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Abstract
This review aims to emphasize the potential of in vivo imaging to optimize current and upcoming
anti-cancer immunotherapies: spanning from preclinical to clinical applications. Immunother-
apies are an emerging class of treatments for a variety of diseases. The agents include
molecular and cellular therapeutics, which aim to treat the disease through re-education of the
host immune system, often via complex mechanisms of action. In vivo imaging has the potential
to contribute in several different ways: (1) as a drug development tool to improve our
understanding of their complex mechanisms of action, (2) as a tool to predict efficacy, for
example, to stratify patients into probable responders and likely non-responders, and (3) as a
non-invasive treatment response biomarker to guide efficient immunotherapy use and to
recognize early signs of potential loss of efficacy or resistance in patients. Areas where in vivo
imaging is already successfully implemented in onco-immunology research will be discussed
and domains where its use offers great potential will be highlighted. The focus of this article is on
anti-cancer immunotherapy as it currently is the most advanced immunotherapy area. However,
the described concepts can also be paralleled in other immune-mediated disorders and for
conditions requiring immunotherapeutic intervention. Importantly, we introduce a new study
group within the European Society of Molecular Imaging with the goal to facilitate and enhance
immunotherapy development through the use of in vivo imaging.
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Imaging as a Central Biomarker in
Oncological Practice
Whole-body cross-sectional imaging played a seminal role
in the era of chemotherapy and it remains the predominant
technique for diagnosis and response monitoring [1].
Despite ongoing discussions about the accuracy of thresh-
old values for quantitative imaging parameters (e.g., largest
tumor diameter, standard uptake values) in some patient
subgroups [1–4] and the mediocre capacity to guide
successful translation to clinical practice [5, 6], cross-
sectional imaging and associated imaging biomarkers are
fundamental to drug development in oncology. Key to the
success of whole-body imaging was, first of all, its
sensitivity to detect tumor lesions and assess disease stage,
before clinical signs and symptoms become evident.
Secondly, the fairly good correlation between disease
burden as measured by anatomical imaging (biomarker)
and the mechanism of action of chemo- and radiotherapy
(decrease in tumor volume). Lastly, potential for standard-
ization and its relative ease-of-use pushed anatomical
imaging to become a core tool rendering various imaging
biomarkers accessible [7, 8].

However, since the advent of immunotherapies, with their
different and more complex mechanisms of action and thus
different response dynamics, it became clear that the existing
volume-based anatomical imaging biomarkers (cf. Response
Evaluation Criteria in Solid Tumors (RECIST) criteria [1])
failed to adequately predict response. Consequently, adapta-
tions to the original response criteria were explored.
Immune-related RECIST (iRECIST) have been suggested
as new response criteria tailored to immunotherapies [9, 10].
At this point in time, we can conclude that immunotherapies
have changed the paradigm of anti-cancer treatment, but
their mechanisms of action are much more diverse and
complex than those of targeted therapies (epidermal growth
factor receptor (EGFR) targeting mAbs, growth signal
transduction protein kinase (e.g., B-Raf) inhibitors etc.) or
conventional therapies. Novel and accurate biomarkers
continue to be essential to guide immunotherapy develop-
ments to secure early and optimal benefit for cancer patients.
Whole-body in vivo imaging has great potential to signifi-
cantly contribute in this context [7, 11–13], perhaps
providing answers to some of the outstanding questions in
the field of onco-immunology:

(1) What immune cell types are involved and what cell types
are critical for response?

(2) How to assess the relation between target presence,
density, affinity, and response?

(3) What is the relevance of co-expressed features in the
tumor microenvironment?

(4) How to track in vivo distribution, fate, persistence, and
function of cell therapies?

(5) How to increase efficiency by rational design of
combination therapies?

(6) What are (early) spatial and temporal dynamics of
response?

(7) How different are responses between individual patients?

In vivo imaging has some unique features as compared to
other biomarkers based on tissue/blood samples. In general,
these advantages include (i) being non-invasive thereby
overcoming issues associated with the tissue/blood sampling
process, (ii) yielding whole-body information thereby
overcoming under-sampling issues, (iii) providing kinetic
information by dynamic imaging, and (iv) enabling stan-
dardization, which is particularly important for diagnosis and
treatment monitoring across different hospitals/facilities. The
in vivo imaging community currently faces the challenge to
respond to the rapid developments in immunotherapy and
how to optimally contribute with our tools and techniques.

