Evidence for $Z^0(3900)$ in semi-inclusive decays of b-flavored hadrons

V. M. Abazov,31 B. Abbott,67 B. S. Acharya,25 M. Adams,46 T. Adams,44 J. P. Agnew,41 G. D. Alexeev,31 G. Alkhazov35
A. Alton,56,a A. Askew,44 S. Atkins,54 K. Augsten,7 V. A. Bhat,23 S. Bhatia,58 V. Bhatnagar,23 G. Blazey,4 S. Blessing,44 K. Bloom,59 A. Boehnlein,45 D. Boline,45 E. Boos,31 G. Borissov,39 R. D. Schamberger,64 Y. Scheglov,35,* H. Schellman,69,48 M. Schott,21 C. Schwanenberger,41 R. Schwienhorst,57 J. Sekaric,53
T. Yasuda,45 Y. A. Yatsunenko,31 W. Ye,64 Z. Ye,45 H. Yin,45 K. Yip,65 S. W. Youn,45 J. M. Yu,56 J. Zennamo,62 T. G. Zhao,41
B. Zhou,56 J. Zhu,56 M. Zielinski,63 D. Zieminska,49 and L. Zivkovic14,o

Evidence for $Z^0(3900)$ in semi-inclusive decays of b-flavored hadrons

PHYSICAL REVIEW D 98, 052010 (2018)

(D0 Collaboration)

1LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Rio de Janeiro 22290, Brazil
2Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 20550, Brazil
3Universidade Federal do ABC, Santo André, São Paulo 09210, Brazil

2470-0010/2018/98(5)/052010(1) 052010-1 Published by the American Physical Society
We present evidence for the exotic charged charmoniumlike state $Z_c^+ (3900)$ decaying to $J/\psi \pi^+$ in semi-inclusive weak decays of b-flavored hadrons. The signal is correlated with a parent $J/\psi \pi^+\pi^-$ system in the invariant-mass range 4.2–4.7 GeV that would include the exotic structure $Y (4260)$. The study is based on 10.4 fb$^{-1}$ of $p\bar{p}$ collision data collected by the D0 experiment at the Fermilab Tevatron collider.

DOI: 10.1103/PhysRevD.98.052010

1. INTRODUCTION

The charged charmoniumlike state $Z_c^+ (3900)$ was discovered in 2013 simultaneously by the Belle [1] and BESIII [2] collaborations in the sequential process $e^+ e^- \rightarrow Y (4260)$, $Y (4260) \rightarrow Z_c^+ (3900) \pi^-$, $Z_c^+ (3900) \rightarrow J/\psi \pi^+$ (charge conjugate processes are implied throughout). Their fits of the $Z_c^+ (3900)$ signal with an S-wave Breit-Wigner signal shape and an incoherent background gave the signal parameters $m = 3894.5 \pm 6.6 \pm 4.5$ MeV, $\Gamma = 63 \pm 34 \pm 26$ MeV, and $m = 3899.0 \pm 3.6 \pm 4.9$ MeV, $\Gamma = 46 \pm 10 \pm 20$ MeV, respectively. The $Z_c^+ (3900)$ cannot be a conventional quark-antiquark meson as it is charged and decays via the strong interaction to charmonium. Its minimal quark content is thus $c\bar{c}u\bar{d}$.

Since the original observation, the understanding of both the $Z_c^+ (3900)$ and $Y (4260)$ has evolved. The BESIII Collaboration has measured [3] the $e^+ e^- \rightarrow J/\psi \pi^+\pi^-$ cross section at a range of energies from 3.77 to 4.60 GeV and reported that the $Y (4260)$ may consist of two states: a narrow state at about 4.22 GeV and a wider one at about 4.32 GeV above a continuum that may also be...
consistent with a broad resonance near 4.0 GeV. Currently, the \(Y(4260)\) is believed to be composed of two states: a lower-mass narrower state denoted by the Particle Data Group (PDG) [4] as \(\psi(4260)\) with mass \(m = 4230 \pm 8\ MeV\) and width \(\Gamma = 55 \pm 19\ MeV\) and a higher-mass broader state \(\psi(4360)\) with \(m = 4368 \pm 13\ MeV\) and \(\Gamma = 96 \pm 7\ MeV\).

