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Lactate, the end product of anaerobic glycolysis, is produced in high amounts by innate
immune cells during in�ammatory activation. Although immunomodulating effects of
lactate have been reported, evidence from human studies is scarce. Here we show
that expression of genes involved in lactate metabolism andtransport is modulated
in human immune cells during infection and upon in�ammatoryactivation with TLR
ligands in vitro, indicating an important role for lactate metabolism in in�ammation.
Extracellular lactate induces metabolic reprogramming ininnate immune cells, as
evidenced by reduced glycolytic and increased oxidative rates of monocytes immediately
after exposure to lactate. A short-term infusion of lactatein humans in vivo increased
ex vivo glucose consumption of PBMCs, but effects on metabolic rates and cytokine
production were limited. Interestingly, long-term treatment with lactateex vivo, re�ecting
pathophysiological conditions in local microenvironments such as tumor or adipose
tissue, signi�cantly modulated cytokine production with predominantly anti-in�ammatory
effects. We found time- and stimuli-dependent effects of extracellular lactate on cytokine
production, further emphasizing the complex interplay between metabolism and immune
cell function. Together, our �ndings reveal lactate as a modulator of immune cell
metabolism which translates to reduced in�ammation and mayultimately function as
a negative feedback signal to prevent excessive in�ammatory responses.

Keywords: lactate, glycolysis, cytokines, immunometabolism, innate immune cells, monocytes

INTRODUCTION

Intracellular metabolism in�uences functional properties ofimmune cells, with high glycolytic rates
observed during pro-in�ammatory responses (1). Lactate, the end product of the glycolytic route,
is produced and secreted in high amounts by innate immune cellsupon in�ammatory activation
(2). Interestingly, high lactate concentrations in tumor microenvironments are known to alter the
phenotype of monocytes and macrophages by decreasing cytokineproduction and migration (3, 4).
Apart from its role in the tumor microenvironment, immunomodulatory e�ects of lactate may also
be relevant in the adipose tissue, where concentrations varydependent on the metabolic state (5)
or in the circulation, where lactate levels are known to �uctuate. Circulating lactate levels range
from 0.5 to 2 mM and can increase up to 10 to 25 mM after intense exercise (6, 7) or during
pathophysiologic conditions, such as sepsis (8), where plasma lactate levels may increase to levels
above 4 mM (9, 10).
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Various cell types, including innate immune cells, can sense
extracellular lactate concentrations via lactate receptors on their
cell surface, for instance via the G-protein-coupled receptor
GPR81. It has been suggested that GPR81 is required for the
inhibitory e�ects of extracellular lactate on lipopolysaccharide
(LPS)-induced IL-1b production of murine macrophages and
human PBMCsin vitro (11). In vivo, anti-in�ammatory e�ects
are underscored by studies demonstrating reduced in�ammation
during hepatitis (11) and prevention of in�ammation in a
TNBS-induced colitis model (12) after lactate administration.
Inhibition of NF-kB and in�ammasome activation mediate
anti-in�ammatory e�ects of lactate (11), but exact underlying
mechanisms remain unknown.

Although various studies have focused on GPR81-mediated
e�ects of lactate, lactate can also be taken up by cells
via monocarboxylate transporters (MCTs) and might thereby
directly a�ect cellular metabolism and function. Expressionand
modulation of MCTs have been shown to be important for
immune cell function in T cells and macrophages (13,14). Lactate
treatment decreased glucose uptake of LPS-stimulated human
monocytes (15) and high concentrations of extracellular lactate
decreased extracellular acidi�cation rates (ECAR) of mouse
macrophages independent of GPR81 (16). Together, these results
suggest direct e�ects of lactate on cellular metabolism thatmight
contribute to modulation of immune cell function.

A central enzyme in lactate metabolism is lactate
dehydrogenase (LDH). The two di�erent isoforms LDHA and
LDHB assemble in �ve di�erent combinations into tetramers
with di�erent kinetic properties. LDHA has a higher a�nity for
pyruvate compared with lactate, thus converting pyruvate into
lactate and NADC , whereas LDHB preferentially converts lactate
into pyruvate fueling oxidative metabolism. Whereas LDHA
has been implicated in IFNg-production by T cells (17) and
anti-tumor activity of macrophages (18), the function of LDHB
in immune cells remains elusive.

We hypothesized that extracellular lactate directly in�uences
intracellular metabolism of human immune cells and thereby
also their in�ammatory output. We tested this hypothesis
by examining the regulation of genes involved in lactate
metabolism during immune cell activation. Furthermore,
we studied the e�ects of extracellular lactate on metabolism
and function of primary human immune cells isolated
from blood of healthy individuals as well as e�ects of a
short-term lactate infusion in people with type 1 diabetes
(T1D), a disease associated with in�ammatory traits, on
ex vivo in�ammatory responses of immune cells. Our
results demonstrate that intracellular lactate metabolism is
modulated during in�ammatory activation of human immune
cells. Furthermore, extracellular lactate a�ects immune cell
metabolism and cytokine production time- and concentration-
dependently and may thus serve as a negative feedback signal
limiting in�ammation.

Abbreviations:PBMCs, peripheral blood mononuclear cells; T1D, type 1 diabetes;
LPS, lipopolysaccharide; MCT, monocarboxylate transporter; ECAR, extracellular
acidi�cation rate; OCR, oxygen consumption rate; LDH, lactate dehydrogenase;
SRC, spare respiratory capacity.

