Article 25fa pilot End User Agreement

This publication is distributed under the terms of Article 25fa of the Dutch Copyright Act (Auteurswet) with explicit consent by the author. Dutch law entitles the maker of a short scientific work funded either wholly or partially by Dutch public funds to make that work publicly available for no consideration following a reasonable period of time after the work was first published, provided that clear reference is made to the source of the first publication of the work.

This publication is distributed under The Association of Universities in the Netherlands (VSNU) ‘Article 25fa implementation’ pilot project. In this pilot research outputs of researchers employed by Dutch Universities that comply with the legal requirements of Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in institutional repositories. Research outputs are distributed six months after their first online publication in the original published version and with proper attribution to the source of the original publication.

You are permitted to download and use the publication for personal purposes. All rights remain with the author(s) and/or copyrights owner(s) of this work. Any use of the publication other than authorised under this licence or copyright law is prohibited.

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please contact the Library through email: copyright@ubn.ru.nl, or send a letter to:

University Library Radboud University
Copyright Information Point PO Box 9100 6500 HA Nijmegen
You will be contacted as soon as possible.
Rapid Production of trans-Cyclooctenes in Continuous Flow
Daniel Blanco-Ania+,a Luuk Maartense+,a and Floris P. J. T. Rutjes* [a]

A new method for rapid larger-scale production of trans-cyclooctenes (TCOs) in continuous flow was developed: Up to 2.2 g/h of specific TCOs can be produced by using this procedure. This method utilizes the classical photoisomerization of cis-cyclooctenes (CCOs) for the synthesis of TCOs but substitutes the conventionally used silver nitrate impregnated silica gel column for a liquid−liquid extraction module. In addition, this method provides the possibility of external addition of a substrate to scale up and speed up the production of TCOs because the concentration of the CCO is kept constant. This method was applied for the synthesis of several commonly used TCOs.

2. Results and Discussion

One of the most common procedures currently used to produce E-COs (E)-1 is by sensitized photoisomerization of the corresponding cis-cyclooctenes (Z)-1 (CCOs or Z-COs) under ultraviolet light irradiation at a wavelength of 254 nm (Scheme 1).[13]

A rapid equilibrium between the Z- and E-isomers is established under these conditions in which the E-isomer is always the minor product (10–23% of the mixture). The E/Z ratio depends on the concentration of the sensitizer, the concentration of the substrate, the irradiation time and the structure of the substrate.[11d]

The most conventional sensitized photoisomerization method to produce E-COs was developed by Fox et al. in 2008.[11c] This method produces E-COs by irradiation of a solution of the corresponding Z-isomer and a photosensitizer in an organic solvent (e.g., heptane) that is flushed after irradiation through a silver nitrate impregnated silica gel column. The silver(I) ions selectively immobilize the E-isomer on the silica gel, whereas the remaining Z-isomer (77–90%), assuming complete scavenging of the E-isomer by the silver ions) elutes from the column back into the photoreactor. The solution of the Z-isomer is recycled in this way until (almost) full conversion is reached or until the column is saturated with the E-isomer. Finally, the E-CO is isolated by treating the silica gel with aqueous ammonia to dissociate the E-isomer from the silver(I) ions, followed by an extraction with an apolar solvent (e.g., heptane or pentane).

We present hereafter a modification of Fox's method in which we have substituted the silica gel column for a liquid−liquid extraction module and with the possibility of...
external addition of substrate. Not only does the addition of substrate during the reaction permit scaling up the production without limitations, but it also maintains a constant substrate concentration allowing a higher output of product per unit of time (the concentration of Z-CO in solution is otherwise lower after every cycle and so is the production of the E-CO). We were able to produce up to 2.2 g/h of specific E-COs with our novel continuous flow method. A schematic representation of our method is shown in Figure 1.

Figure 1. Schematic overview of the production of E-COs via a continuous liquid–liquid extraction with the possibility of external addition of substrate.

Small- and larger-scale photoreactors with similar designs were built in-house to develop our new methodology. An overview and a photo of the larger-scale photoreactor are shown in Figure 2 (a scheme and a photo of the small-scale photoreactor can be found in the Supplementary Information).

