Immunocompromised patients with acute respiratory distress syndrome: secondary analysis of the LUNG SAFE database

Andrea Cortegiani1*, Fabiana Madotto2, Cesare Gregoretti1, Giacomo Bellani3,4, John G. Laffey5,6,7, Tai Pham6,7, Frank Van Haren8,9, Antonino Giarratano1, Massimo Antonelli10, Antonio Pesenti11,12, Giacomo Grasselli11, LUNG SAFE Investigators and the ESICM Trials Group

Abstract

Background: The aim of this study was to describe data on epidemiology, ventilatory management, and outcome of acute respiratory distress syndrome (ARDS) in immunocompromised patients.

Methods: We performed a post hoc analysis on the cohort of immunocompromised patients enrolled in the Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG SAFE) study. The LUNG SAFE study was an international, prospective study including hypoxemic patients in 459 ICUs from 50 countries across 5 continents.

Results: Of 2813 patients with ARDS, 584 (20.8%) were immunocompromised, 38.9% of whom had an unspecified cause. Pneumonia, nonpulmonary sepsis, and noncardiogenic shock were their most common risk factors for ARDS. Hospital mortality was higher in immunocompromised than in immunocompetent patients (52.4% vs 36.2%; \(p < 0.0001 \)), despite similar severity of ARDS. Decisions regarding limiting life-sustaining measures were significantly more frequent in immunocompromised patients (27.1% vs 18.6%; \(p < 0.0001 \)). Use of noninvasive ventilation (NIV) as first-line treatment was higher in immunocompromised patients (20.9% vs 15.9%; \(p = 0.0048 \)), and immunodeficiency remained independently associated with the use of NIV after adjustment for confounders. Forty-eight percent of the patients treated with NIV were intubated, and their mortality was not different from that of the patients invasively ventilated \(\text{ab initio} \).

Conclusions: Immunosuppression is frequent in patients with ARDS, and infections are the main risk factors for ARDS in these immunocompromised patients. Their management differs from that of immunocompetent patients, particularly the greater use of NIV as first-line ventilation strategy. Compared with immunocompetent subjects, they have higher mortality regardless of ARDS severity as well as a higher frequency of limitation of life-sustaining measures. Nonetheless, nearly half of these patients survive to hospital discharge.

Trial registration: ClinicalTrials.gov, NCT02010073. Registered on 12 December 2013.

Keywords: Acute respiratory failure, ARDS, Immunocompromised patients, Mechanical ventilation, Noninvasive ventilation
Background
In recent decades, significant advances in the management of immunocompromised patients have led to improved survival rates [1–3]. Hence, intensive care unit (ICU) admission and invasive life-sustaining treatments are offered with increasing frequency to these patients [3, 4]. However, several studies show that the prognosis of critically ill patients with active malignancies or immunodeficiency remains poor, especially when the cause of ICU admission is acute respiratory distress syndrome (ARDS) [23]. This aim of this post hoc subgroup analysis poses of this analysis, the study population was restricted to the subset of patients fulfilling ARDS criteria on day 1 or 2 following the onset of AHRF.

Methods
LUNG SAFE: patients, study design, and data collection
LUNG-SAFE was an international, multicenter, prospective observational cohort study conducted in a 459 ICUs worldwide. During 4 consecutive weeks in the winter of 2014 (February–March 2014 in the Northern Hemisphere and June–August 2014 in the Southern Hemisphere), participating ICUs enrolled patients undergoing IMV or NIV. Participating ICUs obtained ethics committee approval and either patient consent or waiver of consent as per local guidelines. National coordinators, site investigators, and endorsing societies are listed in Additional file 1. Exclusion criteria were age < 16 years or lack of informed consent when required. Patients were screened daily for AHRF, defined as follows: (1) ratio of partial pressure of arterial oxygen to fraction of inspired oxygen (PaO2/FiO2) ≤ 300 mmHg while receiving IMV or NIV with positive end-expiratory pressure (PEEP) ≥ 5 cmH2O and (2) new radiological pulmonary parenchymal abnormalities. In patients with AHRF, a more detailed set of data was collected to determine whether they met the Berlin definition criteria for ARDS. Data on comorbidities, etiology of AHRF, and risk factors for ARDS were recorded. Data on arterial blood gases, ventilatory support, use of adjunctive therapies (e.g., prone positioning, extracorporeal membrane oxygenation, neuromuscular blockade), severity of ARDS, and other organ involvement by modified nonpulmonary Sequential Organ Failure Assessment (SOFA) score [24] were collected on selected days. The following clinical endpoints were assessed: ICU and hospital survival, censored at 90 days after enrollment; duration of mechanical ventilation; changes in ARDS severity; and decision to withhold or withdraw life-sustaining therapies. A full description of the methods of the LUNG SAFE study, including the full study protocol, case report form (CRF), sample size, and quality control, can be found in the original study paper [23].

Immunocompromised patient cohort and definitions
We defined “immunocompromised” patients as all patients with at least one of the following conditions listed in the LUNG SAFE CRF: (1) immunosuppression (defined as viral immunosuppression, neoplastic disease, immunosuppressive drugs including steroids, chemotherapy, or congenital immunosuppression), (2) active hematologic malignancy (i.e., still requiring treatment), and (3) active neoplasm (i.e., a neoplasm that has not been resected, still requires treatment, or with metastasis). Patients without these conditions were classified as “controls.” For the purposes of this analysis, the study population was restricted to the subset of patients fulfilling ARDS criteria on day 1 or 2 following the onset of AHRF.

In regard to management, patients were subdivided in three ventilation subgroups: (1) IMV, defined as patients invasively ventilated from day 1, independently of the type of support received after the eventual extubation; (2) NIV, defined as patients treated exclusively with NIV from day 1 to study exit (i.e., ICU discharge or death); and (3) NIV failure, defined as patients initially treated with NIV and subsequently intubated during the study period. The term NIV encompassed all forms of NIV modes and interfaces (including continuous positive airway pressure). ARDS severity was assessed from the first to the second day from ARDS onset, according to the Berlin definition criteria: mild (PaO2/FiO2 201–300 mmHg), moderate (PaO2/FiO2 101–200 mmHg), and severe (PaO2/FiO2 ≤ 100 mmHg). Changes in ARDS severity were evaluated in patients staying in the ICU for at least 2 days, and they were classified into four categories: (1) no change, (2) worsening (shift to a more severe category), (3) improvement (shift to a less severe category), and (4) resolution. Duration of invasive ventilation was computed as the number of days that the patient required IMV up to day 28. Survival was evaluated at ICU and hospital discharge or at day 90, whichever event occurred first.

Statistical analysis
Continuous variables were expressed as mean (SD) or median (IQR), and categorical variables were presented...
as count and percent. No assumptions were made for missing data, which were rare [23]. To assess differences between groups, we used Student's t test or the Wilcoxon rank-sum test (according normality distribution of data) for continuous variables and the \(\chi^2 \) or Fisher's exact test (according sample size) for proportions. We used analysis of variance or the Kruskal-Wallis test (as appropriate) and the \(\chi^2 \) test (or Fisher's exact test) to assess differences among the NIV, NIV failure, and IMV groups. The Bonferroni correction was applied to determine significance in the setting of multiple comparisons.

