.0–0.5</td>
<td>3.55×10^{-2}</td>
<td>±4.6</td>
<td>+2.6</td>
</tr>
<tr>
<td>900–1100</td>
<td>0.0–0.5</td>
<td>3.24×10^{-2}</td>
<td>±3.9</td>
<td>+2.3</td>
</tr>
<tr>
<td>1100–1400</td>
<td>0.0–0.5</td>
<td>2.84×10^{-2}</td>
<td>±2.5</td>
<td>+2.0</td>
</tr>
<tr>
<td>1400–1800</td>
<td>0.0–0.5</td>
<td>2.27×10^{-2}</td>
<td>±3.2</td>
<td>+1.8</td>
</tr>
<tr>
<td>1800–2200</td>
<td>0.0–0.5</td>
<td>1.89×10^{-2}</td>
<td>±5.5</td>
<td>+1.8</td>
</tr>
<tr>
<td>2200–2700</td>
<td>0.0–0.5</td>
<td>1.43×10^{-2}</td>
<td>±12</td>
<td>+1.9</td>
</tr>
<tr>
<td>450–600</td>
<td>0.5–1.0</td>
<td>4.68×10^{-2}</td>
<td>±5.5</td>
<td>+2.2</td>
</tr>
<tr>
<td>600–750</td>
<td>0.5–1.0</td>
<td>4.01×10^{-2}</td>
<td>±6.1</td>
<td>+1.8</td>
</tr>
<tr>
<td>750–900</td>
<td>0.5–1.0</td>
<td>3.92×10^{-2}</td>
<td>±4.1</td>
<td>+1.6</td>
</tr>
<tr>
<td>900–1100</td>
<td>0.5–1.0</td>
<td>3.61×10^{-2}</td>
<td>±2.9</td>
<td>+1.5</td>
</tr>
<tr>
<td>1100–1400</td>
<td>0.5–1.0</td>
<td>3.31×10^{-2}</td>
<td>±3.3</td>
<td>+1.6</td>
</tr>
<tr>
<td>1400–1800</td>
<td>0.5–1.0</td>
<td>2.90×10^{-2}</td>
<td>±3.4</td>
<td>+2.1</td>
</tr>
<tr>
<td>1800–2200</td>
<td>0.5–1.0</td>
<td>2.44×10^{-2}</td>
<td>±6.7</td>
<td>+2.5</td>
</tr>
<tr>
<td>2200–2700</td>
<td>0.5–1.0</td>
<td>2.17×10^{-2}</td>
<td>±14</td>
<td>+3.0</td>
</tr>
<tr>
<td>450–600</td>
<td>1.0–2.0</td>
<td>6.02×10^{-2}</td>
<td>±5.1</td>
<td>+5.8</td>
</tr>
<tr>
<td>600–750</td>
<td>1.0–2.0</td>
<td>5.68×10^{-2}</td>
<td>±5.7</td>
<td>+4.8</td>
</tr>
<tr>
<td>750–900</td>
<td>1.0–2.0</td>
<td>5.71×10^{-2}</td>
<td>±4.6</td>
<td>+4.1</td>
</tr>
<tr>
<td>900–1100</td>
<td>1.0–2.0</td>
<td>5.19×10^{-2}</td>
<td>±3.4</td>
<td>+3.7</td>
</tr>
<tr>
<td>1100–1400</td>
<td>1.0–2.0</td>
<td>4.95×10^{-2}</td>
<td>±2.7</td>
<td>+3.5</td>
</tr>
<tr>
<td>1400–1800</td>
<td>1.0–2.0</td>
<td>4.56×10^{-2}</td>
<td>±5.0</td>
<td>+3.7</td>
</tr>
<tr>
<td>1800–2200</td>
<td>1.0–2.0</td>
<td>5.25×10^{-2}</td>
<td>±11</td>
<td>+4.1</td>
</tr>
</tbody>
</table>

TABLE IX. The $R_{\Delta \phi}$ measurement results for $\Delta \phi_{\text{max}} = 2\pi/3$ with their relative statistical and systematic uncertainties.