The fabricated photoreactor\(^{13}\) involves a (cooled) photoreactor\(^{14}\) (1; FEP tubing\(^{15}\) (4; i.d. 2.7 mm) wound around a UV lamp (3; wavelength of 254 nm, distance between the tubing and the UV lamp = 0.7–1.4 cm) inside a metal jacket with a water-based cooling system) for the isomerization of Z-COs into E-COs, and a liquid–liquid extraction module (5) to physically separate the Z-COs and E-COs. This module consists of a customized 100 mL round-bottom flask with an extended neck and a magnetic stirrer (a hotplate stirrer (7) provides the required vigorous stirring). The extended neck allows both extraction and phase separation. While the Z-COs in the organic layer are resubjected to the photochemical isomerization by a pump (2; from the top of the flask), the E-COs are trapped by the silver nitrate aqueous solution and stay in the aqueous phase in the flask (5; bottom of the flask) and are no longer part of the continuous process. The substrate is added to the system by a syringe pump (6) to maintain the starting concentration.

Four of the most common Z-COs ([Z]-2–5) were selected for their isomerization to E-COs ([E]-2–5) to proof the concept of our new method. First, the conversion ratios as function of irradiation time were determined by using an exposure gradient on 100–130 mM solutions of the Z-isomers (PhCO, Me as sensitizer) in deoxygenated heptane (Table 1; see the Experimental Section). These results were employed to estimate the molar output of E-CO and determine the addition rate of substrate after isomerization. The highest conversions were observed after 40–50 (entries 2 and 4) or 50–60 min (entries 1 and 3) of irradiation time. From these results, an irradiation time of 20 min was applied to future experiments because the small differences of conversion after this time would be balanced out by the higher output of E-CO per unit of time. The output of E-CO is determined by the volume throughput and the conversion ratio, which are both parameters related to the flow rate. The conversion ratio decreases with an increased flow rate (lower irradiation time), whereas the volume throughput increases.

Concurrently with the determination of the optimal irradiation time, we observed that the separation of the isomers was...
efficient when the Z-COs were completely insoluble in the aqueous silver nitrate solution and fully soluble in heptane (cyclooctenes (Z)-4 and (Z)-5), and the E-CO-silver complexes presented the opposite behavior (cyclooctenes (E)-4 and (E)-5; entries 3 and 4). In contrast, cyclooctenes (Z)-2 and (Z)-3 (with a hydroxy group) were soluble enough in the aqueous phase to thwart their separation from the E-isomers (entries 1 and 2). We assume that there was silver complexation to the hydroxy groups of these compounds because these products were more soluble in the aqueous silver nitrate solution than the pure compounds are in water.\(^{[16]}\) The solubility of (Z)-2 was then altered by acetylation of the hydroxy group. The synthesis of (E)-3 entails two steps of synthesis: reduction of (Z)-3 followed by Z/E-isomerization or vice versa; therefore the latter procedure must be used when using our photoisomerization method. Finally, cyclooctenes (Z)-4–7 (Figure 3) were chosen to test our continuous flow photoreactors of the present study.

![Figure 3. Cyclooctenes (Z)-4–7 investigated for the Z/E-isomerization.](Image)

We commenced our study performing the first experiments in the small-scale photoreactor (total volume: 15.5 mL; irradiated volume: 10.7 mL) for 24 h. We applied the best conditions found after further optimization: concentration of Z-CO in deoxygenated heptane: 130 mM; concentration of PhCO\(_2\)Me: 20 mM; irradiation time (254 nm): 20 min.

Nitric acid was added to the aqueous silver nitrate solution (pH 4) to prevent the formation of a brown-black foam that was occasionally formed at the interface between the two phases in the extraction module.\(^{[17]}\) Additional preventative measures against the formation of this foam included the use of deoxygenated solvents, an argon atmosphere and protection of the extraction module from light with aluminum foil. The rate of addition of substrate was determined by estimating the E-CO output from the conversion ratios found in earlier experiments. The remaining Z-CO and PhCO\(_2\)Me were recovered by evaporating heptane after the reaction was terminated. The results of these experiments are summarized in Table 2.

All the experiments had almost perfect separation (> 99% E-isomer) of the E- and Z-isomers and the E-COs were obtained in modest to good yields (48–79%; calculated from the added amount of substrate). Chiral (Z)-4 gave a 13:4 mixture of diastereoisomers (E)-4a/(E)-4b in 60% yield after 16.5 h (entry 1). Compounds (Z)-5 and (Z)-6 gave the corresponding E-isomers (E)-5 and (E)-6 in 48% and 79% yields, respectively (entries 2 and 3). A white foam formed after 18–20 h at the interface of the phases in the extraction module when performing the reaction with (Z)-5. The white foam was the (E)-5–Ag\((\text{I})\) complex (likely \((\text{E}-5-\text{AgNO}_3)\))\(^{[18]}\) according to analysis by \(^1\)H NMR. It was hypothesized that the precipitation of this white solid was caused by saturation of the aqueous phase with the (E)-5–Ag\((\text{I})\) complex, which was insoluble in heptane.\(^{[19]}\) Lastly, compound (Z)-7 gave a 7:4 mixture of diastereoisomers (E)-7a/(E)-7b in 75% yield (entry 4). All compounds were sufficiently pure after the standard extraction with aqueous ammonia/heptane so that further purification was not required.