MATERIALS AND METHODS

Healthy Volunteers
Bu�y coats from healthy donors were obtained after written
informed consent (Sanquin Blood Bank, Nijmegen, the
Netherlands). Additionally, PBMCs were isolated from fresh
blood donated by healthy volunteers. Ethical approval was
obtained by the institutional review board of the Radboud
university medical center and all participants gave written
informed consent before participation.

Patients With Type 1 Diabetes
We enrolled twelve patients with type 1 diabetes who participated
in a larger study that consisted of either one or two glucose clamp
experiments (19). Patients were eligible if they had an HbA1c level
< 9.0% (75 mmol/mol) and were free from macrovascular and
microvascular complications, except for background retinopathy.
Exclusion criteria included a history of cardiopulmonary disease,
age > 50 years, and the use of drugs other than insulin
interfering with glucose metabolism. None of the participants
used immunomodulatory drugs. The institutional review board
of the Radboud university medical center approved the study
and all study participants gave written informed consent before
participation.

In vivo Lactate Infusions
Enrolled patients with type 1 diabetes underwent a stepped
hyperinsulinemic-euglycemic-hypoglycemic glucose clamp,
as described previously (19). Brie�y, insulin was infused
continuously (60 mU/m2/min) with intravenous administration
of glucose 20% at a variable dose, guided by arterial glucose
values (Biosen C-line; EKF Diagnostics) measured at 5-min
intervals to maintain plasma glucose at 5.0 mmol/l (euglycemia)
and 2.8 mmol/l (hypoglycemia), respectively. Approximately
15 min after achieving euglycemia, a primed (40mmol/kg/min
for 15 min) continuous (25mmol/kg/min) infusion of sodium
lactate (600 mmol/L; prepared by the Department of Pharmacy,
Radboud university medical center, Nijmegen, The Netherlands)
was administered, while plasma glucose levels were maintained
at 5 mmol/L. Blood samples for isolation of PBMCs were taken
just prior to starting the lactate infusion (when stable euglycemia
(blood glucose 5.0 mmol/L) was reached,T D 0), and after
25 min of lactate infusion (T D 1) and stable euglycemia. For
the current study no samples were obtained under hypoglycemic
conditions.

Analytical Methods
Peripheral total and di�erential white blood cell count were
determined on a Sysmex XN-450.

Isolation of PBMCs and CD14 C Monocytes
Isolation of PBMCs was performed by di�erential centrifugation
over Ficoll-PaqueTM PLUS (GE Healthcare Biosciences). CD14C

monocytes were puri�ed from freshly isolated PBMCs using
MACS microbeads for positive selection, according to the
manufacturer's instructions (Miltenyi Biotec). PBMCs from
bu�ycoats were enriched for monocytes by hyperosmotic density
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gradient centrifugation over Percoll (Sigma-Aldrich) (used for
experiments inFigures 9A–D).

Stimulation Experiments
For analysis of cytokine release, 5� 105 PBMCs or 1� 105

monocytes were used per well in a 96-well plate. Cells were
cultured in RPMI 1640 (no glucose, Gibco) supplemented with
50mg/mL gentamycin (Gibco), 1 mM pyruvate (Gibco), 10 mM
HEPES (Sigma-Aldrich), 5.5 mM glucose (Sigma-Aldrich). If
indicated cells were pretreated with sodium lactate (used for
in vivo experiments and described above) and stimulated with
either medium, 10 ng/mL of the TLR4 agonist lipopolysaccharide
(LPS) fromEscherichia coli(Sigma-Aldrich) or 10mg/mL of the
TLR2 agonist Pam3CysSK4 (Pam3Cys) (EMC Microcollections).
If indicated a-cyano-4-hydroxycinnamic acid (Sigma-Aldrich)
or sodium oxamate (Sigma-Aldrich) were added prior to the
stimulation.

Cytokine Measurements
The production of interleukin (IL)-1b, IL-6, tumor necrosis
factor (TNF)-a (R&D Systems), and IL-10 (Sanquin) was
measured by ELISA.

Glucose Measurements
Glucose concentrations were measured in cell culture
supernatants. Measurements were based on an enzymatic
reaction in which glucose is oxidized and the resulting H2O2 is
coupled to the conversion of Amplex Red reagent to �uorescent
resoru�n by horseradish peroxidase. The �uorescence of

resoru�n (excitation/emission maxima 570/585 nm) was
measured on a 96-well plate reader (BioTek).

Extracellular Flux Analysis
Real-time OCR and ECAR of monocytes were analyzed using a
XF-96 Extracellular Flux Analyzer (Seahorse Bioscience). Basal
metabolic rates of monocytes seeded in quintuplicate were
determined during consecutive measurements in unbu�ered
Seahorse medium (8.3 g DMEM powder, 0.016 g phenol red and
1.85 g NaCl in 1 L water, pH set at 7.4 at 37� C; sterile �ltered)
containing 5.5 mM glucose and 2 mM L-glutamine. After three
basal measurements, subsequent measurements were performed
following the addition of medium containing either 0, 3.5, or
15 mM Na-L-lactate. If indicated, mitochondrial metabolism
was assessed by the subsequent injection of oligomycin A
(1mM), FCCP (1mM) together with pyruvate (1 mM) and
antimycin A (2.5mM) together with rotenone (1.25mM) (all from
Sigma-Aldrich). Flux measurements were normalized to total
DNA content using a Quant-iT dsDNA high sensitivity assay
kit (Thermo�sher Scienti�c). The 96-well plates for Seahorse
measurements were pretreated with Cell-Tak Cell and Tissue
Adhesive (Corning).