To evaluate factors associated with the use of NIV, we applied a multivariable logistic regression model, and the independent predictors (demographic characteristics, comorbidities, ARDS risk factors, and clinical parameters concerning the illness severity of ARDS onset) were identified through a stepwise regression approach. This approach combines forward and backward selection methods (combined with a significance level of 0.05 for both entry and retention) in an iterative procedure to select predictors in the final multivariable model. This approach was also applied to identify factors associated with hospital mortality in immunocompromised patients. In this case, the stepwise approach also evaluated as possible predictors ventilator setting variables measured at ARDS onset.

Survival analysis was performed according to the Kaplan-Meier method. We assumed that patients discharged alive from the hospital before 90 days were alive on day 90. The log-rank test was used to compare survival curves among groups.

All \(p \) values were two-sided, and values less than 0.05 were considered significant. Statistical analyses were carried out with R version 3.3.3 (R Project for Statistical Computing; https://www.r-project.org/) and SAS version 9.4 software (SAS Institute, Cary, NC, USA).

Results

Baseline patient characteristics

A total of 459 ICUs from 50 countries enrolled patients in the LUNG SAFE study. Among 12,906 mechanically ventilated patients, 4499 had AHRF, and of these, 2813 fulfilled the Berlin criteria for ARDS on day 1 or 2. Among ARDS patients, 584 (20.8%) were immunocompromised (Fig. 1). Of these, 232 (39.7%) had an active neoplasm and 138 (23.6%) had a hematologic malignancy, whereas the causes of immunosuppression were not specified in 38.7%. Table 1 shows baseline characteristics of immunocompromised and control patients. Immunocompromised subjects were younger than controls (60.3 vs 61.6 years; \(p = 0.0163 \)) and had a lower body mass index (BMI) (25.5 ± 5.8 vs 28.1 ± 9.2 kg/m\(^2\); \(p < 0.0001 \)). They had a lower prevalence of chronic obstructive pulmonary disease, diabetes mellitus, and heart failure (New York Heart Association classes III–IV) and a higher incidence of pneumonia, pulmonary vasculitis, and non-cardiogenic shock. Among immunocompromised patients, 28.6% had mild, 46.4% moderate, and 25.0% severe ARDS, and the most common risk factors for ARDS were pneumonia (70.5%), nonpulmonary sepsis (16.1%), and noncardiogenic shock (10.3%). Nonpulmonary SOFA score at day 1 and ARDS severity were similar between immunocompromised and controls. Additional file 2 compares comorbidities, ARDS severity, and nonpulmonary SOFA score in the three ventilation subgroups (IMV, NIV, and NIV failure) among immunocompromised patients. Mean patient age in the NIV subgroup was older than in the other two subgroups, and the difference between NIV and IMV was statistically significant (65.2 vs 59.7 years; \(p = 0.0045 \)). Comorbidities and PaO\(_2\)/FiO\(_2\) were not different among the subgroups. There was a marked difference in the mean nonpulmonary SOFA score, which was significantly higher in IMV than in NIV (7.0 ± 3.9 vs 3.7 ± 3.1; \(p < 0.0001 \)) and NIV failure subgroups (7.0 ± 3.9 vs 5.3 ± 3.6; \(p = 0.0023 \)).
Table 1 Patients characteristics in immunocompetent (Control) and immunocompromised (Study) groups

<table>
<thead>
<tr>
<th>Patients characteristics</th>
<th>Control (n = 2229)</th>
<th>Study (n = 584)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, age, and BMI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women, n (%)</td>
<td>837 (37.6)</td>
<td>247 (42.3)</td>
<td>0.0360</td>
</tr>
<tr>
<td>Age, yr, mean ± SD</td>
<td>61.6 ± 17.1</td>
<td>60.3 ± 15.5</td>
<td>0.0163</td>
</tr>
<tr>
<td>BMI (kg/m²), mean ± SD</td>
<td>28.1 ± 9.2</td>
<td>25.5 ± 5.8</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Comorbidities, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPD</td>
<td>522 (23.4)</td>
<td>85 (14.6)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>523 (23.5)</td>
<td>90 (15.4)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Hearth failure (NYHA classes III-IV)</td>
<td>260 (11.7)</td>
<td>30 (5.1)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Chronic renal failure</td>
<td>222 (10.0)</td>
<td>64 (11.0)</td>
<td>0.4769</td>
</tr>
<tr>
<td>Chronic liver failure (Child-Pugh class C)</td>
<td>91 (4.1)</td>
<td>21 (3.6)</td>
<td>0.5924</td>
</tr>
<tr>
<td>Home ventilation</td>
<td>52 (2.3)</td>
<td>7 (1.2)</td>
<td>0.0886</td>
</tr>
<tr>
<td>ARDS risk factors, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumonia</td>
<td>1271 (57.0)</td>
<td>412 (70.5)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Pulmonary contusion</td>
<td>86 (3.9)</td>
<td>1 (0.2)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Pulmonary vasculitis</td>
<td>7 (0.3)</td>
<td>7 (1.2)</td>
<td>0.0140</td>
</tr>
<tr>
<td>Major trauma</td>
<td>111 (5.0)</td>
<td>1 (0.2)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Aspiration of gastric contents</td>
<td>348 (15.6)</td>
<td>54 (9.2)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Pancreatitis</td>
<td>54 (2.4)</td>
<td>5 (0.9)</td>
<td>0.0187</td>
</tr>
<tr>
<td>Noncardiogenic shock</td>
<td>154 (6.9)</td>
<td>60 (10.3)</td>
<td>0.0063</td>
</tr>
<tr>
<td>Drug overdose</td>
<td>46 (2.1)</td>
<td>5 (0.9)</td>
<td>0.0515</td>
</tr>
<tr>
<td>Severe burns</td>
<td>8 (0.4)</td>
<td>0 (0.0)</td>
<td>0.2183</td>
</tr>
<tr>
<td>Inhalational injury</td>
<td>58 (2.6)</td>
<td>12 (2.1)</td>
<td>0.4498</td>
</tr>
<tr>
<td>Drowning</td>
<td>1 (0.04)</td>
<td>1 (0.2)</td>
<td>0.3722</td>
</tr>
<tr>
<td>Nonpulmonary sepsis</td>
<td>361 (16.2)</td>
<td>94 (16.1)</td>
<td>0.9535</td>
</tr>
<tr>
<td>Blood transfusions</td>
<td>82 (3.7)</td>
<td>29 (5.0)</td>
<td>0.1550</td>
</tr>
<tr>
<td>Other risk factors</td>
<td>61 (2.7)</td>
<td>12 (2.2)</td>
<td>0.4925</td>
</tr>
<tr>
<td>None</td>
<td>194 (8.7)</td>
<td>40 (6.8)</td>
<td>0.1487</td>
</tr>
<tr>
<td>Cause of immunosuppression, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Known (hematologic and/or active neoplasm)</td>
<td>–</td>
<td>357 (61.1)</td>
<td>–</td>
</tr>
<tr>
<td>Unknown</td>
<td>–</td>
<td>227 (38.9)</td>
<td>–</td>
</tr>
<tr>
<td>Illness severity at ARDS onset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonpulmonary SOFA score*, mean ± SD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First day of ARDS</td>
<td>6.2 ± 4.1</td>
<td>6.5 ± 4.0</td>
<td>0.1150</td>
</tr>
<tr>
<td>Second day of ARDS</td>
<td>6.3 ± 4.3</td>
<td>6.7 ± 4.3</td>
<td>0.0283</td>
</tr>
<tr>
<td>PaO₂/FiO₂ ratio, mmHg, mean ± SD</td>
<td>161.3 ± 67.1</td>
<td>157.2 ± 67.9</td>
<td>0.1660</td>
</tr>
<tr>
<td>Mild ARDS³, n (%)</td>
<td>666 (29.9)</td>
<td>167 (28.6)</td>
<td>0.5455</td>
</tr>
<tr>
<td>Moderate ARDS³, n (%)</td>
<td>1067 (47.9)</td>
<td>271 (46.4)</td>
<td>0.5280</td>
</tr>
<tr>
<td>Severe ARDS³, n (%)</td>
<td>496 (22.3)</td>
<td>146 (25.0)</td>
<td>0.1590</td>
</tr>
</tbody>
</table>