With these results in hand and eager to explore the scalability of our new method, we proceeded to test the larger-scale photoreactor (total volume: 140 mL; irradiated volume: 105 mL) with compounds (Z)-5–7 (Table 3). First, we performed the isomerization of (Z)-5 and (Z)-7 with an irradiation time of 20 min and without extra addition of substrate during the experiments to check the performance of the photoreactor (entries 1 and 2). Gratifyingly, we obtained ca. 3.5 g of (E)-5 and the mixture (E)-7a/(E)-7b (74% yield in both cases) after 17 h. We carried on then with the experiments with addition of substrate. Thus, cyclooctene (Z)-5 gave product (E)-5 (5.75 g) in 93% yield in 5.5 h (entry 3). Compound (Z)-7 yielded the 7:4 mixture of products (E)-7a and (E)-7b (49.40 g) in 57% yield also in 5.5 h (entry 4). The starting concentration of compound (Z)-7 was higher (205 mM) than in the small-scale experiments, but unfortunately the output of E-CO was lower probably due to lower penetration of the UV light in the solution. To investigate the limitations of the photoreactor, an irradiation time of 5 min (flow rate: 21 mL/min) was used for substrates (Z)-6 and (Z)-7. This way, we obtained 2.20 g of (E)-6 in 66% yield in the stunning time of 1 h from (Z)-6 (entry 5) and cyclooctene (Z)-7

![Table 2. Z/E-isomerization experiments (24 h) of (Z)-4–7 to (E)-4–7 in the small-scale photoreactor.](Image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate [g]</th>
<th>Addition [g]</th>
<th>Product[s] [g]</th>
<th>Yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Z)-4</td>
<td>2.28</td>
<td>(E)-4a/(E)-4b</td>
<td>60(^{[14]})</td>
</tr>
<tr>
<td>2</td>
<td>(Z)-5</td>
<td>1.00</td>
<td>(E)-5</td>
<td>3.60</td>
</tr>
<tr>
<td>3</td>
<td>(Z)-6</td>
<td>1.00</td>
<td>(E)-6</td>
<td>1.20</td>
</tr>
<tr>
<td>4</td>
<td>(Z)-7</td>
<td>1.00</td>
<td>(E)-7a/(E)-7b</td>
<td>74(^{[5]})</td>
</tr>
<tr>
<td>5</td>
<td>(Z)-6</td>
<td>0.75</td>
<td>(E)-6</td>
<td>2.28</td>
</tr>
</tbody>
</table>

[a] Initial amount. [b] Added amount of substrate during the experiment. [c] Based on the amount of addition of substrate. [d] The experiment ran for 16.5 h. [e] Initial concentration was 150 mM. [f] The experiment ran for 23 h.
in 81 and 83 % yields, respectively (Scheme 2b). The
reduction of compounds (E)-2a and (E)-3 under the same reduction conditions in 84 % yield. Finally, cyclooctenes (E)-2a/(E)-2b, (E)-3 and (E)-8 were synthesized from (E)-7a/(E)-7b, (E)-6 and (E)-5, respectively (Scheme 2). These hydroxy-substituted cyclooctenes present
gave the 7:4 mixture of (E)-7a/(E)-7b (2.06 g) in 74 % yield in the same time (entry 6).

Finally, cyclooctenes (E)-2a/(E)-2b, (E)-3 and (E)-8 were synthesized from (E)-7a/(E)-7b, (E)-6 and (E)-5, respectively (Scheme 2). These hydroxy-substituted cyclooctenes present
the highest number of applications up to date. In fact, most commercially available E-COs are derived from (E)-2a/(E)-2b.[20]

The mixture (E)-7a/(E)-7b was hydrolized under standard conditions to afford the mixture (E)-2a/(E)-2b in excellent yield (88 %; Scheme 2a). The reduction of compounds (E)-6 and (E)-5 with lithium aluminium hydride afforded compounds (E)-3 and (E)-8 in 81 and 83 % yields, respectively (Scheme 2b). The mixture (E)-2a/(E)-2b was also obtained from the mixture (E)-7a/(E)-7b under the same reduction conditions in 84 % yield.