RNA Isolation and RT-PCR
For mRNA expression analysis, cells were lysed in TRIzol reagent
(Invitrogen) and RNA isolation was performed according
to the manufacturer's instructions. RNA was transcribed
into complementary DNA by reverse transcription using
the iScript cDNA synthesis kit (Bio-Rad). Power SYBR

FIGURE 1 | Lactate dehydrogenase and lactate transporters are important for in�ammatory responses of human immune cells.(A) Gene expression analysis from
microarray data of PBMCs isolated from patients with acute infections. Fold change of gene expression from PBMCs isolated from patients with infections compared
with healthy controls is shown.(B) Gene expression analysis from microarray data of human monocytes stimulated for 24 h with LPS or Pam3Cys. Fold change of
gene expression from monocytes stimulated with LPS or Pam3Cys compared with unstimulated cells is shown.(C) Lactate levels measured in supernatants of
CD14C monocytes stimulated for 24 h with LPS or Pam3Cys.(D,E) Relative quantity of intracellular lactate(D) and pyruvate(E) in CD14C monocytes stimulated for
24 h with LPS or Pam3Cys.(F–H) Correlation of the change in LDH expression upon LPS- or Pam3Cys-stimulation with IL-1b production. *p < 0.05, **p < 0.01.
Friedman test withpost-hoc Dunn's test (C–E). Spearman's rank test(F–H).
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Green PCR Master Mix (Applied Biosystems) was used for
semiquantitative RT-PCR in a StepOnePlusTM Real-Time
PCR System (Applied Biosystems). Expression data were
normalized to the housekeeping gene� 2M. Primers with the
following sequences were used: B2M_forward ATGAGTATG
CCTGCCGTGTG, B2M_reverse CCAAATGCGGCATCT
TCAAAC, LDHA_forward ATGGCAACTCTAAAGGATCAG
C, LDHA_reverse CCAACCCCAACAACTGTAATCT, LD
HB_forward TCCGCACGACTGTTACAGAG, LDHB_reverse
TTGCCTCTTCTTCCGCAACT.

Metabolite Measurements
Metabolite quantities displayed inFigures 1D,Ewere retrieved
from metabolome analysis of CD14C monocytes stimulated with

LPS or Pam3Cys as described earlier (20). Data from metabolite
measurements normalized to protein concentration was used.

Microarray Analysis
Expression changes in PBMCs isolated from patients (mostly
pediatric) with acute infections (con�rmed microbiologic
diagnosis ofEscherichia coli, Staphylococcus aureus, Streptococcus
pneumonia or in�uenza A) were retrieved from publically
available microarray data (GSE6269) (21). Expression changes
in human monocytes stimulated with LPS and Pam3Cys were
retrieved from (GSE78699) (20). Arrays were normalized using
the robust multiarray average method (22, 23). Probe sets were
de�ned according to the method of Dai et al. (24). In this method,
probes are assigned to Entrez IDs as a unique gene identi�er.

FIGURE 2 | In vitro, lactate acutely shifts metabolism of human monocytes to oxidative phosphorylation.(A–D) Change of ECAR(A,B) and OCR(C,D) in human
CD14C monocytes after exposure to lactate, presented as raw data or % baseline (before lactate injection).(E) OCR/ECAR after lactate injection.(F) Spare respiratory
capacity (SRC) after lactate injection. Each dot represents one healthy individual.n D 7–9, *p < 0.05, **p < 0.01, Wilcoxon signed rank test(A,C), Friedman test with
post-hoc Dunn's test (B,D–F).
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Thep-values were calculated using an intensity-based moderated
t-statistic (25).

Statistical Analysis
Di�erences between two variables were compared with the paired
Wilcoxon's signed rank test. For comparison of 3 or more
variables Friedman's test withpost-hocDunn's test (for selected
pairs) was used. For correlation analysis Spearman's rank test
was used. All data are expressed as mean� standard deviation
(SD), unless otherwise speci�ed. Ap-value< 0.05 was considered
statistically signi�cant. Statistical analyses were performed with
GraphPad Prismor IBM SPSS Statistics 22. Heatmaps were
generated inR studiousingggplot2or thecorrplotpackage.