The \(Z^+\) (3900) is close in mass to \(X(3872)\) and also close to the open-charm \(D^*\bar{D}\) threshold, so it may be a “molecular” state composed of a loosely bound pair of colorless, quark-antiquark pairs containing a charm and a light quark \((c\bar{d})\) and \((c\bar{u})\), the isovector analog of the \(X(3872)\). A mass enhancement is also seen in the \(D^*\bar{D}\) system [5], but the fit for this channel gives a different mass and width compared to that for the \(J/\psi\pi^+\) channel.

The PDG [4] assumes that it is a single resonance decaying to two final states. It lists it as \(Z^+(3900)\) with \(m = 3886.6 \pm 2.4\ MeV\) and \(\Gamma = 28.2 \pm 2.6\ MeV\). The spin and parity are determined to be [6] \(J^P = 1^+\).

The presence of \(Z^+\) in decays of \(b\) hadrons is unclear. It is not seen by Belle [7] in the decay \(B^0 \rightarrow (J/\psi\pi^+)K^-\) nor by LHCb [8] in the decay \(B^0 \rightarrow (J/\psi\pi^+)\pi^-\). On the other hand, the \(Y(4260)\) may have been seen in the decays \(B \rightarrow J/\psi\pi\pi K\) by BABAR [9], so there could be production of \(Z^+\) in \(b\)-hadron decays through the two-step process \(H_b \rightarrow Y(4260)\) anything, \(Y(4260) \rightarrow Z^+\) \(3900\pi^-\), where \(H_b\) represents any hadron containing a \(b\) quark. This process may be spread over many channels and thus escape observation in any specific channel.

In this article, we look for the presence of such two-step processes using 10.4 fb\(^{-1}\) of \(p\bar{p}\) collision data collected by the D0 experiment at the Fermilab Tevatron collider.

II. D0 DETECTOR, EVENT RECONSTRUCTION, AND SELECTION

The D0 detector [10] has a central tracking system consisting of a silicon microstrip tracker [11] and a central scintillating fiber tracker, both located within a 1.9 T superconducting solenoidal magnet. A muon system [12] covering pseudorapidity \(|\eta_{\text{det}}| < 2\) [13] is located outside of the central tracking system and the liquid argon calorimeter and consists of a layer of tracking detectors and scintillation trigger counters in front of 1.8 T toroidal magnets, followed by two similar layers after the toroids.

In high-energy \(p\bar{p}\) collisions, the \(J/\psi\) can be produced both promptly, either directly or in strong-interaction decays of higher-mass charmonium states, and non-promptly in weak-interaction \(b\)-hadron decays [14–16].

The \(b\) and \(\bar{b}\) quarks are produced in pairs and fragment into the \(b\)-hadron species \(B^+, B^0, B_s, \bar{b}\) baryons, and \(B_c\) with the relative branching fractions 0.34, 0.34, 0.10, 0.22, and \(< 0.01\), respectively [4]. Nonprompt \(J/\psi\) mesons from \(H_b\) decays are displaced from the \(p\bar{p}\) interaction vertex by typically several hundred \(\mu\)m as a result of the long \(b\)-quark lifetime.

Events used in this analysis are collected with both single-muon and dimuon triggers. We reuse a sample of events, prepared for an earlier study of \(b\)-hadron decays, containing a nonprompt \(J/\psi\) and a pair of oppositely charged particles consistent with coming from a displaced decay vertex. For this previously used data sample, the event selection requirement that the decay vertex be separated from the primary vertex with a significance of more than 3\sigma precludes extension of the current study to include the prompt production of \(Z^+\) (3900) and \(Y(4260)\). Unless indicated otherwise, we assume the hadrons to be pions and select events in the mass range \(6.1 < m(J/\psi\pi^+\pi^-) < 5.0\) GeV that includes the \(Y(4260)\) states and is high enough for production of the \(Z^+\) (3900) but low enough to exclude fully reconstructed direct decays of \(b\) hadrons to final states \(J/\psi h^+h^-\), where \(h\) stands for a pion, a kaon, or a proton. In this study of an inclusive final state, we apply more stringent requirements on the decay-length-related parameters to further suppress combinations where one of the selected particles is produced by the hadronization of partons associated with the primary vertex.