Table 3. Z/E-isomerization experiments of (Z)-5-7 to (E)-5-7 in the larger-scale photoreactor.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate [g][a]</th>
<th>Time [h]</th>
<th>Addition [g][b]</th>
<th>Product(s) [g]</th>
<th>Yield [%][c]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Z)-5</td>
<td>17</td>
<td>-</td>
<td>(E)-5</td>
<td>74</td>
</tr>
<tr>
<td>2</td>
<td>(Z)-7</td>
<td>17</td>
<td>-</td>
<td>(E)-7a/(E)-7b</td>
<td>74</td>
</tr>
<tr>
<td>3</td>
<td>(Z)-5</td>
<td>5.5</td>
<td>6.20</td>
<td>(E)-5</td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td>(Z)-7</td>
<td>5.00</td>
<td></td>
<td>(E)-7a/(E)-7b</td>
<td>57</td>
</tr>
<tr>
<td>5</td>
<td>(Z)-5</td>
<td>1.0</td>
<td>3.36</td>
<td>(E)-5</td>
<td>66</td>
</tr>
<tr>
<td>6</td>
<td>(Z)-7</td>
<td>1.0</td>
<td>2.80</td>
<td>(E)-7a/(E)-7b</td>
<td>74</td>
</tr>
</tbody>
</table>

[a] Initial amount. [b] Added amount of substrate during the experiment. [c] Based on the amount of addition of substrate.

3. Conclusions

In this study we have improved the standard method of synthesis of E-cyclooctenes via photoisomerization of Z-cyclooctenes by means of replacing the silver nitrate impregnated silica gel column with a liquid–liquid extraction module. In addition, our new process includes the possibility of adding extra substrate during the production, allowing for scaling up and faster production of E-COs. Our continuous flow process is generally applicable to synthesize functionalized E-COs on larger scale than any other known procedure. With this method up to 2.2 g/h of specific E-COs can be produced. Two photoreactors were fabricated for production scales lower and higher than 1.5 g. This methodology will certainly make E-COs more available and might entail a reduction of their prices in the future. Our new method is only applicable for E-COs whose Z-counterparts are not soluble in the silver nitrate solution.

Experimental Section

Reagents were obtained from commercial suppliers and were used without purification: Rhodium (II) acetate dimer (46 % Rh, Sigma-Aldrich), (1Z,5Z)-cyclocta-1,5-diene (COD, 99 %, Sigma-Aldrich), ethyl diazoacetate (13 wt.% in dichloromethane, Sigma-Aldrich), peroxyacetic acid (ca. 39 % in acetic acid, Sigma-Aldrich), 3-chlorobenzeneperoxoic acid (mCPBA, 77 %, Sigma-Aldrich), 2,2-dimethoxypropane (98 %, Acros), 4-methylbenzenesulfonic acid (TsOH, 98 %, Sigma-Aldrich), methyl benzoate (99 %, Sigma-Aldrich), silver nitrate (99 %, Honeywell Fluka), N,N-dimethylethylamine (DEA, 98 %, Sigma-Aldrich). Standard syringe techniques were applied for the transfer of dry solvents and air- or moisture-sensitive reagents. Reactions were followed, and Rf values were obtained, using thin layer chromatography (TLC) on silica gel-coated plates (Merck 60 F254) with the indicated solvent mixture. Detection was performed with UV light, and/or by charring at ca. 150 °C after developing into a solution of KMnO4. High-resolution or accurate mass measurement (ΔM < 3 mmm or 5 ppm) was recorded on a JEOL AccuTOF-GCv JMS-T100GCv (GC/Electron Ionization MS, column bleeding at high temperature used as internal mass drift compensation standard). NMR spectra were recorded at 298 K on a Varian Inova 400 (400 MHz) or Bruker Avance III 500 MHz spectrometer in the solvent indicated. Chemical shifts are given in parts per million (ppm) with respect to tetrachloromethane (0.00 ppm) as internal standard for 1H NMR and to CDCl3 (7.26 ppm) as internal standard for 13C NMR. Coupling constants are reported as J values in hertz (Hz). 1H NMR data are reported as follows: chemical shift (ppm), multiplicity (s=singlet, d=doublet, t=triplet, dd=doublet of doublets, dt=doublet of triplets, q=quartet, ddd=doublet of doublets of doublets, ddt=doublet of triplet of doublets, m=multiplet, br=broad), coupling constants (Hz and integration). Column or flash chromatography was carried out using ACROS silica gel (0.035–0.070 mm, and 60 Å pore diameter). The photolysis was done with a Rayonet RMR-600 photoreactor (254 nm) with FEP tubing (i.d. 1.57 mm, o.d. 4.0 cm) and a self-fabricated photoreactor consisting of a OSAGA RVS UV-C 55w pond filter with a Philips PL-L 55 W UV-C lamp (254 nm) and FEP tubing (i.d. 2.7 mm, o.d. 3.18 mm; distance between the tubing and the UV lamp = 4.0 cm) and a self-fabricated photoreactor consisting of a OSAGA RVS UV-C 55w pond filter with a Philips PL-L 55 W UV-C lamp (254 nm) and FEP tubing (i.d. 2.7 mm, o.d. 3.18 mm; distance between the tubing and the UV lamp = 0.7–1.4 cm).
(1R,4Z,8S)-9-Oxabicyclo[6.1.0]non-4-ene (I(Z)-9)