<table>
<thead>
<tr>
<th>H_T [GeV]</th>
<th>y^*</th>
<th>$R_{\Delta \phi}$</th>
<th>Statistical uncertainties [%]</th>
<th>Systematic uncertainties [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>450–600</td>
<td>0.0–0.5</td>
<td>1.37×10^{-2}</td>
<td>±9.5</td>
<td>+6.3</td>
</tr>
<tr>
<td>600–750</td>
<td>0.0–0.5</td>
<td>1.05×10^{-2}</td>
<td>±11</td>
<td>+5.4</td>
</tr>
<tr>
<td>750–900</td>
<td>0.0–0.5</td>
<td>1.02×10^{-2}</td>
<td>±12</td>
<td>+4.7</td>
</tr>
<tr>
<td>900–1100</td>
<td>0.0–0.5</td>
<td>0.87×10^{-2}</td>
<td>±8.9</td>
<td>+4.1</td>
</tr>
<tr>
<td>1100–1400</td>
<td>0.0–0.5</td>
<td>0.70×10^{-2}</td>
<td>±6.0</td>
<td>+3.5</td>
</tr>
<tr>
<td>1400–1800</td>
<td>0.0–0.5</td>
<td>0.48×10^{-2}</td>
<td>±7.8</td>
<td>+3.2</td>
</tr>
<tr>
<td>1800–2200</td>
<td>0.0–0.5</td>
<td>0.38×10^{-2}</td>
<td>±13</td>
<td>+3.2</td>
</tr>
</tbody>
</table>
TABLE IX. (Continued)

<table>
<thead>
<tr>
<th>(H_T) [GeV]</th>
<th>(\gamma^*)</th>
<th>(R_{\Delta\phi})</th>
<th>Statistical uncertainties [%]</th>
<th>Systematic uncertainties [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>450–600</td>
<td>0.5–1.0</td>
<td>(1.45 \times 10^{-2})</td>
<td>\pm 11</td>
<td>+3.9</td>
</tr>
<tr>
<td>600–750</td>
<td>0.5–1.0</td>
<td>(1.07 \times 10^{-2})</td>
<td>\pm 12</td>
<td>+2.7</td>
</tr>
<tr>
<td>750–900</td>
<td>0.5–1.0</td>
<td>(1.14 \times 10^{-2})</td>
<td>\pm 11</td>
<td>+2.1</td>
</tr>
<tr>
<td>900–1100</td>
<td>0.5–1.0</td>
<td>(0.86 \times 10^{-2})</td>
<td>\pm 6.8</td>
<td>+2.2</td>
</tr>
<tr>
<td>1100–1400</td>
<td>0.5–1.0</td>
<td>(0.77 \times 10^{-2})</td>
<td>\pm 7.1</td>
<td>+2.8</td>
</tr>
<tr>
<td>1400–1800</td>
<td>0.5–1.0</td>
<td>(0.70 \times 10^{-2})</td>
<td>\pm 8.6</td>
<td>+3.8</td>
</tr>
<tr>
<td>1800–2200</td>
<td>0.5–1.0</td>
<td>(0.63 \times 10^{-2})</td>
<td>\pm 16</td>
<td>+4.8</td>
</tr>
<tr>
<td>450–600</td>
<td>1.0–2.0</td>
<td>(1.49 \times 10^{-2})</td>
<td>\pm 10</td>
<td>+9.0</td>
</tr>
<tr>
<td>600–750</td>
<td>1.0–2.0</td>
<td>(1.70 \times 10^{-2})</td>
<td>\pm 11</td>
<td>+7.4</td>
</tr>
<tr>
<td>750–900</td>
<td>1.0–2.0</td>
<td>(1.53 \times 10^{-2})</td>
<td>\pm 8.9</td>
<td>+6.5</td>
</tr>
<tr>
<td>900–1100</td>
<td>1.0–2.0</td>
<td>(1.29 \times 10^{-2})</td>
<td>\pm 7.5</td>
<td>+6.2</td>
</tr>
<tr>
<td>1100–1400</td>
<td>1.0–2.0</td>
<td>(1.12 \times 10^{-2})</td>
<td>\pm 6.6</td>
<td>+6.6</td>
</tr>
<tr>
<td>1400–1800</td>
<td>1.0–2.0</td>
<td>(1.02 \times 10^{-2})</td>
<td>\pm 12</td>
<td>+7.6</td>
</tr>
<tr>
<td>1800–2200</td>
<td>1.0–2.0</td>
<td>(1.61 \times 10^{-2})</td>
<td>\pm 20</td>
<td>+8.8</td>
</tr>
</tbody>
</table>