RESULTS

Lactate Metabolism Is Involved in
In�ammatory Responses of Human
Immune Cells
Gene expression of the lactate transporter MCT4 (SLC16A3)
is upregulated, whereasLDHB expression is downregulated in
PBMCs isolated from patients with acute infections compared
with healthy controls (Figure 1A), indicating an important
role for lactate metabolism in circulating immune cells during
in�ammation. Expression of the lactate transporter MCT1
(SLC16A1) was not a�ected signi�cantly. To further decipher
the potential role of lactate metabolism for human immune
cells, we analyzed gene expression in monocytes stimulated
with TLR-ligands in vitro. Stimulation of human monocytes
with the TLR4-agonist LPS and the TLR2-agonist Pam3CysSK4
(Pam3Cys) both increased gene expression ofSLC16A3and

decreased expression ofLDHBcompared with unstimulated cells
(Figure 1B). LDHA and MCT1 expression were decreased in
monocytes stimulated with LPS, but not a�ected signi�cantly
in cells stimulated with Pam3Cys. In line with these �ndings,
we found increased extra- and intracellular lactate levels in
monocytes stimulated with LPS or Pam3Cys compared with
unstimulated cells (Figures 1C,D). Interestingly, intracellular
pyruvate levels were higher in LPS- compared with Pam3Cys-
stimulated monocytes (Figure 1E). Di�erent pyruvate/lactate
ratios may indicate di�erential activation of LDH in LPS- vs.
Pam3Cys-stimulated cells. The change inLDHB, but notLDHA,
expression upon stimulation of PBMCs correlated signi�cantly
with IL-1b production (Figures 1F–H), indicating an interaction
of lactate metabolism, especiallyLDHB, and immune cell
function.

Lactate Acutely Affects Metabolism of
Human Monocytes in vitro
The importance of LDH and MCTs in regulating in�ammatory
responses is indicative for a role of lactate in modulating
immune cell metabolism. Recently, it was demonstrated that
very high concentrations of lactate (68 mM) immediately
inhibit glycolysis of murine macrophages (16), but whether
this e�ect is relevant for human immune cells at physiologic
concentrations remains to be determined. Therefore, we
investigated direct e�ects of NaC-lactate at concentrations
occurring in the circulation after exercise or in pathophysiologic
conditions (3.5 and 15 mM) on cellular metabolism of CD14C

monocytes isolated from blood of healthy volunteers. Lactate
concentrations in this range decreased cytokine production
by murine macrophagesin vitro and plasma lactate levels of

FIGURE 3 | LDH-inhibition abolishes acute effects of lactate on metabolism. CD14C monocytes were pretreated for 1 h with 40 mM sodium oxamate and medium as
a control (A–D) or with 0.5 mM a-cyano-4-hydroxycinnamic acid (a-CHCA) and DMSO as a control(E–H) before cells were exposed to lactate and metabolism was
assessed. Change of ECAR(A,E) OCR (B,F) OCR/ECAR(C,G) and SRC(D,H) in human CD14C monocytes after exposure to lactate. Each dot represents one
healthy individual.n D 2.
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3 mM suppressed in�ammation in micein vivo (11). Exposure
to lactate immediately reduced extracellular acidi�cationrate
(ECAR) (Figures 2A,B) and increased oxygen consumption
rate (OCR) (Figures 2C,D) of monocytes dose-dependently.
Overall, this resulted in an acutely increased OCR/ECAR ratio
after exposure of cells to lactate (Figure 2E), a metabolic
state characteristic for anti-in�ammatory responses. Lactate
did not induce acute changes in spare respiratory capacity
(SRC), implying no acute changes in mitochondrial capacity to
respond to a sudden increase in energy demand (Figure 2F).
Acute e�ects of extracellular lactate on monocyte metabolism
were abolished, if cells were pretreated with the LDH-
inhibitor oxamate (Figures 3A–D). The MCT-inhibitor a-
cyano-4-hydroxycinnamic acid (a-CHCA) however only had
limited e�ects on metabolic changes induced by lactate
(Figures 3E–H).

In�ammatory conditions alter lactate metabolism and may
thus a�ect metabolic reprogramming induced by extracellular
lactate. When lactate was added under in�ammatory conditions
(4 h after stimulation with LPS), ECAR was decreased
(Figures 4A,B) and OCR (Figures 4C,D) was increased,
resulting in an increased OCR/ECAR ratio (Figure 4E). SRC was
not a�ected by acute exposure to lactate (Figure 4F).

A Short-Term Lactate Infusion Mildly
Affects Glycolytic Metabolism of Human
PBMCs ex vivo
Since lactate immediately a�ected human immune cell
metabolism in vitro, we investigated whether a short-term
lactate infusionin vivo also a�ects immune cell metabolism
and possibly function. Due to the potential anti-in�ammatory
e�ects of lactate, the infusion was performed in patients with
type 1 diabetes (T1D) (seeTable 1for patient characteristics), a
condition frequently accompanied by the presence of a low grade
in�ammatory state (26). Consequently, we expected pronounced
anti-in�ammatory e�ects of lactate in patients with T1D. Lactate
was infused during stable euglycemia (5.1� 0.2 mmol/L) and
increased plasma lactate levels from 1.3� 0.6 mM at baseline to
3.7� 0.5 mM after 20 min of infusion (p D 0.002,Figure 5A).

In line with results in healthy individuals (Figure 2), we
found that lactate treatmentin vitro acutely increased the
OCR/ECAR ratio of monocytes from patients with T1D
(Figures 5B–F). We did not �nd signi�cant di�erences in
metabolism between cells isolated before (T0) and directlyafter
lactate infusion (T1). However, lactate infusion increased glucose
consumption of unstimulated cells (Figure 5G). Interestingly,
glucose consumption of cells stimulated with LPS or Pam3Cys
were not a�ected (Figures 5H,I).