Candidate events are selected by requiring a pair of oppositely charged muons and a charged particle with \(p_T\) above 1 GeV at a common vertex with \(\chi^2 < 10\) for 3 degrees of freedom. Muons must have transverse momentum \(p_T > 1.5\) GeV. At least one muon must traverse both inner and outer layers of the muon detector. Both muons must match tracks in the central tracking system. The reconstructed invariant mass \(m(\mu^+\mu^-)\) must be between 2.92 and 3.25 GeV, consistent with the world-average mass of the \(J/\psi\) [4]. To select final states originating from \(b\)-hadron decays, the \(J/\psi + 1\) track vertex is required to be displaced from the \(p\bar{p}\) interaction vertex in the transverse plane by at least \(5\sigma\), and the transverse impact parameter [17] significance \(IP/\sigma(IP)\) of the hadronic track is required to be greater than \(2\sigma\).

For accepted \(J/\psi + 1\) track combinations, another track, with a charge opposite to the first track and with \(p_T > 0.8\) GeV, is added to form a common \(J/\psi + 2\) tracks system. The second track must have an \(IP\) significance greater than \(1\sigma\), and its contribution to the \(\chi^2\) of the \(J/\psi + 2\) tracks vertex [18] must be less than 6. The cosine of the angle in the transverse plane between the momentum vector and decay path of the \(J/\psi + 2\) tracks system is required to be greater than 0.9.

For the accepted \(J/\psi + 2\) tracks combinations, we calculate the \(J/\psi\pi^+\pi^-\) invariant mass by assigning the pion mass to both hadronic tracks. We correct the muon momenta by constraining \(m(\mu^+\mu^-)\) to the world-average \(J/\psi\) meson mass [4]. The sample includes events in which the hadronic pair comes from decays \(K^+ \rightarrow K\pi\) or \(\phi \rightarrow KK\). We remove such events by vetoing the mass combinations \(0.81 < m(\pi K) < 0.97\) GeV, \(0.81 < m(K\pi) < 0.97\) GeV, and
$1.01 < m(KK) < 1.03$ GeV. We also veto photon conversions by removing events with $m(\pi^+\pi^-) < 0.35$ GeV. The K^* veto rejects about 20% of the phase space while reducing the background by about a factor of 2. The combination of the three vetoes reduces the background by a factor of about 2.5. Multiple candidates per event are allowed, but their rate is negligible.

The transverse decay length distribution of the $J/\psi\pi^+\pi^-$ system L_{xy} is shown in Fig. 1. With the average resolution of 0.0057 cm, most of the prompt events would be contained at $L_{xy} < 0.025$ cm. The distribution confirms that prompt background has been strongly suppressed and that the selected $J/\psi + 2$ tracks combinations originate predominantly from partially reconstructed vertices of b-hadron decays.

III. FIT RESULTS

Our study is focused on the $J/\psi\pi^+$ system around the $Z^+_c(3900)$ mass. As mentioned above, the production of $Z^+_c(3900)$ may occur through a sequential process with an intermediate $Y(4260)$, e.g., $B^+ \rightarrow Y(4260)K^+$, $Y(4260) \rightarrow Z^+_c(3900)\pi^-$. To test this possibility, we select events in the mass range $4.1 < m(J/\psi\pi^+) < 5.0$ GeV. We construct the mass $m(J/\psi\pi^+)$ by combining the J/ψ with either of the two pion candidates and, following Refs. [1,2], selecting the higher-mass combination. We fit the resulting $m(J/\psi\pi^+)$ distribution to the sum of a resonant signal represented by a relativistic S-wave Breit-Wigner function with a width fixed to $\Gamma = 28.2$ MeV [4] smeared with the D0 mass resolution of $\sigma = 17 \pm 2$ MeV and a mass that is allowed to vary freely and an incoherent background. Background is mainly due to b-hadron decays to a J/ψ, with a random hadron coming from the same multibody decay. For the background shape, we use Chebyshev polynomials of the first kind. The fitting range is chosen so as to obtain an acceptable fit while avoiding regions where the background function becomes negative.