APPENDIX C: DEFINITION OF \(\chi^2\)

Given is a set of experimental measurement results in bins \(i\) of a given quantity with central measurement results \(d_i\) with statistical and uncorrelated systematic uncertainties \(\sigma_{i,\text{stat}}\) and \(\sigma_{i,\text{uncorr}}\), respectively. The experimental measurements are affected by various sources of correlated uncertainties, and \(\delta_{ij}(e_j)\) specifies the uncertainty of measurement \(i\) due to the source \(j\), where \(e_j\) is a Gaussian distributed random variable with zero expectation value and unit width. The \(\delta_{ij}(e_j)\) specify the dependence of the measured result \(i\) on the variation of the correlated uncertainty source \(j\) by \(e_j\) standard deviations, where \(e_j = 0\) corresponds to the central value of the measurement (i.e., \(\delta_{ij}(e_j = 0) = 0\)), while the relative uncertainties corresponding to plus/minus one standard deviation are given by \(\delta_{ij}(e_j = \pm 1) = \Delta d^\pm_{ij}\). From the central measurement result and the relative uncertainties \(\Delta d^\pm_{ij}\), the continuous \(e_j\) dependence of \(\delta_{ij}(e_j)\) can be obtained using quadratic interpolation

\[
\delta_{ij}(e_j) = e_j \frac{\Delta d^+_{ij} - \Delta d^-_{ij}}{2} + e_j^2 \frac{\Delta d^+_{ij} + \Delta d^-_{ij}}{2}.
\]

The theoretical prediction \(t_i(\alpha_S)\) for bin \(i\) depends on the value of \(\alpha_S\). Furthermore, the theoretical predictions are also affected by sources of correlated uncertainties; \(\delta_{ik}(\lambda_k)\) specifies the relative uncertainty of \(t_i\) due to the source \(k\). Like the \(e_j\), the \(\lambda_k\) are also treated as Gaussian distributed random variables with zero expectation value and unity width. It is assumed that the theoretical predictions can be obtained with statistical uncertainties which are negligible as compared to the statistical uncertainties of the measurements.

The continuous dependence of the relative uncertainty \(\delta_{ik}(\lambda_k)\) can be obtained through quadratic interpolation between the central result \(t_i\) and the results \(t_i(\pm \lambda_k)\) obtained by variations corresponding to plus/minus one standard deviation due to source \(k\)

\[
\delta_{ik}(\lambda_k) = \lambda_k \frac{t_i^+ - t_i^-}{2t_i} + \lambda_k^2 \left(\frac{t_i^+ + t_i^-}{2t_i} - 1 \right).
\]

The \(\chi^2\) used in the \(\alpha_S\) extraction is then computed as

\[
\chi^2(\alpha_S, \bar{e}, \bar{\lambda}) = \sum_i \left[\frac{d_i - t_i(\alpha_S)^{(1+\sum_j\delta_{ij}(e_j))}}{\sigma_{i,\text{stat}}^2 + \sigma_{i,\text{uncorr}}^2} \right]^2 + \sum_j e_j^2 + \sum_k \lambda_k^2,
\]

where \(i\) runs over all data points, \(j\) runs over all sources of experimental correlated uncertainties, and \(k\) over all theoretical correlated uncertainties. The fit result of \(\alpha_S\) is determined by minimizing \(\chi^2\) with respect to \(\alpha_S\) and the “nuisance parameters” \(e_j\) and \(\lambda_k\).