A Short-Term Lactate Infusion Only Mildly
Affects ex vivo Cytokine Production of
PBMCs
Although e�ects on glycolytic metabolism were minor, we tested
whether lactate infusion modulated in�ammatory responses of
immune cells. In line with mild e�ects on metabolism, the
short-term lactate infusion did not a�ect LPS-induced cytokine

FIGURE 4 | Lactate acutely shifts metabolism of in�ammatory human
monocytes to oxidative phosphorylation. CD14C monocytes were stimulated
with LPS for 4 h before metabolism was assessed.(A–D) Change of ECAR
(A,B) and OCR(C,D) in human CD14C monocytes stimulated for 4 h with LPS
before exposure to lactate, presented as raw data or % baseline (before
lactate injection).(E) OCR/ECAR after lactate injection.(F) Spare respiratory
capacity (SRC) after lactate injection. Each dot represents one healthy
individual.n D 4, Wilcoxon signed rank test.

TABLE 1 | Baseline characteristics in people with diabetes.

Total
(n D 12)

Male
(n D 6)

Female
(n D 6)

Age (years) 26.3� 7.8 29.3 � 9.6 23.3 � 4.3

BMI (kg/m2) 23.9 � 2.2 24.5 � 1.8 23.3 � 2.6

Duration of diabetes (years) 11.3� 4.4 8.2 � 3.4 14.5 � 2.8

HbA1c

% 7.1 � 0.6 6.9 � 0.5 7.3 � 0.8

mmol/mol 53.8 � 7.1 51.5 � 5.4 56.2 � 8.2

Data are means� SD.

production ex vivosigni�cantly (Figure 6A). Since lactate may
a�ect immune cell metabolism, and metabolic pathways are
di�erentially regulated by di�erent TLR stimulations (20),
PBMCs were also stimulated with Pam3Cys. Surprisingly,in
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FIGURE 5 | A short-term lactate infusion only has minor effects on human immune cell metabolism.(A) Plasma lactate concentrations measured during lactate
infusion. (B–E) Change of ECAR(B,C) and OCR(D,E) in human CD14C monocytes after exposure to lactate, presented as raw data and % baseline (before lactate
injection).(F) OCR/ECAR after lactate injection.(G–I) Glucose concentration assessed in the medium of cultured PBMCs from patients with diabetes. PBMCs were
isolated and stimulated either before (T0) or after (T1) lactate infusion. PBMCs were stimulated with LPS or Pam3Cys for24 h. Each dot represents one patient.
(A,G–I) n D 12, (B–F) n D 3. *p < 0.05, Friedman test withpost-hoc Dunn's test.

vivo administration of lactate even mildly increased Pam3Cys-
induced IL-1b production (Figure 6B).

We observed substantial variation in the e�ect of lactate
infusion on ex vivo cytokine production between di�erent
donors. To determine if the e�ect of lactate infusion on
di�erent cytokines was similar within one individual, we analyzed
correlations between changes in di�erent cytokines. Changes in
LPS-induced IL-1b production after lactate infusion correlated
with changes in LPS-induced IL-6 and TNF-a as well as
Pam3Cys-induced IL-1b production (Figure 6C), indicating that
lactate infusion had consistent e�ects on di�erent cytokines
within one person.

Di�erential e�ects of the lactate infusion in di�erent
individuals may be due to di�erent plasma lactate concentrations
during the infusion, but might also be in�uenced by di�erences
in glucose control and diabetes duration or di�erences in the
in�ammatory status at baseline. There was no di�erence in
the e�ect of the lactate infusion between male and female
participants (data not shown). We did not �nd any correlation
of baseline lactate concentrations or the change in plasma lactate
concentrations with the changes of the in�ammatory response
upon infusion (Figure 6D). E�ects of the lactate infusion also
did not depend on clinical parameters including glucose levels,
HbA1c or duration of diabetes. However, the reduction in
LPS-induced IL-1b production after lactate infusion correlated
with the number of monocytes within the PBMCs before
lactate infusion (Figures 6D,E) and with unstimulated gene
expression levels of LDHB (Figures 6D,F), indicating a role for
lactate metabolism in conveying the anti-in�ammatory e�ects of
lactate.

Anti-in�ammatory e�ects of lactate may be concentration-
dependent as already suggested by acute e�ects of lactate on
cellular metabolism (Figure 2), and may as well be dependent
on the duration of exposure to lactate. Long-term exposure
to lactate is particularly relevant in microenvironments with
high local lactate concentrations, for example in the tumor
microenvironment or in the adipose tissue. Addition of lactate
to the culture medium for 24 h did not induce any cytokine
production above the detection limit in unstimulated cells (data
not shown), but reduced LPS-induced IL-1b, TNFa, and IL-
10 production dose-dependently (Figures 6G–J). In contrast to
LPS-induced cytokine production, lactate reduced Pam3Cys-
induced TNFa production, but did not a�ect IL-1b production
and even increased IL-10 production (Figures 6K–N). Similar
e�ects were seen in PBMCs isolated afterin vivo lactate infusion.