Peroxoyacetic acid (59.42 g, 305 mmol; ca. 39% in acetic acid) was added dropwise to a stirred suspension of (1Z,5Z)-cycloocta-1,5-diene (30.00 g, 34.1 mL, 277 mmol) and Na2CO3 (117.44 g, 1.108 mol) in CH2Cl2 (400 mL) at 0°C. The reaction mixture was slowly warmed to 15°C over 17 h, then filtered and washed with CH2Cl2 (2×50 mL). The filtrate was washed with a saturated aqueous solution of NaHCO3 up to neutral pH and the layers were separated. The aqueous phase was extracted with CH2Cl2 (2×/C148 mL) at 0°C. The reaction mixture was allowed to warm to 21°C for 15 min, then cooled to 0°C, and water was added carefully until the grey solid turned white. Sodium sulfamate (2.00 g, 14.1 mmol) was added; the solid was filtered off and washed thoroughly with Et2O. The filtrate was concentrated in vacuo to afford (Z)-3 (4.03 g, 26 mmol, 86%). 1H NMR [400 MHz, δ (ppm), CDCl3]: 5.69–5.58 (m, 2 H), 3.72 (d, J = 7.6 Hz, 2 H), 2.42–2.30 (m, 2 H), 2.16–2.05 (m, 2 H), 2.05–1.93 (m, 2 H), 1.64–1.51 (m, 2 H), 1.41 (br s, 1 H), 1.19–1.08 (m, 1 H), 1.07–0.95 (m, 2 H). The 1H NMR data were in accordance with published data.[24]

rac-(1R,2R,Z)-Cyclooct-5-ene-1,2-diol (I(Z)-10)

Concentrated H2SO4 (90 mg, 0.5 μl, 0.92 mmol) was added to a solution of (Z)-9 (5.00 g, 40.3 mmol) in H2O (80 mL) under vigorous stirring at 21°C. The reaction mixture was allowed to react at 21°C for 7 h. The product was then extracted with Et2O (3×50 mL) and then washed with a saturated aqueous solution of NaHCO3. The organic phase was then washed with brine, dried (Na2SO4), filtered and concentrated in vacuo to yield diol (Z)-10 as a clear colorless oil (3.99 g, 28.1 mmol, 70%). 1H NMR [400 MHz, δ (ppm), CDCl3]: 5.64–5.53 (m, 2 H), 3.71–3.61 (m, 2 H), 2.92 (br s, 2 H), 2.43–2.28 (m, 2 H), 2.19–2.04 (m, 4 H), 1.62–1.52 (m, 2 H). Diol (Z)-10 was used for the synthesis of (Z)-4 without further purification. The 1H NMR data were in accordance with published data.[29]

rac-(1R,4Z,8R)-10,10-Dimethyl-9,11-dioxabicyclo[6.3.0]undec-4-ene (I(Z)-4)

2,2-Dimethoxypropane (7.32 g, 8.6 mL, 70.3 mmol) and a catalytic amount of TsOH·H2O (16 mg, 0.084 mmol) were added to a solution of (Z)-10 (3.99 g, 28.1 mmol) in acetonitrile (120 mL). The resulting reaction mixture was stirred at 21°C for 4 h. Solid NaHCO3 (1.61 g, 19.1 mmol) was added and the mixture was stirred for 30 min. The mixture was then filtered through a pad of silica gel and the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel (heptane/AcOEt 19:1 to afford (Z)-4 as a colorless oil (4.12 g, 22.6 mmol, 80%). 1H NMR [400 MHz, δ (ppm), CDCl3]: 5.63–5.53 (m, 2 H), 3.91–3.81 (m, 2 H), 2.24–2.13 (m, 2 H), 2.13–1.99 (m, 4 H), 1.47–1.36 (m, 2 H), 1.30 (s, 6 H). The 1H NMR data were in accordance with published data.[29]

rac-(1R,4Z)-Cyclooct-4-en-1-yl acetate (I(Z)-7)