APPENDIX D: ON THE COMPATIBILITY OF THE \(R_{\Delta\phi}\) DATA AND THE WORLD AVERAGE OF \(\alpha_S(m_Z)\)

The \(\alpha_S(m_Z)\) result in Table V is lower than the world average value by approximately one standard deviation. In this Appendix, the consistency of the world average of \(\alpha_S(m_Z)\) and the \(R_{\Delta\phi}\) data is investigated using the \(\chi^2\) values. The \(\chi^2\) values are computed according to Appendix C, using the 18 data points with \(\Delta \phi_{\text{max}} = 7\pi/8\), and \(0.0 < \gamma^* < 0.5\) and \(0.5 < \gamma^* < 1.0\). The theoretical predictions are computed for the fixed value of \(\alpha_S(m_Z) = 0.1181\). The computation of \(\chi^2\) uses the Hessian method for the treatment of all uncertainties except for the PDF set uncertainty.
TABLE X. The χ^2 values between the 18 data points and the theoretical predictions when $\alpha_S(m_Z)$ is fixed to the world average value of $\alpha_S(m_Z) = 0.1181$ (third column) and when it is a free fitted parameter (fourth column) for variations of the scales μ_R and μ_F around the central choice $\mu_R = \mu_F = \mu_0 = H_T/2$.

<table>
<thead>
<tr>
<th>μ_R/μ_0</th>
<th>μ_F/μ_0</th>
<th>χ^2 for $\alpha_S(m_Z) = 0.1181$</th>
<th>χ^2 for $\alpha_S(m_Z)$ free fit parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>62.4</td>
<td>50.9</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0</td>
<td>56.3</td>
<td>39.6</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5</td>
<td>31.6</td>
<td>23.6</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>29.7</td>
<td>21.7</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>28.4</td>
<td>20.8</td>
</tr>
<tr>
<td>2.0</td>
<td>1.0</td>
<td>19.2</td>
<td>19.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>19.3</td>
<td>19.3</td>
</tr>
</tbody>
</table>

and the scale dependence, so the χ^2 values do not reflect these theoretical uncertainties. Therefore, a series of χ^2 values is computed for possible combinations of variations of μ_R and μ_F around the central choice $\mu_R = \mu_F = \mu_0 = H_T/2$. The results are displayed in Table X and compared to the χ^2 values obtained when $\alpha_S(m_Z)$ is a free fit parameter.

When $\alpha_S(m_Z)$ is fixed to the world average, the χ^2 value for the central scale choice is slightly higher than the one obtained for a free $\alpha_S(m_Z)$, and also higher than the expectation of $\chi^2 = N_{\text{dof}} \pm \sqrt{2 \cdot N_{\text{dof}}}$, where $N_{\text{dof}} = 18$ when $\alpha_S(m_Z)$ is fixed or 17 when it is a free fit parameter. However, the χ^2 definition does not take into account the theoretical uncertainty due to the scale dependence. When the renormalization scale is increased by a factor of two, to $\mu_R = 2\mu_0$, lower χ^2 values are obtained, which are similar in size to the ones obtained for a free $\alpha_S(m_Z)$, and close to the expectation (the dependence on the factorization scale is rather small). Since these χ^2 values are well within the range of the expectation, it is concluded that, within their uncertainties, the theoretical predictions for the world average value of $\alpha_S(m_Z)$ are consistent with the $R_{\Delta \phi}$ data.