Abbreviations: BMI Body mass index, ARDS Acute respiratory distress syndrome, COPD Chronic obstructive pulmonary disease, NYHA New York Heart Association, SOFA Sequential Organ Failure Assessment, PaO₂/FiO₂ Ratio of partial pressure of arterial oxygen to fraction of inspired oxygen

Note: Bold p values represent a statistically significant difference between the two groups

*Nonpulmonary SOFA score adjusted for missing values

³Severity of ARDS was evaluated according to the Berlin definition
Type of ventilatory support, ventilator setting, and adjunctive measure/therapies

Figure 1 summarizes the type of ventilatory support in enrolled patients. On day 1 of ARDS, IMV was the most frequent type of ventilatory approach in both groups; however, NIV use as first-line treatment was significantly more frequent in immunocompromised patients (20.9% vs 15.9%; *p* = 0.0044). The proportion of patients remaining on NIV from day 1 to study exit (NIV subgroup) was similar, whereas the incidence of NIV failure was significantly higher in immunocompromised patients (10.1% vs 6.4%; *p* = 0.0021).

A multivariable logistic regression model revealed that, adjusting on confounders, immunodeficiency was independently associated with the use of NIV (OR, 1.567; 95% CI, 1.217–2.017; *p* = 0.0005). Other factors associated with NIV are shown in Additional file 3.

Additional file 4 compares the ventilator settings on the first day of ARDS between immunocompromised and control patients: FiO₂ and respiratory rate and PEEP were statistically significantly higher in immunocompromised patients, but the difference for PEEP was not clinically relevant. There was no difference in tidal volume, peak and plateau pressures, and the proportion of patients with spontaneous ventilation. No significant differences were observed in adjunctive therapies, except for a significantly higher use of continuous neuromuscular blocking agents in the immunocompromised group (22.6% vs 18.5%; *p* = 0.0266) (Additional file 5). Additional file 6 describes ventilator settings in immunocompromised and immunocompetent (control) patients, stratified by the type of ventilator support (IMV, NIV, NIV failure).

Clinical endpoints

Table 2 compares selected clinical endpoints in immunocompromised and control patients. Hospital mortality and ICU mortality were significantly higher in immunocompromised subjects (respectively, 52.4% vs 36.2%, *p* < 0.0001; and 45.5% vs 31.3, *p* < 0.0001), whereas there was no difference in duration of mechanical ventilation and changes in ARDS severity. Survival curves for hospital (or 90-day) mortality are shown in Fig. 2. The decision to withhold and/or withdraw life-sustaining measures was significantly more frequent in immunocompromised patients (Table 2). The same clinical endpoints were also analyzed in the cohort of

<table>
<thead>
<tr>
<th>Clinical endpoints</th>
<th>Control (n = 2229)</th>
<th>Study (n = 584)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMV during ICU stay, n (%)</td>
<td>1874 (84.1)</td>
<td>462 (79.1)</td>
<td>0.0044</td>
</tr>
<tr>
<td>NIV success during ICU stay, n (%)</td>
<td>212 (9.5)</td>
<td>63 (10.8)</td>
<td>0.3551</td>
</tr>
<tr>
<td>NIV failure during ICU stay, n (%)</td>
<td>143 (6.4)</td>
<td>59 (10.1)</td>
<td>0.0021</td>
</tr>
<tr>
<td>Duration of mechanical ventilation, d, median (Q1–Q3)</td>
<td>8.0 (4.0–15.0)</td>
<td>8.0 (4.0–14.0)</td>
<td>0.4213</td>
</tr>
<tr>
<td>Progression/regression of ARDS, n (%)</td>
<td></td>
<td></td>
<td>0.5613</td>
</tr>
<tr>
<td>No change</td>
<td>824 (41.7)</td>
<td>201 (39.6)</td>
<td></td>
</tr>
<tr>
<td>Progression</td>
<td>214 (10.8)</td>
<td>55 (10.8)</td>
<td></td>
</tr>
<tr>
<td>Regression</td>
<td>422 (21.3)</td>
<td>123 (24.2)</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>518 (26.2)</td>
<td>129 (25.4)</td>
<td></td>
</tr>
<tr>
<td>Limitation of life-sustaining measures, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decision to withhold life-sustaining measures</td>
<td>415 (18.6)</td>
<td>158 (27.1)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Decision to withdraw life-sustaining measures</td>
<td>356 (16.0)</td>
<td>129 (22.1)</td>
<td>0.0005</td>
</tr>
<tr>
<td>Decision to withhold or withdraw life-sustaining measures</td>
<td>507 (22.7)</td>
<td>195 (33.4)</td>
<td>0.0001</td>
</tr>
<tr>
<td>ICU mortality, n (%)</td>
<td>698 (31.3)</td>
<td>266 (45.5)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Hospital mortality, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All patients</td>
<td>804 (36.2)</td>
<td>304 (52.4)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Patients with limitations of life-sustaining measures</td>
<td>419 (82.6)</td>
<td>173 (88.7)</td>
<td>0.0473</td>
</tr>
</tbody>
</table>

Abbreviations: ARDS Acute respiratory distress syndrome, IMV invasive mechanical ventilation, ICU Intensive care unit, NIV Noninvasive mechanical ventilation, Q1 First quartile, Q3 Third quartile

*aChange in ARDS severity (according Berlin definition) was not evaluable for 327 pients (251 immunocompetent and 76 immunocompromised patients)

*bMortality is defined as mortality at ICU discharge or at the 90th day in the ICU after onset of acute hypoxemic respiratory failure, whichever event occurred first

*cMortality is defined as mortality at hospital discharge or at the 90th day in the hospital after onset of acute hypoxemic respiratory failure, whichever event occurred first

*dMortality assessed on patients with a decision to withhold or withdraw life-sustaining measures

Note: Bold *p* values represent a statistically significant difference between the two groups
immunocompromised patients according to the ventilation subgroup (Table 3). Duration of mechanical ventilation and decisions of limitation (both withholding and withdrawal) of life-sustaining measures were not different among the subgroups. ICU mortality was significantly lower in NIV patients than in the IMV (28.6% vs 46.3%; \(p = 0.0078 \)) and NIV failure (28.6% vs 57.6%; \(p = 0.0012 \)) subgroups. Of the NIV patients who died, 68% had a limitation of life-sustaining measures. The incidence of NIV failure was 48%. ICU and hospital mortality of patients with NIV failure were significantly higher than those of patients managed exclusively with NIV (respectively, 57.6% vs 28.6%, \(p = 0.012 \); and 62.7 vs 39.7%, \(p = 0.011 \)), whereas they did not differ from those of IMV patients. Survival curves for hospital (or 90-day) mortality of immunocompromised patients stratified by ARDS severity and by ventilation subgroups are shown in Additional files 7 and 8, respectively. In a multivariable logistic regression model, factors independently associated with hospital mortality in immunocompromised patients were higher non-pulmonary SOFA score (OR, 1.079; 95% CI, 1.026–1.134; \(p = 0.0032 \)), higher peak inspiratory pressure level (OR, 1.028; 95% CI, 1.007–1.051; \(p = 0.0097 \)), lower PaO\(_2\)/FiO\(_2\) ratio (OR, 0.995; 95% CI, 0.992–0.998; \(p = 0.0022 \)), lower degree of improvement in PaO\(_2\)/FiO\(_2\) ratio between day 1 and day 2 of ARDS (OR, 0.996; 95% CI, 0.993–0.999; \(p = 0.0058 \)), and lower BMI (OR, 0.944; 95% CI, 0.91–0.98; \(p = 0.0023 \)) (Additional file 9). According to the investigators’ clinical judgment, in immunocompromised patients, the most common main factor leading to death in ICU was respiratory failure (51.5%), followed by cardiovascular failure. In contrast, cardiovascular failure was the most common factor in the control group (Additional file 10).