We perform binned maximum-likelihood fits to the $J/\psi\pi^+$ mass distribution in six $J/\psi\pi^+\pi^-$ mass intervals of varying size, chosen to align with the $Y(4260)$ states. These intervals, ($4.1-4.2$), ($4.2-4.25$), ($4.25-4.3$), ($4.3-4.4$), ($4.4-4.7$), and ($4.7-5.0$) GeV, contain roughly equal numbers of signal plus background events. In each interval, we represent the background contribution by a Chebyshev polynomial of which the order is chosen to minimize the Akaike Information Criterion (AIC) [19]. For a fit with p free parameters to a distribution in n bins, the AIC is defined as $AIC = \chi^2 + 2p + 2p(p + 1)/(n - p - 1)$. We use fourth-order polynomials in all bins except $(4.7-5.0)$ GeV, where we use a fifth-order polynomial.

As shown in Fig. 2, we see a clear enhancement near the $Z^+_c(3900)$ mass for events in the range $4.2 < m(J/\psi\pi^+\pi^-) < 4.25$ GeV, consistent with coming from the $\psi(4260)$ (recall that the $\psi(4260)$ mass is 4230 ± 8 MeV [4]), and smaller but finite $Z^+_c(3900)$ signals for $m(J/\psi\pi^+\pi^-)$ ranges between 4.2 and 4.7 GeV. We find no significant signal in the bins $4.1 < m(J/\psi\pi^+\pi^-) < 4.2$ GeV or $4.7 < m(J/\psi\pi^+\pi^-) < 5.0$ GeV. The resulting differential distribution of the signal yield is shown in Fig. 3. We note the presence of a $Z^+_c(3900)$ signal with a statistical significance greater than 3σ in the $4.4 < m(J/\psi\pi^+\pi^-) < 4.7$ GeV region above the $\psi(4360)$ signal [3], indicating some contribution from a non-$Y(4260)$ $J/\psi\pi^+\pi^-$ combination. The measured signal masses are consistent with each other (with a p-value of 0.1).

We then perform a fit to the data in the mass range $4.2 < m(J/\psi\pi^+\pi^-) < 4.7$ GeV. The AIC test gives similar results using the fifth- and fourth-order polynomials as background, while the χ^2 test prefers the fifth-order polynomial (p-value of 0.18 vs 0.066). The fit using the fifth-order polynomial background shown in Fig. 4 yields $N = 502 \pm 92$ (stat) signal events, $m = 3895.0 \pm 5.2$ (stat) MeV, and a statistical significance of $S = 5.6\sigma$. The fit using the fourth-order polynomial gives $N = 608 \pm 82, m = 3895.7 \pm 4.6$ MeV, and $S = 7.7\sigma$. The statistical significance of the signal is defined as $S = \sqrt{-2 \ln(L_0/L_{max})}$, where L_{max} and L_0 are likelihood values for the best-fit signal yield and for the signal yield fixed to zero. In the following, we choose the fit using the fifth-order polynomial as the baseline. A χ^2 test of the fit quality gives the χ^2 over the number of degrees of freedom (ndf) $\chi^2/\text{ndf} = 36.8/30$.

IV. CROSS-CHECKS

In an alternative approach, we perform a simultaneous fit to the four subsamples of the $m(J/\psi\pi^+\pi^-)$ in the $4.2-4.7$ GeV range, allowing for separate free parameters of the fourth-order Chebyshev polynomial background and free signal yields but using a common free signal mass parameter. The fitted mass is 3889.6 ± 9.8 MeV, and the
number of signal events is 444 ± 149, in agreement with the baseline result, and the quality of the fit is $\chi^2/\text{ndf} = 53.3/81$.

We divide the sample into two ranges of the p_T of the pion from the $Z^+_b(3900)$ decay, $p_T(\pi) < 1.5$ GeV and $p_T(\pi) > 1.5$ GeV, and fit them separately. The fitted yields are 202 ± 51 and 319 ± 72 events, and the masses are 3906.6 ± 10.0 MeV and 3896.1 ± 6.7 MeV, respectively.