Lactate Decreases Pro-in�ammatory
Cytokine Production of Human PBMCs in
vitro
To further explore e�ects of long-term exposure to lactate,
we investigated whether extracellular lactate has similar
e�ects on ex vivo stimulations of PBMCs isolated from
healthy individuals compared with T1D patients. Addition
of lactate reduced LPS-induced IL-1b, IL-6, TNFa, and IL-10
production (Figures 7A–D). When stimulated with Pam3Cys,
immunomodulatory e�ects of lactate were less pronounced.
Although lactate decreased Pam3Cys-induced IL-1b and TNFa
production (Figures 7E,G), it did not a�ect IL-6 (Figure 7F)
and even increased IL-10 production (Figure 7H), suggesting

Frontiers in Immunology | www.frontiersin.org 7 November 2018 | Volume 9 | Article 2564



Ratter et al. Lactate Metabolism in Human Immune Cells

FIGURE 6 | A short-term lactate infusion only has minor effects on cytokine production of human PBMCs. PBMCs were isolated and stimulated either before (T0) or
after (T1) lactate infusion.(A,B) Change in LPS-(A) and Pam3Cys- (B) induced cytokine production after lactate infusion.(C) Correlation heatmap indicating
correlations between changes in cytokine production afterlactate infusion. Colors indicate Spearman correlation coef�cients. FC, Fold change T1/T0.(D) Correlation
heatmap indicating correlations between changes in LPS-induced IL-1b production after lactate infusion and various clinical andexperimental factors.(E,F)
Correlation of changes in LPS-induced IL-1b production after lactate infusion with percentage of monocytes in the PBMC fraction(E) and gene expression levels of
LDHB (F). (G–N) Cytokine production of human PBMCs pretreated with lactatefor 1 h before LPS(G–J) or Pam3Cys(K–N) was added for 24 h. n D 12. *p < 0.05,
**p < 0.01, ***p < 0.001. Wilcoxon signed rank test(A,B) Spearman's rank test(C–F) Friedman test withpost-hoc Dunn's test (G–N).

stimulus-dependent e�ects of lactate metabolism. Overall,in
vitro e�ects of lactate on cytokine production were comparable
between patients with T1D and healthy individuals and di�ered
mainly in the e�ect of lactate on Pam3Cys-induced IL-1b
production. PBMCs consist of several cell types, but the
measured cytokines are likely monocyte-derived. This is also
suggested by a strong correlation between cytokine production
by PBMCs and the percentage of monocytes within PBMCs (in
patients:r D 0.72 andp D 0.02 for LPS-stimulated IL-6;r D 0.79
and p D 0.009 for Pam3Cys-induced IL-1b; r D 0.65 andp D
0.05 for Pam3Cys-induced IL-6). Similar to e�ects in PBMCs,
we also observed decreased IL-1b production in monocytes
upon exposure to lactate (Figures 8A,B). Extracellular
lactate did not a�ect IL-6 (Figures 8C,D) production
of monocytes and even increased production of TNFa
(Figures 8E,F).

Immunomodulating Effects of Lactate Are
Time-Dependent
Compared with the strong e�ects of lactate on metabolism and
cytokine productionin vitro, changes inex vivo metabolism
and cytokine production after lactate infusion were minor.
Since lactate exposure induces rapid changes in metabolism,
removing the potential substrate may lead to rapid reversal of
the induced changes, re�ecting metabolic �exibility of human
immune cells depending on nutrient availability. We therefore
tested, whether lactate also a�ected cytokine production, when
it was removed before starting the stimulation. Long-term
exposure to lactate reduced IL-1b production of monocytes
(Figures 9A,B), but when monocytes were exposed to lactate
for 1h, and lactate was washed away before stimulation with
LPS or Pam3Cys, anti-in�ammatory e�ects of lactate were
abolished (Figures 9C,D). This suggests restored immune cell
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FIGURE 7 | In vitro, lactate has anti-in�ammatory effects on PBMCs. Cytokine production of PBMCs from healthy individuals (4 men, 5 women).PBMCs were
pretreated with lactate for 1 h before LPS(A–D) or Pam3Cys(E–H) was added for 24 h. (A–H) n D 9. *p < 0.05, **p < 0.01, ***p < 0.001, Friedman test with
post-hoc Dunn's test.

function after removal of lactate. Limited e�ects of short-term
lactate treatment on monocyte function are also re�ected in
metabolism. LPS-stimulated monocytes rely mainly on glycolytic
metabolism and have low oxidative capacity re�ected in low
SRC. Whereas long-term exposure to lactate during LPS
treatment increased SRC, a short-term exposure to lactate only
had mild e�ects on SRC of LPS-stimulated cells (Figure 9E).
The observation that lactate could still a�ect metabolism
(Figure 4) and reduced cytokine production when added 4h
after LPS (Figure 9F), suggests that the presence of lactate
during the stimulation may be crucial for its anti-in�ammatory
e�ects.

Inhibition of Lactate Metabolism
Modulates Cytokine Production
To further decipher how lactate metabolism is in�uencing
cytokines production, we treated PBMCs with the LDH-inhibitor
oxamate. Oxamate increased LPS-induced, but decreased
Pam3Cys-induced cytokine production (Figures 10A,B).
Accordingly, the MCT-inhibitor a-CHCA increased LPS-
stimulated IL-1b production, but decreased Pam3Cys-induced
cytokine production (Figures 10C,D), again indicating
di�erential roles for lactate metabolism in TLR4- vs. TLR2-
stimulated cells. This phenotype was less pronounced in
monocytes. Oxamate anda-CHCA both reduced LPS- and
Pam3Cys-induced cytokine production (Figures 10E–H).
E�ects of the inhibitors in Pam3Cys-treated cells were
more pronounced. Noticeably, e�ects of the inhibitors
were similar in the presence and absence of extracellular
lactate.