Current Issues in Anti-cancer
Immunotherapy
When immunotherapy was adopted into oncological
practice, it was met with great enthusiasm for two reasons:
the durability of its responses and its efficacy in tumor
types that were considered difficult to treat. Indeed, large
randomized controlled trials on immune checkpoint inhib-
itors targeting cytotoxic T-lymphocyte-associated protein 4
(CTLA-4) or programmed cell death protein-1 (PD-1) and
its ligand (PD-L1) pathways consistently demonstrated
clinical efficacy in, e.g., metastatic melanoma [14–16],
non-small cell lung cancer [17–21], with typical response
rates of 20–40 % that appeared to be durable [22].
Combined treatment with CTLA-4 and PD-1 mAbs
increased the response rates in patients with advanced
melanoma to 9 50 % in line with enhanced severe adverse
side effects [23]. However, there is also the sobering
realization that besides combined therapies (CTLA-4 and
PD-1 mAbs) in patients with metastatic melanoma, the
majority of patients with other malignancies do not
respond, experience serious side effects [24], or have
tumors that are less amendable to treatment with immuno-
therapy. Tumor-infiltrating lymphocytes, low PD1/PD-L1
expression, and the presence of neo-antigens are likely
associated with higher rates of response, but only provide a
glimpse of the complex system that precludes response to
immunotherapy [25].

Cellular anti-cancer immunotherapies have been pro-
posed some time ago, involving redirecting immune cells
to act on cells expressing tumor-associated antigens. But
their development has been complex due to a variety of
reasons (e.g., live cell products, autologous versus alloge-
neic concepts, genetic engineering). Chimeric antigen
receptor-based T cell therapies (CAR-T) are a personalized
treatment that involves genetic engineering of patient-
derived T cells to enable them to target the patient’s tumor
cells. CAR-T generated great excitement [26] appearing to
bring lasting control of cancers and even cancer cure
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within reach. Unprecedented clinical impact has been
achieved employing CD19-targeted CAR-T in patients
with refractory B cell malignancies with complete remis-
sions in heavily pretreated patients [27–29]. Two products,
tisagenlecleucel and axicabtagene ciloleucel, have recently
gained FDA approval and both are CD19-targeted CAR-T
products for the treatment of hematological cancers [30–
32]. However, CAR-T also faces challenges. Most notably,
results in solid tumors have so far been very disappointing,
in part due to CAR-T not reaching their targets but also
due to solid tumor microenvironments being severely
immune suppressive. Moreover, many patients do not
respond and exhibit resistance. Furthermore, patients may
experience severe side effects including cytokine release
syndrome (CRS), on-target off-tumor toxicity, and neuro-
toxicity [33, 34]. In vivo tracking of cell therapies by
whole-body imaging has the potential to significantly aid
the development of such cellular therapies. Due to the need
for genetic engineering on the grounds of CAR introduc-
tion, there is now also the opportunity to co-encode
additional payloads. That opened for the first time a
convenient avenue for the introduction of non-
immunogenic reporter genes into CAR constructs. These
can be exploited for sensitive and repeated radionuclide
imaging using short-lived radio isotopes, thereby rendering
CAR-T in vivo tracking realistic.

Although molecular and cellular immunotherapies have
transformed cancer treatment, the costs to patients and the
healthcare system are staggering. Health technology assessments
for FDA-approved molecular immunotherapies calculated
approx. 80,000 euro per quality-adjusted-life-year [35–39]. To
this, the costs of managing immune-related adverse effect should
be added; approx. 20 % of patients experience major autoim-
mune effects [40], confirmed in post-marketing studies [41].
While monoclonal antibody-based treatments targeting immune-
checkpoint inhibitors can be manufactured, distributed, and
administered in ways resembling conventional processes, this is
different for cellular immunotherapies. Both currently FDA-
approved anti-CD19 CAR-T products require lympho-depletion
prior to administration and are licensed for autologous use. This
requires highly specialized and specific infrastructure/facilities
(e.g., on-site Good Manufacturing Practice (GMP) manufactur-
ing of CAR-T products), high-level expertise (e.g., specialized
nursing staff and research teams), and is extremely cost-intensive
(currently priced at almost US$500,000/year [30, 42]).