Fits to the three $Z^+_b(3900)$ pseudorapidity ranges $|\eta| < 0.9$, $0.9 < |\eta| < 1.3$ and $1.3 < |\eta| < 2.0$ containing similar numbers of events give the signal yields of 195 ± 57, 155 ± 52, and 163 ± 48 and mass values of 3902.8 ± 7.3 MeV, 3906.4 ± 11.2, and 3887.8 ± 8.8 MeV. The signal-to-background ratios in the three $|\eta|$ regions are consistent with being the same, as would be expected if both signal and the dominant backgrounds arise from the decays of b hadrons.

To test the sensitivity of the results to the fit quality requirements, we define a control sample by selecting events with the fit quality of the $J/\psi + 1$ track vertex in the range $10 < \chi^2 < 20$. The fitted yield in the control sample is 10 ± 25 events, consistent with no signal.

Due to the limited muon momentum resolution, our selection of the J/ψ mass window passes some non-J/ψ
dimuons while rejecting a fraction of genuine J/ψ's. The non-J/ψ background includes sequential decays $b \to c \mu X$, $c \to s \mu X$, and semileptonic b-hadron decays accompanied by a muon track originating from a charged pion or kaon decay in flight. We estimate the fraction of non-J/ψ background in our baseline sample at 9% and the dimuon mass cut efficiency for J/ψ at 94%. A fit to the $m(J/\psi^{+}\pi^{-})$ spectrum when the J/ψ mass window is expanded to 2.8–3.4 GeV yields 530 ± 100 $Z_{c}^{+}(3900)$ signal events, 6% more than in the baseline analysis, in agreement with expectation.

V. SYSTEMATIC UNCERTAINTIES

There are several sources of systematic uncertainties in the baseline measurement of the $Z_{c}^{+}(3900)$ mass and yield, summarized in Table I.

VI. RESULTS

A. $Z_{c}^{+}(3900)$ signal yield as a function of $m(J/\psi^{+}\pi^{-})$

Table II lists the $Z_{c}^{+}(3900)$ fitted signal yields and the measured mass in the six nonoverlapping intervals of the $J/\psi^{+}\pi^{-}$ invariant mass between 4.1 and 5.0 GeV. The $Z_{c}^{+}(3900)$ width is fixed at $\Gamma = 28.2$ MeV for these fits. The measured masses are consistent with each other and with the original results of Refs. [1,2], and thus we conclude that we are observing the same $Z_{c}^{+}(3900)$ state. We report the results for the range 4.2–4.7 GeV as our best measurement of the mass of the $Z_{c}^{+}(3900)$ resonance and the signal significance.

Our baseline result above allows the $Z_{c}^{+}(3900)$ mass to float but fixes its width at the world-average value and thus raises the question of whether the significance of the fit would change if the world-average [4] mass were used. We assign an asymmetric uncertainty of $(+3,-0)$ MeV to the $J/\psi^{+}\pi^{-}$ mass scale based on studies of the D0 measured mass shift compared to world-average values in several final states with a similar topology [20].

The estimate of the mass resolution is based on the dependence of the measured and simulated resolution of the released kinetic energy for decays with a similar topology. The variation of the assumed resolution by its uncertainty of ± 2 MeV has a negligible effect on the measured $Z_{c}^{+}(3900)$ mass. We assign an uncertainty on the signal yield equal to half of the difference between the two extreme results.

We assess the effects of the fitting procedure and background shape as half of the difference of the results obtained with the fourth- and fifth-order Chebyshev polynomials. Similarly, we estimate the effect of bin size by comparing the results for 20 and 10 MeV bins.

We assign the uncertainty in the signal model as half of the difference in the results obtained with the relativistic Breit-Wigner shapes with and without the energy dependence of the natural width.

In the analysis, we set the natural width equal to the world-average value. We assign the uncertainty in the mass and yield measurement by repeating the fits with the width altered by ± 2.6 MeV [4].

We assign the uncertainty of the natural width.