APPENDIX E: ON THE COMPATIBILITY OF THE RGE AND THE SLOPE OF THE $\alpha_S(Q)$ RESULTS

It is natural to ask whether the observed Q dependence (i.e., the running) of the $\alpha_S(Q)$ results shown in Fig. 3 is described by the RGE or instead exhibits significant deviations at the highest Q values, possibly indicating signals of physics beyond the Standard Model. The consistency of the RGE predictions with the observed slope is investigated in this Appendix. The RGE prediction would be in agreement with the observed Q dependence of the $\alpha_S(Q)$ results if the latter, when evolved to m_Z, give $\alpha_S(m_Z)$ values that are independent of Q. For this purpose, a linear function in log$_{10}(Q/1 \text{ GeV})$, $f(Q) = c + m \cdot \log_{10}(Q/1 \text{ GeV})$, is fitted to the nine $\alpha_S(m_Z)$ points in Fig. 3 (bottom) and their statistical uncertainties. Here the correlated systematic uncertainties are not taken into account as their correlations are nontrivial since the individual $\alpha_S(Q)$ results are obtained in separate fits, with different optimizations for the nuisance parameters. The fit results for the slope parameter m and its uncertainty are displayed in Table XI for a fit to the $\alpha_S(m_Z)$ points at all nine Q values, and also for fits to different subsets of the $\alpha_S(m_Z)$ points, omitting points either at lower or higher Q.

As documented in Table XI, a fit to all nine $\alpha_S(m_Z)$ points gives a slope that differs from zero by more than its uncertainty. Fits to groups of data points, however, show that the significance of this slope arises from the two points at lowest Q. Omitting the $\alpha_S(m_Z)$ point at lowest Q (fitting points Nos. 2–9), or the two points at lowest Q (fitting points # 3–9), both give fit results for which the slope parameter is more consistent with zero, while the $\alpha_S(m_Z)$ results change by less than ± 0.0001. On the other hand, omitting the $\alpha_S(Q)$ points at highest Q (fitting points Nos. 1–8 or Nos. 1–7) does not affect the significance of the slope. It is therefore concluded that the high-Q behavior of the $\alpha_S(Q)$ results is consistent with the RGE and that the small differences at lowest Q do not affect the combined $\alpha_S(m_Z)$ result.

<table>
<thead>
<tr>
<th>$\alpha_S(Q)$ points included in fit</th>
<th>Q range (GeV)</th>
<th>Fit result for slope parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–9</td>
<td>225–2000</td>
<td>$(-0.89 \pm 0.35) \times 10^{-2}$</td>
</tr>
<tr>
<td>2–9</td>
<td>300–2000</td>
<td>$(-0.52 \pm 0.33) \times 10^{-2}$</td>
</tr>
<tr>
<td>3–9</td>
<td>375–2000</td>
<td>$(-0.39 \pm 0.28) \times 10^{-2}$</td>
</tr>
<tr>
<td>4–9</td>
<td>450–2000</td>
<td>$(-0.20 \pm 0.29) \times 10^{-2}$</td>
</tr>
<tr>
<td>5–9</td>
<td>550–2000</td>
<td>$(-1.19 \pm 0.35) \times 10^{-2}$</td>
</tr>
<tr>
<td>6–9</td>
<td>700–2000</td>
<td>$(+0.35 \pm 0.51) \times 10^{-2}$</td>
</tr>
<tr>
<td>1–9</td>
<td>225–2000</td>
<td>$(-0.89 \pm 0.35) \times 10^{-2}$</td>
</tr>
<tr>
<td>1–8</td>
<td>225–1350</td>
<td>$(-0.85 \pm 0.43) \times 10^{-2}$</td>
</tr>
<tr>
<td>1–7</td>
<td>225–1100</td>
<td>$(-0.78 \pm 0.32) \times 10^{-2}$</td>
</tr>
<tr>
<td>1–6</td>
<td>225–900</td>
<td>$(-1.14 \pm 0.28) \times 10^{-2}$</td>
</tr>
<tr>
<td>1–5</td>
<td>225–700</td>
<td>$(-1.01 \pm 0.31) \times 10^{-2}$</td>
</tr>
<tr>
<td>1–4</td>
<td>225–550</td>
<td>$(-2.55 \pm 0.41) \times 10^{-2}$</td>
</tr>
</tbody>
</table>
[9] D0 Collaboration, Determination of the strong coupling constant from the inclusive jet cross section in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV, Phys. Rev. D 80, 111107 (2009).
M. AABOUD et al.