Triethylamine (84.09 g, 115.8 mL, 831 mmol) and DMAP (1.00 g, 8.19 mmol) were added to a solution of alcohol (Z)-2 in dry CH2Cl2 (400 mL) at 0°C. The mixture was stirred for 15 min, then Ac2O (127.25 g, 117.8 mL, 1.248 mol) was slowly added and the mixture was warmed to 21°C. The solution turned from clear yellow to red-brownish after stirring for 17 h. The reaction mixture was cooled to 0°C and was quenched by slow addition of H2O (175 mL). The phases were separated and the organic phase was washed with brine, dried (Na2SO4), filtered and concentrated in vacuo to afford a crude product (34.02 g). The residue was purified by column chromatography on silica gel (heptane/AcOEt 9:1) to afford acetate (Z)-7 as a clear yellow oil (19.30 g, 115 mmol, 41% after three steps). 1H NMR [400 MHz, δ (ppm), CDCl3]: 5.66 (dd, J = 10.6, 8.3, 6.6 Hz, 1 H), 5.59 (dt, J = 10.5, 7.6 Hz, 1 H), 4.79 (dddd, J = 9.8, 8.5, 4.4, 1.0 Hz, 1 H), 2.30 (ddddd, J = 14.5, 10.7, 8.3, 4.0 Hz, 1 H), 2.18–2.02 (m, 3 H), 1.98 (s, 3 H), 1.91–1.76 (m, 2 H), 1.73–1.64 (m, 1 H), 1.25 (t, J = 7.1 Hz, 3 H), 1.87 (d, J = 14.5 Hz, 1 H). The 1H NMR data were in accordance with published data.[29]
A solution of the substrate (130 mM) and methyl benzoate (26 mM) in deoxygenated heptane was pumped into the photoreactor with an irradiation time of 55 min. The output was collected in fractions; the first fraction had a full exposure of 55 min. Next, only the irradiation was terminated and the vial with the substrate was replaced with a vial only with heptane. A fraction was collected every 5 min. Each fraction represents an irradiation time interval of 5 min. Conversion ratios for each fraction were determined by 1H NMR.

General Procedure for the Photocatalytic Isomerization in the Small-Scale Photoreactor

The tubing of the photoreactor (total volume: 15.5 mL, irradiated volume: 10.7 mL) was filled with deoxygenated heptane (15.5 mL) after rinsing it with deoxygenated heptane. A solution of the substrate (5.15 mmol) and methyl benzoate (140 mg, 129 μL, 1.029 mmol, 0.2 eq) in deoxygenated heptane (25 mL) was added to a solution of silver nitrate (3.50 g, 20.6 mmol, 4 eq) in a 0.1 M nitric acid solution in water (80 mL) in the 50 mL extraction module. The inlet tube of the pump was placed at the top of the organic phase; the outlet tube of the reactor was placed just above the stirring magnet in the aqueous phase.

The organic phase was pumped through the entire system for about five cycles without irradiation while argon was bubbled through the extraction module. The irradiation was done at a wavelength of 254 nm and the irradiation time was set to 20 min (flow rate: 0.340 mL/min). A syringe pump added pure substrate to the system after the irradiation and before entering the extraction module to maintain the concentration of the substrate in the organic phase. The addition rate was determined by the estimated generation of E-CO: $Y_{E,CO} = Q_{E,CO} \cdot C_{E,CO} \cdot \text{Flow rate} \cdot M$ (1).

The photoreactor ran between 18 and 24 h for several experiments.

rac-Ethyl (1R,4E,4P,5S,9R)-bicyclo[6.1.0]non-4-ene-9-carboxylate (E)-5

The isomerization of compound (Z)-5 (1.00 g, 5.15 mmol), as described in the general procedure with an irradiation time of 20 min, afforded compound (E)-5 (1.92 g, 18.11 mmol, 80%) in 24 h with addition of substrate (2.50 g, 12.88 mmol). 1H NMR [500 MHz, δ (ppm), CDCl$_3$]: 5.85 (dd, J = 14.8, 9.4, 6.2 Hz, 1 H), 5.12 (dd, J = 15.3, 10.6, 9.2, 11.4 Hz, 1 H), 4.07 (q, J = 7.2 Hz, 2 H), 2.41–2.33 (m, 2 H, 1 H), 2.31–2.16 (m, 3 H), 2.00–1.87 (m, 2 H), 1.29–1.20 (m, 1 H), 1.22 (t, J = 7.2 Hz, 3 H), 1.13 (ddt, J = 11.7, 9.5, 4.9 Hz, 1 H), 0.90 (t, J = 5.2 Hz, 2 H), 0.95–0.81 (m, 1 H), 0.59 (dddd, J = 14.1, 12.8, 11.7, 2.5 Hz, 1 H). 13C NMR [126 MHz, δ (ppm), CDCl$_3$]: 174.7, 138.1, 131.6, 60.4, 38.0, 33.4, 32.0, 27.3, 27.2, 26.9, 25.9, 14.3. The 1H NMR data were in accordance with published data.