DISCUSSION

Extracellular lactate acutely shifts metabolism of human immune
cells from glycolysis to oxidative phosphorylationin vitro
and thereby in�uences cellular function. Whereas short-term
lactate infusionin vivo has limited e�ects onex vivocytokine
production, long-term exposure to lactateex vivohas robust anti-
in�ammatory e�ects. This suggests rapid adaptations of human
immune cells to lactate concentrations in the microenvironment,
which may a�ect tissue-speci�c immune cell functions.

Studies investigating e�ects of lactate on in�ammation have
predominantly focused on GPR81-mediated e�ects, but recent
studies suggest that lactate may also regulate in�ammation by
interfering with cellular metabolism (15, 16). Accordingly, we
found that even low concentrations of lactate acutely modulate
cellular metabolism of human immune cells. Although we
detected acute changes in ECAR and OCR upon exposure of
monocytes to lactatein vitro, this metabolic pro�le was not
observed in monocytes isolated after lactate infusionin vivo.
This may be a power issue, because only a limited number of
patients could be selected for extracellular �ux measurements.
Alternatively, isolation procedures and incubation of cellsin
culture medium prior to the Seahorse run may have masked
e�ects of lactate on cellular metabolismin vivo. Metabolic
changes induced by lactate may be reversed rapidly upon
exposure to a di�erent environment due to metabolic �exibility
of monocytes. This is supported byin vitro experiments
demonstrating limited e�ects of a short-term lactate exposure
on cytokine production (Figures 9C,D) and suggests that
lactate may rather have immunomodulating e�ects in local
microenvironments for instance in tumors or in the adipose
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FIGURE 8 | In vitro, lactate reduces IL-1b production of monocytes. Cytokine
production of CD14C monocytes from healthy individuals. Monocytes were
pretreated with lactate for 1 h before LPS(A,C,E) or Pam3Cys(B,D,F) was
added for 24 h. (A–F) n D 6–8. *p < 0.05, **p < 0.01, Friedman test with
post-hoc Dunn's test.

tissue, where chronic elevation of lactate levels is more likely to
occur than in the circulation. Duration of exposure to lactate
may also decide on the outcome of the immunomodulating
e�ects. Whereas several studies report anti-in�ammatory e�ects
of lactate after 24 h (11, 15), Samuvel et al. showed that
cells pretreated with 20 mM lactate for 24 h followed by LPS
in combination with lactate for another 24 h, had increased
rather than decreased pro-in�ammatory cytokine production
(27). Consequently, timing e�ects, which might depend on
intracellular signaling, possibly via GPR81, or on the ever-
changing metabolic status of immune cells, should be carefully
taken into account for future studies onin vitro or in vivoe�ects
of lactate on immune cells.

Next to anti-in�ammatory e�ects of lactate on murine
macrophages, it has been shown that elevated levels of lactate can
decrease IL-1b production of human PBMCsin vitro (11). Our
results demonstrate that lactate also decreased the production
of other pro-in�ammatory cytokines (IL-6, TNFa). However, it
appears that the immunomodulatory e�ect of lactate is stimulus-
dependent. Whereas lactate clearly has anti-in�ammatory e�ects

FIGURE 9 | Anti-in�ammatory effects of lactate are time-dependent. Cytokine
production of monocytes from healthy individuals.(A,B) Monocytes were
pretreated with lactate for 1 h before LPS(A) or Pam3Cys(B) was added for
24 h. (C,D) Monocytes were pretreated with lactate for 1 h, lactate was
removed and cells were washed once before LPS(C) or Pam3Cys(D) was
added for 24 h. (E) Monocytes were treated as described for(A) or (C) before
metabolism was measured.(F) Monocytes were stimulated with LPS. 4 h after
stimulation, lactate was added.(A,B) n D 7, (C,D) n D 5, (E) n D 3, (F) n D 4.
*p < 0.05, **p < 0.01, Friedman test withpost-hoc Dunn's test.

in LPS-stimulated cells, e�ects are less pronounced in Pam3Cys-
stimulated cells and IL-10 production even increased. This may
in part be explained by the di�erent metabolic pro�les induced
by LPS and Pam3Cys in human monocytes (20). Whereas
LPS-stimulated monocytes rely more on glycolytic metabolism,
Pam3Cys induces more oxidative phosphorylation, evidenced
by increased levels of oxygen consumption as well as increased
mitochondrial activity in Pam3Cys- vs. LPS-stimulated cells.
Hence, the robust shift away from glycolysis toward oxidative
phosphorylation induced by lactate may have a larger impact
on the functional output of LPS-treated cells. Circulating lactate
contributes to energy metabolism via the tricarboxylic acid
(TCA) cycle (28). It is well established that LPS-stimulation
of macrophages is disrupting the TCA cycle at citrate and
succinate (29, 30). In contrast, the TCA cycle remains intact
in Pam3Cys- vs. LPS-stimulated monocytes (20). Hence, this
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di�erence in TLR-speci�c metabolic rewiring may contribute to
the di�erential e�ects of lactate on LPS- vs. Pam3Cys-stimulated
cells.