For immunotherapies to succeed in the long term, it will be
paramount to optimize their efficacy in combination with
efficient patient stratification and careful response monitoring
to avoid unnecessary toxicities, application to the wrong patient
groups, over-treatment, and keep cost affordable. Therefore, the
following roles for in vivo imaging as a tool-assisting immuno-
therapy development and application processes should actively
be investigated: (i) as a drug development tool to increase
immunotherapy efficacy, (ii) as a predictive tool to ensure
efficient immunotherapy application, and (iii) as an early
response monitoring tool to reduce the risk of side effects.

In Vivo Imaging as a Tool for the
Development of Molecular and
Cellular Immunotherapy

Improvements in the mechanistic understanding of the
processes underlying cancers and their microenvironments
including the associated interplay with the immune system
will ultimately lead to the identification of new targets that
can be exploited for anti-cancer treatments, be the basis for
more efficacious combination therapies, and help overcome
resistance phenomena [25, 43, 44]. In the preclinical setting,
molecular imaging can be used to track the cancer cells or
any immune cells of interest through cell tracking method-
ology. In the clinical setting, therapeutic cells may be
rendered traceable in vivo, but any endogenous antigen-
presenting cells (APC) including cancer cells rely on
detection by conventional imaging approaches, as genome
editing to express fluorescent proteins, receptors, or enzymes
necessary for molecular imaging is not feasible in humans.

For in vivo cell tracking, it is necessary to label the cells with a
contrast agent matching the desired imaging technology. There
are two fundamentally different approaches to label cells, direct
and so-called indirect labeling, both of which have been
reviewed elsewhere [45]. Briefly, direct labeling means that the
contrast agents are bound to or taken up normally ex vivo before
administration to animals or humans. Indirect labeling means
that the cells of interest express a reporter, either constitutively or
induced by a certain event, which allows contrast generation
in vivo upon administration of a suitable tracer. Direct cell
labeling is fundamentally affected by label dilution and, in
addition, label presence is not necessarily indicative of the
initially labeled cell population. Consequently, indirect cell
labeling is much better suited for long-term in vivo cell tracking,
but it requires genetic engineering to implement the reporter
genes. The latter need to be matched to the imaging modality of
interest with manifold options available for highly sensitive cell
tracking (using bioluminescence, fluorescence, and radionuclide
technologies) [46–48], including endogenous reporters unlikely
to cause any immunogenic response [49–51].

In the context of immunotherapies, all the above
approaches and technologies have been reported including
ex vivo radiolabeling [52], magnetic resonance imaging [53],
nanoparticle-based imaging [54], and a variety of reporter
gene methods [47, 51, 55, 56]. In preclinical rodent models,
the migration pattern, local expansion, and retraction of
transferred cell populations as well as systemic on-site off-
target toxicities can be readily visualized during therapy and
thereby guide optimization of current protocols. For exam-
ple, adoptive T cell therapy can be enhanced when combined
with co-immunostimulatory treatments, for instance, using a
4-1BB (CD137) agonistic antibody [57]. Similarly, adoptive
Vγ9Vδ2 cell-based immunotherapy, which requires treat-
ment with small molecule mevalonate pathway inhibitors
[58], could be improved using imaging to optimize their
uptake in solid tumors [59]. Intravital microscopy helped to
elucidate how such co-treatments enhance both tumor
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infiltration and the cytotoxic activity of transferred T cells in
mice [60]. Antigen-loaded dendritic cells (DCs) have been
tested for stimulating tumor-antigen-specific immune re-
sponses in patients. Following transfer, DC migration and
accurate positioning in lymph nodes is crucial for therapy
success. Imaging allows tracking of the cells after transfer
and showed that the route of administration is relevant for
localization and function of transferred DCs [61–63]. Most
notably, a recent study in glioma patients demonstrated
proof-of-principle of applying multi-modal positron emis-
sion tomography (PET)-magnetic resonance imaging (MRI)
to track reporter gene-expressing CAR-T in human brains to
tumor sites with anatomical context afforded by MRI [64].
Furthermore, reporter gene technology can be configured to
report inducible expression, which was exploited to image T
cell activation in mouse models [65].