rac-Ethyl (1R,4E,4P,5S,9R)-bicyclo[6.1.0]non-4-ene-9-carboxylate (E)-6

The isomerization of compound (Z)-6 (1.00 g, 5.15 mmol), described in the general procedure with an irradiation time of 20 min, afforded compound (E)-6 (1.10 g, 5.67 mmol, 79%) in 24 h with addition of substrate (1.40 g, 7.22 mmol). 1H NMR [400 MHz, δ (ppm), CDCl$_3$]: 6.06 (dd, J = 16.8, 9.1, 6.2 Hz, 1 H), 5.29 (dd, J = 16.5, 10.6, 3.4 Hz, 1 H), 4.11 (q, J = 7.0 Hz, 2 H), 2.59–2.47 (m, 2 H), 2.38 (dt, J = 12.9, 4.0 Hz, 1 H), 2.33–2.17 (m, 2 H), 2.04–1.92 (m, 1 H), 1.36 (ddd, J = 12.6, 8.7, 5.4, 3.2 Hz, 1 H), 1.25 (t, J = 7.1 Hz, 3 H), 1.25–1.15 (m, 1 H), 1.04 (t, J = 5.2 Hz, 1 H), 1.03–0.91 (m, 1 H), 0.83–0.71 (m, 1 H). 13C NMR [101 MHz, δ (ppm), CDCl$_3$]: 172.0, 137.7, 132.3, 59.8, 33.6, 33.0, 33.7, 27.1, 25.9, 24.4, 23.5, 20.9, 14.4. HRMS [EI + (m/z)] calcd for C$_{12}$H$_{18}$O$_2$: 194.1307, found for [M$^+$]$:^{19}$ 194.1308 ([Δ] = 0.43 ppm).

rac-Ethyl (1R,4E,4P,5S,9R)-bicyclo[6.1.0]non-4-ene-9-carboxylate (E)-7a

The isomerization of compound (Z)-7a (994 mg, 5.91 mmol), as described in the general procedure with an irradiation time of 20 min, afforded a 7:4 mixture of diastereoisomers (E)-7a/E-7b (750 mg, 4.46 mmol, 75%) in 23 h without addition of substrate. 1H NMR [500 MHz, δ (ppm), CDCl$_3$]: 5.64–5.44 (m, 3.2 H), 2 H (E-7a + 2 H (E-7b), 4.98 (dd, J = 10.5, 5.2 Hz, 1 H (E-7b), 4.45–4.38 (m, 1 H; E-7a), 2.41–2.21 (m, 5.4 H); 3 H (E-7a + 4 H (E-7b), 2.14–2.08 (m, 0.9 Hz), 1 H (E-7b), 2.09 (s, 1.8 H; 3 H (E-7b), 1.97 (s, 3 H; (E-7a), 1.99–1.88 (m, 4 H; (E-7a), 1.88–1.71 (m, 3.8 H; 2 H (E-7a) + 3 H (E-7b), 1.56 (dddd, J = 15.6, 11.9, 5.9, 1.3, 1 H; (E-7a), 1.49–1.39 (m, 0.6 H, 1 H (E-7b), 1.21 (ddt, J = 14.6, 12.2, 12 Hz, 0.6 H, 1 H (E-7b), 13C NMR [126 MHz, δ (ppm), CDCl$_3$]: 170.3, 170.2, 135.3, 134.9,
The tubing of the photoreactor (total volume: 140 mL, irradiated volume: 105 mL) was filled with a solution of the substrate (15.5 mmol) and methyl benzoate (422 mg, 3.1 mmol, 0.2 equiv) in deoxygenated heptane (100 mL) after rinsing it with deoxygenated heptane. A solution of silver nitrate (11.89 g, 0.2 equiv) in deoxygenated heptane (100 mL) after rinsing it with deoxygenated heptane (30 mL) in the 100 mL extraction module. The inlet tube of the pump was placed at the top of the organic phase; the outlet tube of the reactor was placed just above the stirring magnet in the aqueous phase.