Recently, it was reported that e�ector and regulatory T
cells are di�erently equipped to function in low glucose,
high lactate environments. E�ector T cells have highly active
glycolytic metabolism and their function is impaired by
high lactate levels in the environment. Due to their active
glycolysis, e�ector T cells require NADC regeneration, but

high lactate levels promote the formation of pyruvate, thereby
leading to LDH-mediated NADC depletion. In contrast,
regulatory T cells can maintain their function in high lactate
environments, due to upregulation of NADC regeneration via
oxidative phosphorylation (31). Accordingly, di�erences in
LDH-activity, as suggested by di�erent lactate/pyruvate ratios
in LPS- vs. Pam3Cys-stimulated monocytes (Figures 1D,E),
and di�erences in use of oxidative phosphorylation
may di�erentially regulate cellular functions in LPS- vs.

FIGURE 10 | Inhibition of lactate metabolism modulates cytokine production. (A–D) Cytokine production of PBMCs from healthy individuals. PBMCs were pretreated
with 40 mM sodium oxamate and medium as a control(A,B) or 0.5 mM a-cyano-4-hydroxycinnamic acid (a-CHCA) and DMSO as a control(C,D) for 1 h, before �rst
lactate was added for 1 h and then LPS(A,C) or Pam3Cys(B,D) was added for 24 h. (E–H) Cytokine production of CD14C monocytes from healthy individuals.
Monocytes were pretreated with 40 mM sodium oxamate and medium as a control (E–F)or 0.5 mM a-CHCA and DMSO as a control(G,H) for 1 h, before �rst lactate
was added for 1 h and then LPS(E,G) or Pam3Cys(F,H) was added for 24 h. (A–D) n D 6, (E,F) n D 4, (G,H) n D 3. *p < 0.05, Wilcoxon signed rank test.

FIGURE 11 | Lactate metabolism in human immune cells. Overview of the role of lactate in modulating metabolism and function in humanimmune cells. Expression of
genes marked in red was upregulated and expression of genes marked in blue was downregulated in human immune cells upon stimulation with LPS.
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Pam3Cys-stimulated cells exposed to high concentrations of
lactate.

Our study points to an important role for LDH activity
and LDH isoforms in the regulation of immune cell function.
We observed that e�ects of extracellular lactate on metabolism
were abolished when cells were treated with the general
LDH-inhibitor oxamate (Figures 3A–D). E�ects of oxamate on
cytokine production however seemed to be independent of the
presence of extracellular lactate. To pinpoint the role of LDHA
vs. LDHB in immune cell function and further understand
the contribution of extracellular vs. intracellular formedlactate
on immune cell metabolism and cytokine release, studies with
isoform-speci�c inhibition of LDH would be warranted. Research
regarding lactate in immune cells has been focused on the
LDH-mediated conversion of pyruvate into lactate, which leads
to replenishment of NADC and secretion of lactate. However,
LDH also catalyzes the conversion of lactate into pyruvate.
Oxidation of lactate to pyruvate by LDHB is localized within
mitochondria and supports lipid synthesis (32). It has been
suggested that mitochondrial or intercellular lactate-shuttles are
important for maintenance of metabolism, for example in the
brain (33). Mitochondrial lactate oxidation in immune cells is
rather unexplored, but our results suggest that lactate is used
for oxidation in immune cells. LDHB activation in immune cells
may favor the use of oxidative phosphorylation, which may have
bene�cial e�ects in some and detrimental in other situations.

For our in vivo study, we only analyzed e�ects of
lactate infusions in patients with type 1 diabetes. Increased
in�ammasome activation and IL-1b production of PBMCs have
been described in insulin-resistant patients with type 2 diabetes
(34) and in newly diagnosed type 1 diabetes (26). Consequently,
we expected lactate to have a pronounced anti-in�ammatory
e�ect in patients with T1D. In contrast, e�ects of the lactate
infusion on metabolism and cytokine production were limited.
This may be due to the fact that participants in our study
were relatively young and well controlled, contributing toa low
in�ammatory status. Although a subgroup of patients had higher
cytokine production at baseline compared with healthy controls,
in general cytokine levels were in a similar range and we did
not detect signi�cant di�erences in blood leukocyte numbers
between patients and controls.Ex vivoanti-in�ammatory e�ects
of lactate were similar in T1D patients compared with healthy
individuals. It would be of interest for future studies to investigate
e�ects of higher lactate concentrations or longer exposure
times in vivo. Before we can investigate immunomodulating
e�ects of lactate in more severe chronic in�ammatory diseases
(e.g., in�ammatory bowel disease) or patients with acute

in�ammation (infections), we �rst need to better understand
time-dependencies and mechanisms by which lactate in�uences
human immune cells.

In summary, our data suggest that lactate has anti-
in�ammatory e�ects on cytokine production of human PBMCs
in vitro by modulating immune cell metabolism (Figure 11).
Di�erential responses of LPS- and Pam3Cys-stimulated cells in
high extracellular lactate conditions suggest that the e�ects of
lactate are dependent on the metabolic signature of immune cells
evoked by the stimulus. We propose that immunomodulatory
e�ects of lactate may serve as a feedback signal to limit excessive
in�ammatory responses of highly glycolytic pro-in�ammatory
immune cells.
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