Multi-dimensional imaging allows simultaneous visuali-
zation of several molecular targets or cell populations and is
an essential tool to investigate the synergistic effects of
combination therapies. For example, bispecific antibodies
can be used, which simultaneously bind surface markers on
tumor cells and stimulate T cell co-receptors such as CD3.
While tumor regression and enhanced T cell accumulation
could be derived from alternative techniques, intravital
microscopy uniquely allowed the monitoring of T cell
dynamics in the tumor. It also revealed stable binding of
multiple T cells to individual tumor cells as an underlying
mechanism [66]. In search for effective combination thera-
pies, tumor irradiation might modulate the tumor microen-
vironment to optimize immune checkpoint inhibition [67].

Likewise, imaging is a valuable tool to understand
mechanisms, which cause failure of immunotherapy. For
example, in immune checkpoint inhibition, little is known
about interactions of checkpoint inhibitory antibodies with
the host microenvironment within the tumor. Imaging
allowed to track fluorescently labeled anti-PD-1 mAb in a
mouse model of colon cancer and identified the removal of
anti-PD-1 mAbs from its target T cells in a Fc receptor-
dependent process by tumor-associated macrophages as
unexpected resistance mechanism [68]. During anti-CD20
mAb therapy, Kupffer cells in the liver mediate B cell
elimination by engulfing CD20-labeled B cells in a Fc-
dependent manner [69]. These studies helped to optimize
mAb design. In another example, the longitudinal tracking
of chimeric antigen receptor (CAR) T cells labeled by
[18F]NOTA-octreotide (NOTAOCT) in a mouse model
demonstrated the superior targeting and expansion of
micromolar affinity CARs for targeting intercellular adhe-
sion molecule 1 (ICAM-1) overexpressing tumors which
effectively improved efficacy and safety [70]. In the context
of cell therapies, many clinical trials continue to be
performed without knowledge about the location and fate
of cells used in or derived from cell therapies in vivo,
making it impossible to adequately monitor and assess
safety. For example, in a recent clinical trial, patient deaths
due to the immunotherapy exerting effects at the wrong

physiological location [71] could have been prevented if the
cells had been traceable and controllable. While suicide gene
options for controllability have been developed [72, 73],
imaging to inform about on-target off-site locations would
be highly desirable to detect unsafe conditions, possibly
early enough to avoid serious events.

Significant research activities have resulted in a variety
of useful imaging tools that can be combined to allow
simultaneous quantification of several parameters on the
molecular, cellular, and organ levels, particularly in
preclinical research but also becoming available for clinical
research. In fact, the main limitations comparing preclin-
ical with clinical settings in this context are not the
available imaging tools, but rather the models itself, i.e.,
questions regarding how adequately rodent models repre-
sent human disease.

In Vivo Imaging as a Predictive
Biomarker
For most immunotherapies, there is little solid understanding
about the role of the presence and accessibility of their
therapeutic target, which hampers efficient patient stratifica-
tion. Clinical studies indicate a higher anti-PD-1 treatment
efficacy in metastatic melanoma patients with strong PD-L1
expression at the tumor site when compared to patients with
low expression [74]. Nevertheless, anti-PD-1 treatment is
efficient even in patients without PD-L1 expression at the
tumor site. As the PD-L1 expression status was suggested to
correlate with response, radiolabeled antibodies and anti-
body fragments are being developed and first applications in
patients are ongoing [75–77]. It is essential to reveal the
temporal dynamics of PD-L1 expression, for example,
during radiotherapy [78].

Whether non-invasive in vivomonitoring of the PD-L1 or
PD-1 expression patterns is the most accurate target remains
to be elucidated, regardless, it functions as a drug efficacy
tool to assess target accessibility and target saturation. The
same applies to other immune checkpoints that are currently
under active investigation, such as CTLA-4, LAG-3, TIM-3,
and OX40.

The current quest for accurate biomarkers to this purpose
has already yielded an overwhelming number of publica-
tions on several domains of immunology [79]. It should
therefore be pointed out that, at this period in time, imaging
is suggested as a complementary tool to other methodolo-
gies, which can be more easily translated to routine clinical
care with reasonable cost-benefit ratios.

In Vivo Imaging to Monitor Treatment
Response
Immunotherapy in general should result in increased num-
bers of effector immune cells to a critical level that is able to
keep the immune response going [80]. Instead of following
empirically designed treatment schedules, immunotherapy
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can probably be stopped as soon as it has achieved sufficient
and persistent infiltration of immune cells in a patient. To the
contrary, if immunotherapy fails to induce effective immune
responses, patients should no longer be exposed to poten-
tially hazardous immune-related adverse events and incre-
mental costs to the healthcare system.