Additional file 11 describes patient characteristics and clinical endpoints in immunocompetent (control) patients according to type of ventilator support. Because the lack of a precise definition of the cause of immunosuppression in a relevant proportion of patients may affect the strength of our findings, we compared baseline patient characteristics and clinical outcomes in patients with a “known” cause of immunosuppression (i.e., those with active hematologic malignancy or active neoplasm) and in patients with an unspecified (“unknown”) cause of immunosuppression (i.e., those indicated in the CRF with the generic term immunosuppression). The results of this analysis are reported in Additional file 12. Briefly, patients with an unspecified cause of immunosuppression were significantly younger (55.7 ± 15.6 vs 63.1 ± 14.8 years; \(p < 0.0001 \)) and had lower hospital mortality (41.6% vs 59.3%; \(p < 0.0001 \)) and fewer limitations of life-sustaining measures (27.3% vs 37.3%; \(p = 0.013 \)).

Fig. 2 Kaplan-Meier curve for hospital survival. Mortality was defined as mortality at hospital discharge or at 90 days after onset of acute hypoxemic respiratory failure, whichever event occurred first. We assumed that patients discharged alive from the hospital before 90 days were alive on day 90.

Note: The number of patients at risk reported at the bottom of the figure is referred to as the end of the corresponding day.
According to Berlin definition criteria [25], whereas immunocompromised patients with a diagnosis of ARDS, immunosuppression is frequent in ARDS patients and is mainly related to infection; immunocompromised patients are more likely to receive NIV as first-line ventilatory treatment; and the outcome of ARDS is worse and limitation of life-sustaining measures is more frequent in immunocompromised patients. Among the 2813 ARDS patients included in the LUNG SAFE study, one-fifth were immunocompromised, and 62.7% of them had an active malignancy. In line with recent literature [18, 21], a diagnosis of active malignancy is considered as a cause of immunosuppression, owing to the negative effects on immune function of anticancer treatments and of the malignancy itself. All other causes of immune deficiency were identified by the generic variable “immunosuppression.”

To the best of our knowledge, this was the first prospective, multicenter study conducted on a large cohort of immunocompromised patients with a diagnosis of ARDS according to Berlin definition criteria [25], whereas previous studies relied on the definition of the American-European Consensus Conference on ARDS [26]. As expected, ARDS in immunocompromised patients was associated mainly with an infectious cause. Pneumonia, noncardiogenic shock, and pulmonary vasculitis were significantly more frequent in immunocompromised patients, whereas other risk factors for ARDS were more frequently represented in the control group.

Immunocompromised subjects had a significantly higher ICU and hospital mortality, despite similar ARDS severity and nonpulmonary SOFA score. Another subanalysis of the same database confirmed that active neoplasm, hematologic malignancies, and immunosuppression are independently associated with increased mortality [27]. In addition, the higher frequency of limitation of life-sustaining measures (probably as a result of perceived futility) may have contributed to the increased mortality of immunocompromised patients [27]. This is in line with the results of Laffey et al., who found that immunosuppression and cancer were among the factors associated with increased likelihood of limitation of life-sustaining therapies [27].

Hospital mortality of our patients was lower than that (64%) reported by Azoulay et al. in a large retrospective analysis of 1004 patients with cancer and ARDS admitted to the ICU over a period of 21 years [28]. In that study, mortality did drop from 89% in the 1990–1995 period to 52% in the 2006–2011 period, matching the mortality rate of our population.
The actual advantage of ICU admission of immunocompromised patients remains debated [3, 4, 10, 29, 30]. Our results demonstrate that almost 50% of immunocompromised patients with ARDS survive to hospital discharge, and this may support the decision to offer them at least an “ICU trial” [31]. Interestingly, our data show that once immunocompromised patients are intubated and invasively ventilated, they are managed very similarly to the general ARDS population with regard to ventilator settings and use of adjunctive therapies. As an example, the use of advanced “rescue” treatments (such as prone positioning and even extracorporeal membrane oxygenation) was similar between immunocompromised and control patients.

Two important questions on the optimal ventilatory management of AHRF in immunocompromised patients remain unanswered. First, is NIV the optimal first-line ventilatory support? Two randomized controlled trials conducted almost 20 years ago showed that NIV, compared with standard oxygen therapy, significantly reduces the rate of intubation and mortality [16, 17], but these findings have not been confirmed in more recent studies. A recent randomized trial on 374 immunocompromised patients with AHRF did not find any benefit of NIV over standard oxygen therapy [18]. Similarly, a post hoc analysis on immunocompromised patients enrolled in a large randomized trial comparing different noninvasive oxygenation strategies showed that first-line NIV was associated with the highest risk of intubation and mortality compared with standard oxygen and high-flow nasal cannula (HFNC) oxygen [21]. In our study, 20.9% of immunocompromised patients received NIV as first-line ventilatory approach compared with 15.9% of controls, and the multivariable analysis revealed that immunodeficiency was independently associated with the use of NIV. This frequency of use of NIV equals exactly that reported by Gristina in a large population of patients with hematologic malignancies admitted to ICU in the years 2002–2006 [26]. In Azoulay’s study, the global rate of NIV application was 38.6%, but it decreased over the years, dropping to 26% in the period 2006–2011 [28]. In our study, patients treated exclusively with NIV had significantly lower mortality than patients requiring invasive ventilation. Of note, the majority of NIV patients who died had a decision of limitation of life-sustaining measures. Importantly, whereas ARDS severity was not different among ventilation subgroups, NIV patients had a markedly lower nonpulmonary SOFA score (Additional file 2: Table S1), indicating that patients with more severe organ failures were more frequently treated with invasive ventilatory support. However, the multivariable regression analysis did not identify the need for invasive ventilation as an independent predictor of death. This represents a major difference with Azoulay’s study, where IMV (especially after failure of NIV) was a strong predictor of poor outcome [28]. Again, this can be explained at least in part by considering that Azoulay’s study included patients from the year 1990, when the techniques of mechanical ventilation were completely different and protective ventilation was certainly not the standard of care.

The impact of NIV failure on patients’ outcomes is the second important issue. We observed a significantly higher incidence of NIV failure in immunocompromised patients than in controls, in keeping with the observation of Thille that a diagnosis of active cancer is independently associated with NIV failure [32]. In our study, in 48% of immunocompromised patients initially treated with NIV, NIV failed, and they had a significantly worse mortality than patients successfully managed with NIV, as previously reported by Bellani et al. [23]. Less expected was the finding that mortality of NIV failure patients was not different from that of the patients managed ab initio with IMV. However, two factors may limit the relevance of this observation: the relatively low number of patients in the NIV failure subgroup and the lack of information on the actual duration (i.e., in hours rather than days) of the NIV period before intubation, which would be important to know in the light of literature data showing that delaying endotracheal intubation after a prolonged NIV trial may negatively impact patient survival [19, 20]. In line with our data, Demoule et al. recently observed a progressive reduction of the impact of NIV failure on mortality in a large population of AHRF patients also including immunocompromised subjects [33]. Taken together, these data probably suggest that better patient selection, earlier recognition of failure, and improvement in ventilation techniques may have contributed to limit the impact of NIV failure on mortality in recent years.