The organic phase was pumped through the entire system for about five cycles without irradiation while argon was bubbled through the extraction module. The irradiation was done at a wavelength of 254 nm and the irradiation time was set to either 5 (flow rate: 20 mL/min) or 20 min (flow rate: 5 mL/min). A syringe pump added pure substrate to the stream after the irradiation and before entering the extraction module to maintain the concentration of the substrate in the organic phase. The addition rate was determined by the estimated E-CO generation: ΨE,CO (mg/min) with equation (1). The photoreactor ran between 1 and 5.5 h for several experiments.

rac-Ethyl (1R,4E,4P,8S,9s)-bicyclo[6.1.0]non-4-ene-9-carboxylate ([E]-5)

Procedure 1: The isomerization of compound ([Z]-5) (4.60 g, 23.7 mmol), as described in the general procedure with an irradiation time of 20 min, afforded compound ([E]-5) (3.40 g, 29.6 mmol, 74%) in 17 h without addition of substrate.

Procedure 2: The isomerization of compound ([Z]-5) (3.00 g, 15.4 mmol), as described in the general procedure with an irradiation time of 20 min, afforded compound ([E]-5) (5.75 g, 29.6 mmol, 93%) in 5.5 h with addition of substrate (6.20 g, 31.9 mmol).

rac-Ethyl (1R,4E,APAS,9s)-bicyclo[6.1.0]non-4-ene-9-carboxylate ([E]-6): The isomerization of compound ([Z]-6) (3.00 g, 15.4 mmol), described in the general procedure with an irradiation time of 5 min, afforded compound ([E]-6) (3.36 g, 17.3 mmol, 66%) in 1 h with addition of substrate (3.40 g, 17.2 mmol).

rac-(1R,4E,AP)-Cyclooct-4-en-1-yl acetate ([E]-7a) and rac-(1R,4E,AM)-cyclooct-4-en-1-yl acetate ([E]-7b)

Procedure 1: The isomerization of compound ([Z]-7) (4.70 g, 27.9 mmol), as described in the general procedure with an irradiation time of 20 min, afforded a 7:4 mixture of diastereoisomers ([E]-7a/[E]-7b) (2.06 g, 12.2 mmol, 73%) in 1 h with addition of substrate (2.80 g, 16.6 mmol).

rac-(1R,4E,4P)-Cyclooct-4-en-1-ol ([E]-2a) and rac-(1R,4E,4M)-cyclooct-4-en-1-ol ([E]-2b)

Procedure 1: A solution of 1 M NaOH (26.9 mL) was added to a solution of the 7:4 mixture of diastereoisomers ([E]-7a/[E]-7b) (452 mg, 2.69 mmol) in 1,4-dioxane (9 mL). The resulting mixture was stirred at 21°C for 17 h. 1,4-Dioxane was then evaporated and the water phase was extracted with CH2Cl2 (3 × 9 mL). The combined organic extracts were then washed with brine, dried (Na2SO4), filtered and concentrated in vacuo to yield a 7:4 mixture of diastereoisomers ([E]-2a/[E]-2b) (298 mg, 2.36 mmol, 88%).

[(1R,4E,AP,8S,9s)-Bicyclo[6.1.0]non-4-ene-9-yl]methanol ([E]-3)

A solution of ([E]-6) (1.10 g, 5.66 mmol) in Et2O (30 mL) was added dropwise to a suspension of LAIH4 (193 mg, 5.10 mmol) in Et2O (30 mL) at 0°C under an argon atmosphere. The suspension was then stirred at 21°C for 30 min, then cooled to 0°C, and water was added carefully until the grey solid had turned white. Sodium sulfate was added; the solid was filtered off and washed thoroughly with Et2O. The filtrate was concentrated in vacuo to afford a diastereomeric mixture of ([E]-2a/[E]-2b) (313 mg, 2.48 mmol, 84%).
1.85 (m, 2 H), 0.87 (dd, J = 12.6, 11.4, 7.1 Hz, 1 H), 0.54–0.31 (m, 3 H). The ¹H NMR data were in accordance with published data. ¹[8]

Conflict of Interest

The authors declare no conflict of interest.

Keywords: bioorthogonal chemistry - continuous extraction - continuous flow - photosimerization - trans-cyclooctenes

[1] We encourage using the stereodescriptors E/Z for cyclooctenes instead of the less accurate cis/trans; therefore, TCOs are better named E- and Z-TCOs.

[10] Methylene benzoate is almost always used as the sensitizer.

[12] We recommend representing E- and Z-TCOs with these types of structures. Not only is this representation the easiest to draw, but it also captures faithfully the actual structure of the distorted double bond (see ref. 11c for X-ray crystal structures of E- and Z-TCOs and the supporting information for clarification of the selection of this structure and how to assign the configuration of its chiral plane).