Non-invasive imaging of the activation status of the
immune system might represent a promising tool to monitor
the ef fec ts of immunotherapy. To th is end , a
[89Zr]desferrioxamine-labeled anti-CD8 and anti-CD4 cys-
diabodies were developed and implemented for non-invasive
in vivo PET tracking of endogenous CD8+/CD4+ T cells in
mice and humans enabling the identification of immune
checkpoint inhibitor therapy responders [81, 82]; a first
clinical study with the anti-CD8 cys-diabody is currently
ongoing. In line with this, a single domain CD8 mAb was
established to monitor cancer immunotherapy. Homoge-
neous distribution of CD8+ T cell at the tumor site indicates
response, whereas CD8+ T cell accumulation at the margins
or lack of CD8+ T cell expression rather indicates lack of
response [83]. Others have focused in preclinical studies
with CD3-specific mAbs for detection of CD4+ and CD8+ T
cells [84]. Another approach focuses on metabolic profiles
during distinct phases of activation of immune cells, e.g.,
moni to r ing deoxycyt id ine kinase ac t iv i ty wi th
[18F]clofarabine ([18F]CFA); a first clinical study is currently
running [85]. A similar approach is focused on quantifying
enhanced glucose metabolism or cell proliferation of
activated immune cells in the secondary lymphatic organs
as a consequence of immunotherapy in humans [86].
Recently, imaging of OX40 expression, a T cell activation
marker, has been preclinically implemented for immuno-
PET ([64Cu]DOTA-AbOX40) representing promising novel
tool for monitoring immunotherapies [87]. In addition, a
granzyme-detecting radiotracer [88] as well as radio-labeled
IL-2 targeting the IL-2 receptor enables detection of
activated CD4+ and CD8+ T cells [89] with PET. Major
histocompatibility complex (MHC) class II-specific mAbs
were preclinically implemented for PET imaging of antigen-
presenting cells (B cells, macrophages) and CD11b-specific
radio-labeled mAbs for determination of myeloid cells such
as macrophages and granulocytes [90]. Besides PET, MRI is
another modality suitable for whole-body tracking in vitro-
labeled adoptively transferred cells of interest or of in vivo-
labeled endogenous phagocytic cells. Thus, endogenous
monocytes and macrophages preferentially phagocytize
systemic or locally injected emulsified perfluorocarbons
(PFCs) and can be easily detected by 19F MRI [53, 91].

For better understanding of the basic underlining mech-
anisms of newly developed combined immunotherapies
(agonistic and antagonistic immune checkpoint-specific
mAbs or IDO inhibitors or chemotherapy or targeted
therapies etcetera), it might be of paramount importance to
track besides endogenous CD8+ and CD4+ T cells also
regulatory CD4+ T cells, natural killer (NK) cells, B cells,
neutrophils, macrophages, and dendritic cells at the tumor

site as well as secondary and tertiary lymphoid organs. To
this end, multimodal imaging approaches such as simulta-
neous PET/MRI measurements in the preclinical [92] and
clinical settings [93] are of special importance to follow the
fate of PFC-targeted monocytes/macrophages and
radiolabeled mAb-targeted T cells simultaneously. Conse-
quently, development of novel methods for in vivo targeting
(labeling) cells of interest for multimodal imaging including
optical imaging is needed.

Outlook
During the development of immunotherapy, in vivo imag-
ing has been indispensable by providing insights into the
spatiotemporal dynamics of immune responses and the
complex interactions between many different cell types at a
molecular level. Currently, in vivo imaging is predomi-
nantly placed in the preclinical drug developmental phase
of both cellular and molecular immunotherapy (Fig. 1).
The full panel of molecular imaging techniques is
exploited in mouse studies to identify targets or mecha-
nisms of resistance and improve our understanding of the
required elements for effective immunotherapy. Obvious
areas of development area, the generation of new imaging
tools for newly identified targets, and in vivo tracking of
cellular therapeutics that do not rely on genetic engineer-
ing, hence, require labeling methodologies compatible with
sensitive imaging but not interfering with cellular function.
We consider the role of in vivo imaging established in this
setting, offering unique tools to researchers in the field of
onco-immunology.