Limitations

The present study has several limitations. First, it is a post hoc analysis of a prospective multicenter observational trial, and unknown confounders associated with the subgroup analysis may bias the results. Although the data were prospectively collected from a high number of centers from 50 countries, different approaches to clinical decisions from different centers (e.g., decisions on withholding or withdrawing of life-sustaining measures) may have influenced the outcomes. Second, the criteria used to define the immunocompromised cohort were quite heterogeneous. It was impossible to stratify the patients according to the prognosis of baseline disease and to the severity of immune deficiency. Indeed, causes of immunosuppression, other than malignancies, were not specified in nearly 40% of the whole cohort of immunocompromised patients. Moreover, in patients with cancer, no information was available on the type of cancer,
its staging, and the nature and timing of antineoplastic treatments. This lack of information, related to the LUNG SAFE original CRF, should be considered a major limitation because the outcome of immunocompromised patients is strictly dependent on the type of underlying diseases and associated therapeutic approach. All these factors may limit the generalizability of our findings. Third, to limit the burden on investigators, data were collected once daily only, and information on the actual hours of duration of ventilatory treatments was not available. This is particularly relevant for patients treated with NIV because the precise duration of NIV before the eventual intubation might be important to understand the impact of NIV failure on outcome [24]. Fourth, no information were provided on the type of interface used for NIV, a factor that can affect the outcome of NIV [34]. Moreover, patients treated with HFNC oxygen therapy were excluded from the LUNG SAFE study because they did not fulfill criteria for ARDS. Fifth, the LUNG SAFE study was conducted in a very large number of ICUs with different experience in the treatment of ARDS. This may be particularly relevant for immunocompromised patients, who may have better outcomes if treated in highly experienced, dedicated units [35].

Conclusions

Immunocompromised patients represent an important proportion of ARDS patients in the ICU. Compared with immunocompetent subjects, they had higher mortality, regardless of ARDS severity, and a higher frequency of limitation of life-sustaining measures. Nonetheless, nearly half of these patients survive to hospital discharge. They were more likely to receive NIV as the first ventilator strategy, and those who did not require invasive ventilation had a lower mortality. Mortality of immunocompromised patients who failed NIV was not different from that of patients treated *ab initio* with IMV. These data should be considered in light of the nonspecific criteria used to define the immunocompromised population and the potentially heterogeneous approaches to clinical decision making in the participating centers.

Additional files

- **Additional file 1**: List of LUNG SAFE investigators. Names and affiliations of the LUNG SAFE investigators. (PDF 172 kb)

- **Additional file 2**: Table S1. Patient characteristics of immunocompromised patients according to the type of ventilator support. This table shows patient characteristics, including comorbidities, ARDS risk factors, and illness severity at ARDS onset of immunocompromised patients according to the type of ventilator support. (PDF 74 kb)

- **Additional file 3**: Table S2. Factors associated with the use of noninvasive ventilation. Multivariate logistic regression model describing the factors associated with the use of noninvasive ventilation. (PDF 49 kb)

Acknowledgements

LUNG SAFE investigators and ESICM Trial Group email address: lung-safe@esicm.org

Study coordination: Guy M. François (European Society of Intensive Care Medicine, Brussels, Belgium).

Data revision and management: Francesca Rabboni (University of Milan-Bicocca, Monza, Italy), Fabiana Madotto (University of Milan-Bicocca, Monza, Italy), Sara Conti (University of Milan-Bicocca, Monza, Italy).

National coordinators:

Argentina: Fernando Rios
Australia/New Zealand: Frank Van Haren
Belgium: T. Sottaiaux, P. Depuydt

Bolivia: Freddy S. Lora

Brazil: Luciano Cesar Azevedo

Canada: Eddy Fan

Chile: Guillermo Bugedo

China: Haibo Qiu

Colombia: Marcos Gonzalez

Costa Rica: Juan Silesky

Czech Republic: Vladimir Cerny

Denmark: Jonas Nielsen

Ecuador: Manuel Jibaja

France: Titi Pham

Germany: Hermann Wrigge

Greece: Dimitrios Matamis

Guatemala: Jorge Luis Ranero

India: Pravin Amin

Iran: S. M. Hashemian

Ireland: Kevin Clarkson

Italy: Giacomo Bellani

Japan: Kyoyasu Kurahashi

Mexico: Ascielo Villagomez

Morocco: Amine Ali Zeggagh

The Netherlands: Leo M. Heuriks

Norway: Jon Henrik Laake

The Philippines: Jose Emmanuel Polo

Portugal: Antero do Vale Fernandes

Romania: Dorel Sandesc

Saudi Arabia: Yaassen Arabi

Serbia: Vesna Bumbasesrivic

Spain: Nicolas Nin, Jose A. Lorente

Sweden: Anders Larsson

Switzerland: Lise Pigouillioud

Tunisia: Fekri Abroug

United Kingdom: Daniel F. McAuley, Lia McNamee

Uruguay: Javier Hurtado

United States: Ed Bajwa

Venezuela: Gabriel Dempoir

Site investigators by country:

Albania: University Medical Center of Tirana “Mother Theresa” (Tirana): Hektor Sula, Lordan Nuci; University Hospital Shefqet Nidriqi (Tirana): Alma Cani

Argentina: Clínica De Especialidades (Villa Maria): Alan Zazu; Hospital Dr. Julio C. Perrando (Resistencia): Christian Delleria, Carolina S. Insaurraile; Sanatorio Las Lomas (San Isidro, Buenos Aires): Risco V. Alejandro; Sanatorio De La Trinidad (San Isidro): Julio Dalder, Mauricio Vunzo; Hospital Español De Méndez (Godoy Cruz-Mendoza): Ruben O. Fernandez; Hospital Del Centenario (Rosario): Luis P. Cardonnet, Lisandro R. Bettini; San Antonio Gualeguay (Entre Rios): Mariano Carboni Brso, Emilio M. Osman; Cemic (Buenos Aires): Mariano G. Setten, Pablo Lovazzano; Hospital Universitario Austral (Pilar): Javier Alvarez, Veronica Villar; Hospital Por + Salud (Pami)

Canadá: Medical-Surgical ICU of St. Michael’s Hospital (Toronto): John Laffey, Francois Beloncle; St. Joseph’s Health Centre (Toronto): Kyle G. Davies, Rob Cireone; Sunnybrook Health Sciences Center (Toronto): Venika Manoharan, Mehvish Ismail; Toronto Western Hospital (Toronto): Ewan C. Goligher, Mandeep Jassal; Medical Surgical ICU of the Toronto General Hospital (Toronto): Erinn Nishikawa, Areej Javed; Cardiovascular ICU of St. Michael’s Hospital (Toronto): Gerard Curley, Nuttapoll Rittayam; Cardiovascular ICU of the Toronto General Hospital (Toronto): Matteo Parotto, Niall D. Fyffe; Mount Sinai Hospital (Toronto): Sangeeta Mehta, Jenny Knoll; Trauma-Neuro ICU of St. Michael’s Hospital (Toronto): Antoine Pronovost, Sergio Canestri