We estimate the effect of the fitting procedure and background shape as half of the difference of the results obtained with the fourth- and fifth-order Chebyshev polynomials. Similarly, we estimate the effect of bin size by comparing the results for 20 and 10 MeV bins.

We assign the uncertainty in the signal model as half of the difference in the results obtained with the relativistic Breit-Wigner shapes with and without the energy dependence of the natural width.

In the analysis, we set the natural width equal to the world-average value. We assign the uncertainty in the mass and yield measurement by repeating the fits with the width altered by ± 2.6 MeV [4].

VI. RESULTS

A. $Z_{c}^{+}(3900)$ signal yield as a function of $m(J/\psi^{+}\pi^{-})$

Table II lists the $Z_{c}^{+}(3900)$ fitted signal yields and the measured mass in the six nonoverlapping intervals of the $J/\psi^{+}\pi^{-}$ invariant mass between 4.1 and 5.0 GeV. The $Z_{c}^{+}(3900)$ width is fixed at $\Gamma = 28.2$ MeV for these fits. The measured masses are consistent with each other and with the original results of Refs. [1,2], and thus we conclude that we are observing the same $Z_{c}^{+}(3900)$ state. We report the results for the range 4.2–4.7 GeV as our best measurement of the mass of the $Z_{c}^{+}(3900)$ resonance and the signal significance.

Our baseline result above allows the $Z_{c}^{+}(3900)$ mass to float but fixes its width at the world-average value and thus raises the question of whether the significance of the fit would change if the world-average [4] mass were used. We
TABLE II. \(Z^+_c(3900)\) signal yields and mass measurements, fit quality, and statistical significance \(S\) in intervals of \(m(J/\psi\pi^+\pi^-)\). The six measurements in nonoverlapping subsamples are dominated by statistical uncertainties. There is a common asymmetric +3, \(-0\) MeV mass uncertainty. The last row shows a summary result that includes statistical and systematic uncertainties.

<table>
<thead>
<tr>
<th>(m(J/\psi\pi^+\pi^-)) (GeV)</th>
<th>Event yield</th>
<th>Mass (MeV)</th>
<th>(\chi^2/\text{ndf})</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1–4.2</td>
<td>66 ± 38</td>
<td>3902.2 ± 10.6</td>
<td>24.1/15</td>
<td>1.7</td>
</tr>
<tr>
<td>4.2–4.25</td>
<td>167 ± 41</td>
<td>3881.3 ± 6.1</td>
<td>14.6/15</td>
<td>4.3</td>
</tr>
<tr>
<td>4.25–4.3</td>
<td>58 ± 35</td>
<td>3910.7 ± 15.7</td>
<td>23.6/17</td>
<td>1.6</td>
</tr>
<tr>
<td>4.3–4.4</td>
<td>80 ± 48</td>
<td>3886.5 ± 13.0</td>
<td>26.3/19</td>
<td>1.8</td>
</tr>
<tr>
<td>4.4–4.7</td>
<td>206 ± 65</td>
<td>3905.7 ± 9.5</td>
<td>35.8/26</td>
<td>3.2</td>
</tr>
<tr>
<td>4.7–5.0</td>
<td>19 ± 25</td>
<td>3884.7 ± 26.6</td>
<td>21/22</td>
<td>0.4</td>
</tr>
<tr>
<td>4.2–4.7</td>
<td>502 ± 92 ± 64</td>
<td>3895.0 ± 5.2(\pm 0.02)</td>
<td>36.8/30</td>
<td>4.6</td>
</tr>
</tbody>
</table>

have tested this by fixing the mass to \(m = 3886.6\) MeV [4]. The fit gives a yield of \(480 \pm 91\), \(\chi^2/\text{ndf} = 39/31\) and significance \(S = 5.4\) that differ very little from our baseline result. A slightly better fit is obtained with the mass and width fixed to the PDG values [4] for just those measurements that use the final state \(Z^+_c \rightarrow J/\psi\pi^+\pi^-\): \(m = 3893.3\) MeV and \(\Gamma = 36.8\) MeV. In this case, we obtain \(\chi^2/\text{ndf} = 35.9/31\), a yield of \(580 \pm 104\) and \(S = 5.7\). We conclude that variations in the choice of \(Z^+_c\) mass and width have only a small effect upon our conclusions.