PHYS. REV. D 98, 092004 (2018)

092004-22
MEASUREMENT OF DIJET AZIMUTHAL DECORRELATIONS ... PHYS. REV. D 98, 092004 (2018)

37 LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France
38 Nevis Laboratory, Columbia University, Irvington, New York, USA
39 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
40 Dipartimento di Fisica, Università della Calabria, Rende, Italy
41 INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
42 Physics Department, Southern Methodist University, Dallas, Texas, USA
43 Physics Department, University of Texas at Dallas, Richardson, Texas, USA
44 Department of Physics, Stockholm University, Sweden
45 Oskar Klein Centre, Stockholm, Sweden
46 Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany
47 Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
48 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
49 INFN e Laboratori Nazionali di Frascati, Frascati, Italy
50 Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
51 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
52 Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland
53 Dipartimento di Fisica, Università di Genova, Genova, Italy
54 INFN Sezione di Genova, Italy
55 II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
56 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
57 LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France
58 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
59 Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, China
5a Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao, China
5b School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai, China
5c Tsung-Dao Lee Institute, Shanghai, China
5d Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
5e Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
5f Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
5g Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
5h Department of Physics, University of Hong Kong, Hong Kong, China
5i Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
5j Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
5k Department of Physics, Indiana University, Bloomington, Indiana, USA
5l INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
5m ICTP, Trieste, Italy
5n Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
5o INFN Sezione di Lecce, Italy
5p Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
5q INFN Sezione di Lecce, Italy
5r Dipartimento di Fisica, Università di Milano, Milano, Italy
5s INFN Sezione di Milano, Italy
5t Dipartimento di Fisica, Università di Milano, Milano, Italy
5u INFN Sezione di Napoli, Italy
5v Dipartimento di Fisica, Università di Napoli, Napoli, Italy
5w INFN Sezione di Napoli, Italy
5x Dipartimento di Fisica, Università di Pavia, Pavia, Italy
5y INFN Sezione di Pavia, Italy
5z Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
60 INFN Sezione di Roma, Italy
61 Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
62 INFN Sezione di Roma, Italy
63 Dipartimento di Fisica, Università di Roma Tor Vergata, Rome, Italy
64 INFN Sezione di Roma, Italy
65 Dipartimento di Fisica, Università Roma Tre, Roma, Italy
66 Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
67 INFN Sezione di Roma, Italy
68 INFN Sezione di Roma, Italy
69 INFN Sezione di Roma, Italy
70 INFN Sezione di Roma, Italy
71 INFN Sezione di Roma Tor Vergata, Italy
72 INFN Sezione di Roma, Italy
73 INFN-TIFPA, Italy
AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland

University of Science and Technology, Krakow, Poland

Faculty of Science, Kyoto University, Kyoto, Japan

Kyoto University of Education, Kyoto, Japan

Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan

AGH University of Science and Technology, Krakow, Poland

Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland

Faculty of Science, Kyoto University, Kyoto, Japan

Kyoto University of Education, Kyoto, Japan

Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

Physics Department, Lancaster University, Lancaster, United Kingdom

Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia

School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom

Department of Physics, Royal Holloway University of London, Egham, United Kingdom

Department of Physics and Astronomy, University College London, London, United Kingdom

Louisiana Tech University, Ruston, Louisiana, USA

Fysiska institutionen, Lunds universitet, Lund, Sweden

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

Departamento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid, Spain

Institut für Physik, Universität Mainz, Mainz, Germany

School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

Department of Physics, University of Massachusetts, Amherst, Massachusetts, USA

Department of Physics, McGill University, Montreal, Quebec, Canada

School of Physics, University of Melbourne, Victoria, Australia

Department of Physics, University of Michigan, Ann Arbor, Michigan, USA

Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus

Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Belarus

Group of Particle Physics, University of Montreal, Montreal, Quebec, Canada

P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia

Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

National Research Nuclear University MEPhI, Moscow, Russia

D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

Nagasaki Institute of Applied Science, Nagasaki, Japan

Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan

Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

Department of Physics, Northern Illinois University, DeKalb, Illinois, USA

Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

Novosibirsk State University Novosibirsk, Russia