Chile: Hospital Clínico Pontificia Universidad Católica De Chile (Santiago): Alejandro R. Bruhn, Patricio H. Garcia; Hospital Militar De Santiago (Santiago): Felipe A. Allaga, Pamela A. Farias; Clínica Davila (Santiago): Jacob S. Yumna; Hospital Guillermo Grant Beravente (Concepción): Claudia A. Ortiz, Javier E. Salas; Clínica Las Llas (Santiago): Alejandro A. Saez, Luis D. Vega; Hospital Naval Almirante Nef (Vilalba): Eduardo F. Labarca, Felipe T. Martínez; Hospital Luis Tisné Brousse (Penarol): Nicolás G. Carreño, Pilar Lora

China: The Second Affiliated Hospital of Harbin Medical University (Harbin): Haitao Liu; Nanjing Zhong-Da Hospital, Southeast University (Nanjing): Haibo Qin, Ling Liu; The First Affiliated Hospital of Anhui Medical University (Hefei): Rui/Tang, Xiaoming Luo; Peking University People’s Hospital (Beijing): Youzoung An, Huying Zhao; Fourth Affiliated Hospital of Harbin Medical University (Harbin): Yan Gao, Zhe Zhai; Nanjing Jiangbei People’s Hospital Affiliated to Medical School of Southeast University (Nanjing): Zheng L. Ye, Wei Wang; The First Affiliated Hospital of Dalian Medical University (Dalian): Wenwen Li, Qiongqiong Li; Subei People’s Hospital of Jiangsu Province (Yangzhou): Ruijiang Zheng; Jinling Hospital (Nanjing): Wenkui Yu, Juanhong Wang; University General Hospital (Urumqi): Xin Li; The First Affiliated Hospital of Wannan Medical College, Yiyuan Hospital (Wuhu): Tao Yu, Weihua Lu; Sichuan Provincial People’s Hospital (Chengdu): Yu Q. Wu, Xiao B. Huang; Hainan Province People’s Hospital (Haikou): Zhenyang He; People’s Hospital of Jiangxi Province (Nanchang): Yuanhua Lu; Qiliu Hospital of Shandong University (Jinan): Hui Han, Fan Zhang; Zhengjiang People’s Hospital (Hangzhou): Renhua Sun; The First Affiliated Hospital of Bengbu Medical College (Bengbu, Anhui): Hua X. Wang, Shu H. Qin; Nanjing Municipal Government Hospital (Nanjing): Bao L. Zhu, Jun Zhao; The First Hospital of Lanzhou University (Lanzhou): Jian Liu, Bin Li; The First Affiliated Hospital of Chongqing University of Medical Science (Chongqing): Jing L. Liu, Fa C. Zhou; Xuzhou Central Hospital, Jiangsu Province, China (Xuzhou): Qiong J. Li, Xing Y. Zhang; The First People’s Hospital of Foshan (Foshan): Zhou Li-Xin, Qiang Xin-Hua; The First Affiliated Hospital of Guangxi Medical University (Nanning): Liangyuan Jiang, Renji Hospital, Shanghai Jiao Tong University School of Medicine (Shanghai): Yuan N. Gao, Xian Y. Zhao; First Hospital of Shanxi Medical University (Taiyuan): Yuan Y. Li, Xiao L. Li; Shandong Provincial Hospital (Jinan): Chunting Wang, Qingchun Yao; Fujian Provincial Hospital (Fuzhou): Rongguo Yu, Kai Chen; Henan Provincial People’s Hospital (Zhengzhou): Huijiang Wang, Shuai, Biling Qiu; The Second Affiliated Hospital of Kunming Medical University (Kunming City): Qing Q. Huang, Wei H. Zhu; Xiangya Hospital, Central South University (Changsha): Ai Y. Hang, Ma X. Hua; The First Affiliated Hospital of Guangzhou Medical University (Guangzhou): Yimin Li, Yonghao Xu; People’s Hospital of Hebei Province (Shijiazhuang): Yu D. Di, Long L. Ling; Guangdong General Hospital (Guangzhou): Tie H. Qin, Shou H. Wang; Beijing Tongren Hospital (Beijing): Junping Qin; Jiangsu Province Hospital (Nanjing): Yi Han, Suning Zhou

Belgium: Cliniques universitaires St-Luc, Université Catholique de Louvain (UCL): Xavier Wittebole, Caroline Bergh; CHU Dinant-Godinne (Yvoir): Pierre A. Bulfa, Alain M. Dive; AZ Sint-Augustinus Veurne (Veurne): Rik Verstraete, Herve Lebbinck; Ghent University Hospital (Ghent): Pieter Depuydt, Joris Vermassen; University Hospitals Leuven (Leuven): Phillippe Meeseman, Helga Coolsen

Brazil: Hospital Renascentista (Pouso Alegre): Jonas I. Rosa, Daniel O. Beraldo; Vitoria Apart Hospital (Serra): Claudio Piras, Adenilton M. Rampinelli; Hospital Das Clinicas (São Paulo): Antonio P. Nassar Jr.; Hospital Geral do Grajaú (São Paulo): Sergio Mataloun, Marcelo Mook; Evangelical Hospital (Cachoeiro De Itapemirim/Espírito Santo): Marcus L. Thompson, Claudia H. Gomes; Hospital Moinhos De Vento (Porto Alegre): Ana Carolina R. Antonio, Alinne Ascoli; Hospital Alvorada Taguatinga (Taguatinga): Rodrigo S. Biondi, Danielle C. Fontenele; Complexo Hospitalar Mnaebeira Tarcisio Burdis (Bauru): Danielle Nobrega, Vanessa M. Sales

Bruno Darwassalam: Raja Isteri Pengiran Anak Saleha (Ripas) Hospital (Bandar Seri Begawan): Dr. Suashish Shindhe, Dr. Dayangku Haji Maizatul Ainim binti Pengiran Haji Ismail

Canada: University of Toronto (Toronto): Samuel L. Goldfarb, Brent A. Hedges

Czech Republic: Hospital Pernstejn (Pernstejn): Roman Fragner
Mohammed V University, University Teaching Ibn Sina Hospital
City): Juan A. Buensuseso, Manuel Poblano
Jorge R. Sanchez- Medina, Alvaro Ramirez-Gutierrez; Centro Médico ABC (Mexico
Claudia R. Estrella; Hospital Regional De Ciudad Madero Pemex (Ciudad Madero):
De Guadalajara Hospital Juan I. Menchaca (Guadalajara): Daniel R. Gonzalez,
Dr. Manuel Gea Gonzalez (Mexico City): Jordana S. Lemus, Jonathan M. Fierro;
(Mexico City): Maria C. Marin, Asisclo J. Villagomez; Hospital General Sanchez-Hurtado, Saira S. Gomez-Flores; Hospital Regional 1° De Octubre
Fraga Mouret
Filipa M. Barros; Hospital Prof. Doutor Fernando Fonseca Epe (Amadora):
Silvia Castro, Joana M. Estilita; HPP Hospital De Cascais (Alcabideche):
Ana M. Araujo, Nuno T. Catorze; Instituto Português de
Beatriz Ângelo (Loures): Carlos S. Pereira, António M. Messias; Hospital de Santa
Hospital Santa Maria, Centro Hospitalar Lisboa Norte (Lisboa): António M.
Centro Hospitalar da Cova da Beira (Covilhã): Cristina M. Coxo; Hospital Santa Maria, Centro Hospitalar Lisboa Norte (Lisboa): António M. Alvarez,
Bruno S. Oliveira; Centro Hospitalar Trás-os-Montes e Alto Douro - Hospital de
Pedro - Vila Real (Vila Real): Gustavo M. Montanha, Nelson C. Barros; Hospital Beatriz Ângelo (Loures): Carlos S. Pereira, António M. Messias; Hospital de Santa Maria (Lisboa); Jorge M. Monteiro; Centro Hospitalar Médio Tejo - Hospital De Abrantes (Abrantes): Ana M. Araújo, Nuno T. Catarino; Instituto Português de
Oncologia de Lisboa (Lisboa): Susan M. Marum, Maria J. Bouy; Hospital Garcia De Orta (Almadia): Rui M. Gomes, Vania A. Brito; Centro Hospitalar do Algave (Faro):
Silvia Castro, Joana M. Estilita; HPP Hospital De Cascais (Alcabideche):
Filipa M. Barros; Hospital Prof. Doutor Fernando Fonseca Epe (Amadora):
Isabel M. Serra, Aureliia.