The systematic uncertainties are taken into account in the estimate of the significance by convolving the p-value as a function of signal yield with a Gaussian function with a mean corresponding to our measured value and width equal to the systematic uncertainty on the yield. Adding the systematic uncertainty changes the significance for the baseline fit from 5.6 to 4.6.

B. Normalization to \(B_d^0 \rightarrow J/\psi K^+\)

We normalize the \(Z^+_c(3900) \rightarrow J/\psi\pi^+\) signal in the parent \(J/\psi\pi^+\pi^-\) mass range of 4.2–4.7 GeV to the number of events of the decay \(B_d^0 \rightarrow J/\psi K^+\). The latter are required to satisfy the same stringent kinematic and quality cuts as applied to the \(J/\psi\pi^+\pi^-\) except that the \(K^+\) veto is replaced with the requirement that at least one \(K^\pm \pi^\mp\) pair be within the \(K^+\) mass window. If two such pairs are present, we select the \(K^\pm \pi^\mp\) combination with mass closer to the \(K^+\) mass. We fit the distribution to a sum of a signal described by a double Gaussian function and a quadratic polynomial background. We find the number of \(B_d^0\) decays \(N(B_d^0) = 5900 \pm 116\) (stat) and obtain the ratio of the observed number of events \(502/5900 = 0.085 \pm 0.019\) where the uncertainty is a sum in quadrature of the statistical and systematic uncertainties (0.016 and 0.011, respectively). Since the two processes have the same topology and the kinematic restrictions assure a uniform track finding efficiency, we assume that the efficiency factors cancel out in the ratio. The invariant-mass \(J/\psi K\pi\) distribution and the fit results are shown in Fig. 5.

Figure 6 shows a comparison of the decay length distribution of the \(Z^+_c(3900)\) signal events (black circles) and \(B_d^0 \rightarrow J/\psi K^+\) events (red squares).

FIG. 5. The invariant-mass distribution of accepted \(J/\psi + 2\) track candidates under the \(J/\psi K^+\pi^\mp\) hypothesis with a requirement that (at least) one of the \(K^\pm \pi^\mp\) combinations is within the \(K^+\) window (see the text).

FIG. 6. The decay length distribution of \(Z^+_c(3900)\) events (black circles) and \(B_d^0 \rightarrow J/\psi K^+\) events (red squares).
FIG. 7. The \(p_T \) of the \(J/\psi \pi^+ \pi^- \) parents of the \(Z^+_c \) (3900) events (black circles) and of the \(B^0_d \) in the \(J/\psi K^* \) channel (red squares).

lifetime of a \(b \)-hadron admixture averaged over all \(b \) species is similar to the \(B^0_d \) lifetime, and the momentum distributions are similar. We therefore expect the decay length distribution of the two states to show general agreement. The distributions show exponential behavior \(N \sim e^{-L_{xy}/\Lambda} \) in the region above \(L_{xy} \approx 0.025 \) cm where the efficiency is constant, with consistent coefficients of \(\Lambda = 0.098 \pm 0.030 \) and \(0.130 \pm 0.004 \) cm for the \(Z^+_c \) (3900) and \(B^0_d \), respectively, supporting the claim that the signal events come from \(b \)-hadron decays. The turnover at low \(L_{xy} \) occurs because some events of which the \(L_{xy} \) resolution is small can pass the \(5\sigma \) significance cut for lower values of \(L_{xy} \). Figure 7 compares the \(p_T \) distribution of the \(J/\psi \pi^+ \pi^- \) system in \(Z^+_c \) events and the \(p_T \) distribution of \(B^0_d \) in the \(J/\psi K^* \) channel. The two distributions are similar, as expected for decay products of \(b \) hadrons. The average \(p_T \) of the former (12.5 GeV) is lower than the average \(p_T \) of \(B^0_d \) (13.6 GeV) because the \(J/\psi \pi^+ \pi^- \) system carries less than 100% of the parent \(b \)-hadron’s momentum.