Some techniques are currently reaching into clinical
application, mostly in explorative studies that focus on
early response monitoring. Imaging techniques that have
successfully been translated, for example, are radiolabeling
of therapeutic antibodies and ex vivo cell labeling, for
clinical imaging with, e.g., PET and MR. These techniques
can be considered expensive and complex in terms of
infrastructure, regulations, and logistics as compared to
routine x-ray computed tomography (CT) or 2-deoxy-2-
[18F]fluoro-D-glucose PET/CT imaging. However, they
can also add important additional molecular information
crucial to select the most effective treatments and apply
them efficiently [7]. Importantly, mouse models are only
partly representative of human disease, and this disparity
will increase with the increasing complexity of combina-
tion therapies. Furthermore, patients can be highly indi-
vidual in their disease and their response to treatment, and
this individual monitoring is necessary. Early clinical
validation is therefore necessary to increase attrition rates.
Furthermore, the application of in vivo imaging for early
response monitoring during immunotherapy can readily be
cost-effective, when unnecessary treatments and toxicities
are avoided. Notably, current immunotherapies have
received approval based on clinical endpoints that were
based on volume-based RECIST1.1 measured by CT or
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MRI, which are now demonstrated to underestimate the
clinical benefit of patients, especially those with atypical
response patterns.

For patient stratification, in vivo imaging might have a
more difficult task to identify probable responders from a
larger cohort of patients. For such application, in vivo
imaging has competition from other potential biomarkers
that provide off-the-shelf and high-throughput solutions
like analyses of circulating tumor cells or tumor DNA,
which for these reasons receive interest from the industry.
We foresee that in vivo imaging will play a limited role in
this domain, although implementation of in vivo imaging to
support clinical decision making is being reported, for

example, [18F]fluoroestradiol PET imaging in metastatic
breast cancer [94, 95].

These considerations on the potential role of in vivo
imaging can be extrapolated to other fields that increas-
ingly apply cellular or molecular immunotherapy, i.e.,
multiple sclerosis, diabetes type 1, transplantation and
induction of tolerance [96, 97], neurodegenerative diseases
[98], and infectious diseases [99]. Despite the promise of
imaging the field of immunotherapy, several major hurdles
remain. Successful application will require close collabo-
rations between disparate groups, such as scientists,
imaging specialists, contrast agent chemists, clinicians,
and regulatory bodies.

Fig. 1 a Schematic overview of the different stages of onco-immunology research at which molecular imaging can potentially
play a role. b Intravital multiphoton microscopy is applied to monitor immunotherapy response, e.g., it allows to monitor
adoptively transferred CD8+ T cell (CTL)(yellow) tumor (red) infiltration with high spatial resolution and to quantify interactions
with other immune cells (macrophages, blue) or stromal elements (blood vessels, green) of the tumor microenvironment. c
Preclinical PET imaging using 89Zr-mal-DFO-169 cys-diabodies to track endogenous CTLs in a mouse CT26 tumor model
during PD-L1 therapy, demonstrating that response to PD-L1 inhibition coincides with infiltration of CTLs deep into the tumor
(arrow, right panel), in contrast to non-responding mice in which CTL remain at the rim of tumors (arrow, left panel) [81]. d
Coronal images of a [18F]fluoroestradiol PET/CT in a metastatic breast cancer patient, prior to start hormonal treatment,
demonstrating estrogen-receptor expression in two mediastinal lymph node metastases (arrows) (of note, physiological high
tracer uptake in the liver and excretion via the kidneys and urinary bladder)
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The New ESMI Onco-immunology
and Therapy Study Group
The Onco-immunology and Therapy study group strongly
believes that in vivo imaging is an essential part of the
translation of new concepts and immunotherapies to the
benefit of patients, by facilitating:

a. Studies to further improve our mechanistic understanding
of the immune system.

b. Studies to better understand the mechanisms of action of
existing and new immuno-therapies in preclinical and
clinical settings.

c. Hypothesis-driven design of new immunotherapies and
combination therapies.

We therefore will reach out and advertise use of imaging in
different immunotherapy areas to further spread implementation
of imaging into onco-immunology and immunotherapy research
through information and education. New scientific collabora-
tions with related interest groups and scientific communities that
foster the above-mentioned aims will be stimulated to identify
needs and jointly seek for matching solutions.
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