Romania: Fundeni Clinical Institute (Bucharest): Dana R. Tomsescu, Alexandra
Marcu; Emergency Clinical County Hospital Timisoara (Timisoara): Ovidiu H. Bedeascu, Marius Papurica; Elias University Emergency Hospital (Bucharest):
Dan E. Corneș, Silviu Ioan Negoița
Russian Federation: University Hospital (Kemerovo); Evgeny Grigoriev;
Krasnoyarsk Regional Hospital, Krasnoyarsk State Medical University
(Krasnoyarsk); Alexey I. Gritsan, Andrey A. Gazenkamp
Saudi Arabia: GICU of PSMMC (Riyadh): Ghaith Almekhlafi, Mohamad M. Albarak; SICU of PSMMC (Riyadh): Ghanem M. Mustafa; King Faisal Hospital and Research Center (Riyadh); Khalid A. Maghrabi, Nawal Salahuddin; King Fahad Hospital (Bahia): Thawat M. Alsa; King Abdulaziz Medical City (Riyadh):
Ahmed S. Al Jabbary, Edgardo Tabban; King Abdulaziz Medical City (Riyadh):
Yaseen M. Arabi; King Abdulaziz Medical City (Riyadh): Yaseen M. Arabi, Olivia A. Trinidad; King Abdulaziz Medical City (Riyadh): Hasan M. Al Dorzi, Edgardo E. Tabban
South Africa: Charlotte Maxeke Johannesburg Academic Hospital (Johannesburg): Stefan Bolon, Oliver Smith
Spain: Hospital Sant Pau (Barcelona): Jordi Mancebo, Hernan Aguirre-Bermoeo;
Hospital Universitari Bellvitge I (Hospital de Llobregat (Barcelona)): Juan C.
lopez-Delgado, Francisco Esteve; Hospital Son Llach (Palma de Mallorca):
Gemma Rialp, Catalina Forteza; Sabadell Hospital, CIBER Enfermedades Respiratorias (Sabadell); Cardenal de Haro, Antonio Artigas; Hospital Universitario Central de Asturias (Oviedo): Guillermo M. Albiccia, Sara de Cima- Iglesias; Complejo Hospitalario Universitario de A Coruña (A Coruña):
Lucas Seoane-Quiróga, Alexina Cencerros-Barros; Hospital Universitario Miguel Servet (Zaragoza): Almudena L. Ruiz- Aguilar, Luis M. Claro-Vega;
Moraes Meseguer University Hospital (Murcia): Juan Alfonso Soler, Maria del Carmen Lorente; Hospital Universitario del Henares (Coslada): Cecilia Hermosa,
Federico Gordo; Complejo Asistencial de Palencia. Hospitalario Severo Ochoa, Leganes (Madrid): Miguel Angel Blasco Navapetro, Ricardo Diaz Albad; University Hospital of Nuestra Señora de
Candelaria (Santa Cruz de Tenerife); Raquel Montiel Gonzalez, Dácil Parilla Toribio;
Hospital Universitario Marques de Valdecilla (Santander): Alejandro G. Castro,
Maria Jose D. Artiga; Hospital Infantia Cristina (Parla, Madrid); Oscar Penuelas;
Hospital General de Catalunya (Sant Cugat Del Valles): Tomas P. Rozer, Moreno F.
Olga; San Pedro de Alcântara (Cáceres): Elena Gallego Curto, Rocío Manzano
Sant; Joan de Reus (Reus): Vallverdu P. Imma; Garcia M. Elies; Hospital Joan XXII (Tarragona): Laura Claverias, Monica Magret; Hospital Universitario de Getafe (Madrid): Ana M. Pellicer, Lucia L. Rodriguez; Hospital Universitario Rio Horta (Valladolid). Jesús Sánchez-Ballesteros, Ángela González-Salamanca; Hospital Arquitecto Maricelde (Gerona, A Coruña); Antonio G. Jimenez, Francisco P. Cortegiani;
Hospital Universitario San Juan de Reus (Reus): Vallverdu P. Imma, Garcia M. Elisabet; Hospital General de Catalunya (Sant Cugat Del Valles): Tomas P. Rozer, Moreno F.
Olga; San Pedro de Alcântara (Cáceres): Elena Gallego Curto, Rocío Manzano
Sant; Joan de Reus (Reus): Vallverdu P. Imma; Garcia M. Elies; Hospital Joan XXII (Tarragona): Laura Claverias, Monica Magret; Hospital Universitario de Getafe (Madrid): Ana M. Pellicer, Lucia L. Rodriguez; Hospital Universitario Rio Horta (Valladolid). Jesús Sánchez-Ballesteros, Ángela González-Salamanca; Hospital Arquitecto Maricelde (Gerona, A Coruña); Antonio G. Jimenez, Francisco P. Cortegiani;
Hospital Universitario San Juan de Reus (Reus): Vallverdu P. Imma, Garcia M. Elisabet; Hospital General de Catalunya (Sant Cugat Del Valles): Tomas P. Rozer, Moreno F.
Olga; San Pedro de Alcântara (Cáceres): Elena Gallego Curto, Rocío Manzano
Sant; Joan de Reus (Reus): Vallverdu P. Imma; Garcia M. Elies; Hospital Joan XXII (Tarragona): Laura Claverias, Monica Magret; Hospital Universitario de Getafe (Madrid): Ana M. Pellicer, Lucia L. Rodriguez; Hospital Universitario Rio Horta (Valladolid). Jesús Sánchez-Ballesteros, Ángela González-Salamanca; Hospital Arquitecto Maricelde (Gerona, A Coruña); Antonio G. Jimenez, Francisco P. Cortegiani;
Hospital Universitario San Juan de Reus (Reus): Vallverdu P. Imma, Garcia M. Elisabet; Hospital General de Catalunya (Sant Cugat Del Valles): Tomas P. Rozer, Moreno F.
Olga; San Pedro de Alcântara (Cáceres): Elena Gallego Curto, Rocío Manzano
Sant; Joan de Reus (Reus): Vallverdu P. Imma; Garcia M. Elies; Hospital Joan XXII (Tarragona): Laura Claverias, Monica Magret; Hospital Universitario de Getafe (Madrid): Ana M. Pellicer, Lucia L. Rodriguez; Hospital Universitario Rio Horta (Valladolid). Jesús Sánchez-Ballesteros, Ángela González-Salamanca; Hospital Arquitecto Maricelde (Gerona, A Coruña); Antonio G. Jimenez, Francisco P. Cortegiani;
Hospital Universitario San Juan de Reus (Reus): Vallverdu P. Imma, Garcia M. Elisabet; Hospital General de Catalunya (Sant Cugat Del Valles): Tomas P. Rozer, Moreno F.
Olga; San Pedro de Alcântara (Cáceres): Elena Gallego Curto, Rocío Manzano
Sant; Joan de Reus (Reus): Vallverdu P. Imma; Garcia M. Elies; Hospital Joan XXII (Tarragona): Laura Claverias, Monica Magret; Hospital Universitario de Getafe (Madrid): Ana M. Pellicer, Lucia L. Rodriguez; Hospital Universitario Rio Horta (Valladolid). Jesús Sánchez-Ballesteros, Ángela González-Salamanca; Hospital Arquitecto Maricelde (Gerona, A Coruña); Antonio G. Jimenez, Francisco P. Cortegiani;
Nunes; Sanatorio Americano (Montevideo): Gustavo Pittini, Ruben Rodriguez; Hospital de Clinicas (Montevideo): Maria C Imperio, Cristina Santos; Circulo Catolico Obreros Uruguay - Sanatorio Juan Pablo II (Montevideo): Ana G. Franco, Alejandro Ebed; CASMU (Montevideo): Alberto Deicas, Carolina Serra United States: St. Louis University Hospital (St. Louis, MO): Adriya Uppalapat, Qhasman Kamel; Bethesda Israel Dankenes Medical Center (Boston, MA); Valerie M. Banner-Goodspeed, Jeremy R. Beiter; Memorial Medical Center (Springfield, IL): Satyanarayana Reddy Mukkera, Shreedhar Kulkarni; Massachusetts General Hospital (Boston, MA): Jarone Lee, Tomaz Mesar; University of Cincinnati Medical Center (Cincinnati, OH): John O Shinn III, Dina - Gomaa; Massachusetts General Hospital (Boston, MA): Christopher Tainter, Jarone Lee; Massachusetts General Hospital (Boston, MA): Tomaz Mesar, Jarone Lee; R. Adams Cowley Shock Trauma Center, University of Maryland Medical Center (Baltimore, MD): Dale J. Yeatts, Jessica Warren; Intermountain Medical Center (Murray, UT): Michael J. Lanspa, Russel R. Miller, Collin K. Grissom, Samuel M. Brown; Mayo Clinic (Rochester, MN): Philippe R. Bauer; North Shore Medical Center (Salem, MA): Ryan J. Gosselin, Barrett T. Kitch; Albany Medical Center (Albany, NY): Jason E. Cohen, Scott H. Beegle; John H. Stoger Hospital of Cook County (Chicago, IL): Renaud M. Gueret, Ainam Tulaimat; Albany Medical Center (Albany, NY); Shaiza Choudry; University of Alabama at Birmingham (UAB) (Birmingham, AL): William Stigler, Hiteesh Batra; Duke University Hospital (Durham, NC); Nidhi G. Huff; Iowa Methodist Medical Center (Des Moines, IA): Keith D. Lamb, Trevor W. Oetting; Surgical & Neurosciences Intensive Care Unit of the University of Iowa Hospitals and Clinics (Iowa City, IA): Nicholas M. Mohr, Claire Jady; Medical Center of Louisiana at New Orleans (New Orleans, LA); Shigeiki Saito, Fayez M. Khei; Tulane University (New Orleans, LA): Fayez Khei; Critical Care Unit of the University of Iowa Hospitals and Clinics (Iowa City, IA): Adam B. Schlichting, Angela Delsing; University of California, San Diego Medical Center (San Diego, CA); Daniel R. Crouch, Mary Elmasri; UC San Diego Thornton Hospital (San Diego, CA); Daniel R. Crouch, Dina Ismail; University of Cincinnati Medical Center (Cincinnati, OH): Kyle R. Dreyer, Thomas C. Blakeman; University Hospital (Cincinnati, OH): Kyle R. Dreyer, Dina Gomaa; Tower 3B Medical ICU of Brigham and Women's Hospital (Boston, MA): Rebecca M. Baron, Carolina Quintana Grijalba; Tower 8C Burn/Trauma ICU of Brigham and Women's Hospital (Boston, MA): Peter C. Hou; Tower 8D Surgical ICU of Brigham and Women's Hospital (Boston, MA): Raghur Seethala, Tower 9C Neurosurgical ICU of Brigham and Women's Hospital (Boston, MA): Imo Aisiku; Tower 9D Neurological ICU of Brigham and Women's Hospital (Boston, MA): Galen Henderson; Tower 11C Thoracic ICU of Brigham and Women's Hospital (Boston, MA): Gyorgy Frendl; Carl J. and Ruth Shapiro Cardiovascular Center, Brigham and Women's Hospital (Boston, MA): Sen-Kuang Hou, Robert L. Owens, Ashley Schomer; Serbia: Clinical Center of Serbia (Belgrade): Vesna Bumbasirevic, Bojan Jovanovic; Military Medical Academy (Belgrade): Maja Subatovic, Milic Veljovic