C. Search for the \(Z^+_c \) (3900) in the decay \(B^0_d \rightarrow J/\psi \pi^+ K^- \)

As mentioned in Sec. I, the Belle Collaboration [7] did not see a significant signal of the \(Z^+_c \) (3900) in the decay \(B^0 \rightarrow J/\psi \pi^+ K^- \). Their amplitude analysis confirmed the \(Z_c \) (4430) and led to an observation of a new resonance, \(Z_c \) (4200). We have studied the \(J/\psi \pi^+ \) mass in events consistent with this decay, excluding the events consistent with the decay \(\bar{B}^0_d \rightarrow J/\psi K^- \). Figure 8(a) shows the scatter plot of \(m(J/\psi \pi^+) \) vs \(m(J/\psi \pi^+ K^-) \). There is no indication of the \(Z^+_c \) (3900), and the spectrum of \(m(J/\psi \pi^+) \) above 4 GeV is consistent with the resonance structures observed in Fig. 8 of Ref. [7]. Figure 8(b) shows the \(m(J/\psi \pi^+) \) distribution in a limited range and a fit allowing for a \(Z^+_c \) (3900) signal and a quadratic background. The fit gives an upper limit of 90 signal events at 90% C.L. Normalizing to the 5900 events of the \(B^0_d \rightarrow J/\psi K^* \) decay, we obtain an upper limit on the ratio of the two processes of 0.015, to be compared to a limit of 0.0011 obtained by Belle.

VII. SUMMARY AND CONCLUSIONS

In summary, our study of the semi-inclusive decays of \(b \) hadrons \(H_b \rightarrow J/\psi \pi^+ \pi^- \) anything reveals a \(Z^+_c \) (3900) signal that is correlated with the \(J/\psi \pi^+ \pi^- \) system in the invariant-mass range 4.2–4.7 GeV that would include the neutral charmoniumlike states \(\psi(4260) \) and \(\psi(4360) \) [4]. There is an indication that some events arise from \(H_b \) decays to an intermediate \(J/\psi \pi^+ \pi^- \) combination with mass above that of the \(\psi(4360) \), with subsequent decay to \(Z^+_c \) (3900) \(\pi^+ \).
The measured mass of the $Z^{±}_c(3900)$ resonance is $m = 3895.0 \pm 5.2$ (stat)$^{+4.0}_{-2.0}$ (syst) MeV. The significance, including systematic uncertainties, is 4.6 standard deviations. We confirm the conclusion of Ref. [7] that there is no significant production of the $Z^{±}_c(3900)$ in the decay $B^0_d → J/ψ π^+ K^-$. We set an upper limit on the rate of the process $B^0_d → Z^{±}_c(3900) K^-$ relative to $B^0_d → J/ψ K^-$ at 0.015 at the 90% C.L. With the present data sample, we have no sensitivity to prompt production of the $Z^{±}_c(3900)$ in $p\bar{p}$ collisions.

ACKNOWLEDGMENTS

This document was prepared by the D0 Collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC, acting under Contract No. DE-AC02-07CH11359. We thank the staffs at Fermilab and collaborating institutions and acknowledge support from the Department of Energy and National Science Foundation (USA); Alternative Energies and Atomic Energy Commission and National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation, National Research Center “Kurchatov Institute” of the Russian Federation, and Russian Foundation for Basic Research (Russia); National Council for the Development of Science and Technology and Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy and Department of Science and Technology (India); Administrative Department of Science, Technology and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (Netherlands); Science and Technology Facilities Council and The Royal Society (United Kingdom); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research) and Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); China Academy of Sciences and National Natural Science Foundation of China (China); and Ministry of Education and Science of Ukraine (Ukraine).

[13] $\eta = -\ln[\tan(\theta/2)]$ is the pseudorapidity, and θ is the polar angle between the track momentum vector and the proton beam direction. ϕ is the azimuthal angle of the track. The pseudorapidity defined using the polar angle measured with a coordinate origin at the center of the detector is called η_{lat}.

[17] The impact parameter is defined as the distance of closest approach of the track to the p̅p collision point projected onto the plane transverse to the p̅p beams.