Funding
The authors received no funding for this study. However, the LUNG SAFE study was funded and supported by the European Society of Intensive Care Medicine (ESICM; Brussels, Belgium), St. Michael's Hospital (Toronto, ON, Canada), and the University of Milano-Bicocca (Monza, Italy).

Availability of data and materials
All data supporting this article are available in the text and additional files.

Authors' contributions
GC and AC are the guarantors of this article. GC, GB, JGL, TP, PH, AG, MA, AP, and GG analyzed and interpreted data. AC, FM, and GG drafted the manuscript. All authors critically revised the manuscript for important intellectual content. All authors read and provided final approval of the version.

Ethics approval and consent to participate
Not applicable.

Competing interests
AC, FM, JGL, TP, and PVH declare that they have no competing interests. GC received fees for consultancies or lectures from Orion Pharma, ResMed, Medtronic, Philips, Air Liquide, and EOSE (all unrelated to the present work). GB received fees for lectures from Draeger Medical, GE Healthcare, and Pfizer; research grants from Draeger Medical; and is president and a
shareholder of Reviewer Credits S.R.L. (all unrelated to the present work). AG received fees for consultations or lectures from Orion, Pfizer, and MSD (all unrelated to the present work). MA received research grants from Toray, GE Healthcare, and Orion and participated on the boards and received personal fees from Maquet, Pfizer, and MSD (all unrelated to the present work). AP received fees from Maquet, Novalung, Xenios, Baxter, and Boehringer Ingelheim (all unrelated to the present work). GG received fees for lectures from Thermo Fisher Scientific and Pfizer and travel accommodation support from Maquet and Biostat (all unrelated to the present work).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1 Department of Biopathology and Medical Biotechnologies (DIBIMED), Section of Anesthesia, Analgesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, University of Palermo, Via del vespro 129, 90127 Palermo, Italy. 2 Research Center on Public Health, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy. 3 School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy. 4 Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy. 5 Anesthesia, School of Medicine, National University of Ireland, Galway, Ireland. 6 Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada. 7 Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Canada. 8 College of Medicine, Biology and Environment, Australian National University, Canberra, Australia. 9 Intensive Care Unit, Canterbury Hospital, Canberra, Australia. 10 Department of Anesthesiology and Intensive Care, Università Cattolica del Sacro Cuore – Fondazione Policlinico Universitario A. Gemelli, Rome, Italy. 11 Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy. 12 Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.

Received: 26 February 2018 Accepted: 22 May 2018

Published online: 12 June 2018

References

