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Cancer stem cells (CSCs) have been identified as the source of tumor growth and dis-
ease recurrence. Eradication of CSCs is thus essential to achieve durable responses, 
but CSCs are resistant to current anti-tumor therapies. Novel therapeutic approaches 
that specifically target CSCs will, therefore, be crucial to improve patient outcome. 
Immunotherapies, which boost the body’s own immune system to eliminate cancer-
ous cells, could be an alternative approach to target CSCs. Vaccines of dendritic cells 
(DCs) loaded with tumor antigens can evoke highly specific anti-tumor T cell responses. 
Importantly, DC vaccination also promotes immunological memory formation, paving the 
way for long-term cancer control. Here, we propose a DC vaccination that specifically 
targets CSCs. DCs loaded with NANOG peptides, a protein required for maintaining 
stem cell properties, could evoke a potent anti-tumor immune response against CSCs. 
We hypothesize that the resulting immunological memory will also control newly formed 
CSCs, thereby preventing disease recurrence.
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CUrrent approaCHes to tarGet CanCer  
steM CeLLs (CsCs)

CSCs form a rare population of tumor cells with a unique ability to self-renew. Although CSCs 
proliferate slowly, they give rise to more differentiated, fast-growing tumor cells that sustain and fuel 
tumor growth. Their low proliferation rate, combined with the expression of drug transporters, enables 
CSCs to survive classical anti-tumor treatments. Furthermore, continuous genomic and epigenomic 
changes allow CSC to develop new resistance mechanisms that can be passed on to their progeny (1). 
Current anti-tumor therapies targeting the tumor bulk thus often fail to eliminate CSCs.

The realization that eradicating CSCs is essential to prevent disease relapse has greatly stimulated 
CSC research. The search term “cancer stem cells” yields over 75,000 hits in PUBMED, and numerous 
papers describe CSC proteins and their pathways. This has lead to different treatment strategies 
that target CSC, either by inducing CSC killing, by forcing their differentiation, or by inhibiting key 
signaling pathways.

Initially, large libraries of small molecules were screened for candidates that kill CSCs [for a recent 
review see Ref. (2, 3)]. These molecules target different key signaling pathways of CSCs. Salinomycin 
was one of the first compounds discovered (3). Another example is the small molecule IGC-001 
which affects the Wnt pathway by interfering with β-catenin (4). NOTCH signaling could be inhib-
ited through γ-secretase inhibition of MK-0752 (5). The two FDA approved drugs Vismodegib and 
Erismodegib block the Hedgehog signaling pathway and are tested in clinical trials for the treatment 
of basal-cell carcinoma (6–8).
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Aside from synthetic molecules, also naturally occurring 
small molecules and food components can interfere with CSC 
signaling. A vast number of papers describe the signaling targets 
of these natural compounds and the mechanisms of CSCs killing 
[for review see Ref. (9)]. Several compounds showed inhibiting 
functions in vitro (10, 11). Statistical analyses even demonstrated 
that eating cruciferous vegetables (12, 13) can prolong survival of 
cancer patients. Curcumin is effective in several tumors. However, 
curcumin only works at high dosage (8 g/day), probably because 
its low solubility limits availability. A modified, more soluble 
form of curcumin is, therefore, being tested in several trials 
(14). Although food components killed tumor cells in vitro, they 
could not prevent cancer development in vivo (15–17). A likely 
reason for this discrepancy is that food mostly contains inactive 
precursors of active compounds. For example, only a minority of 
people has an intestinal flora that promotes the conversion of the 
precursor glucoraphanin into the CSCs inhibitor sulforaphane 
(18, 19).

Just like their synthetic counterparts, natural small molecules 
from food components affect the Hedgehog-, the Wnt-, and 
the Notch-Jagged signaling pathways. However, this approach 
can result in severe side effects, as these signaling pathways 
are also essential for normal stem cells. Stem cells in the colon 
crypts—which are crucial for regenerating and sustaining colon 
tissue—depend on the Wnt pathway. Targeting Wnt signaling, 
therefore, comes with a risk of collateral damage (20–22).

To prevent these side effects, antibody–drug conjugates 
(ADCs) can be used to specifically target and kill CSCs via cell 
surface markers, such as LGR5, CD133, or DLL3 (23–25). Even 
though these ADCs showed promising results in murine experi-
mental models of colon and lung cancer, their success should 
be interpreted with caution. CSC markers are heterogeneously 
expressed on the stem cell population, and to date, none of the 
identified surface markers is specific for CSCs (26). Aspecific 
ADCs may also eradicate normal stem cells that share surface 
markers with CSCs. Furthermore, the instability of current ADCs 
in the circulation may lead to premature drug release and off-
target toxicity (27).

Another approach induces terminal differentiation of CSCs 
through epigenetic targeting. The best-known example is all-
trans retinoic acid, which is used to treat acute promyelocytic 
leukemia. This compound induces histone modifications that 
force CSCs to differentiate (28). Similarly, histone deacetylases 
(HDAC) are promising targets in CSCs, as several clinically 
available HDAC inhibitors can preferentially target CSCs 
in  vitro (29). However, little is known about the epigenetic 
regulation of CSC and treatment with HDAC inhibitors could 
cause toxicity by disrupting gene regulation in normal tissue 
stem cells.

Even though current approaches to target CSCs in solid 
tumors are promising, they do face major challenges. First, 
reliable CSC-specific markers and signaling pathways need to 
be identified to prevent off-target effects. Second, none of these 
strategies can cope with CSC plasticity, the interconversion 
of CSCs and more differentiated tumor cells. Eradication of 
CSCs can only be achieved if these problems are adequately 
addressed.

steM CeLL transCription FaCtors 
are ideaL tarGets to inHiBit CsCs

The best way to kill CSCs is to target their unique proteins, 
not or low expressed by somatic cells (30). Candidates are the 
transcription factors OKT4a, SOX2, c-MYC, and KLF4, which 
also transform somatic cells into stem cells (iPS) (31). Most 
types of cancers express several of these transcription factors in 
a low percentage of cells (32–35), although some cancer types 
express only one or two of these transcription factors (36–38). 
Another candidate is the transcription factor NANOG, which 
regulates several cellular functions (Figure 1) (39). NANOG is 
required for maintaining stem cell properties and is re-expressed 
in a wide array of cancers (40–44). It furthermore promotes cell 
proliferation, migration, and metastasis, likely by downregulation 
of cell–cell interactions via E-cadherin (45) and control of cell 
cycle-related proteins (46). NANOG also renderers CSCs resist-
ant to chemotherapy, for example, by inhibition of p53-mediated 
apoptosis (47). Expression of NANOG and its pseudo genes is low 
or absent in normal cells, making it an ideal therapeutic target 
(48–51).

expression of stem Cell Factor nanoG  
in CsCs
Expression of NANOG in CSCs is detected in a variety of cancer 
types, including glioma (34), breast cancer (52), ovarian cancer 
(53), and lung cancer (54). The realization that the resistant 
cancer cells driving tumor recurrence after classical treatment 
express NANOG (34, 51, 55–60) have prompted the develop-
ment of NANOG inhibitors. These inhibitors were remark-
ably successful in experimental models (42, 51, 55, 61–63). For 
example, activator-like effector nuclease (TALEN) was able 
to disrupt NANOG function in Hela cells in  vitro, increasing 
chemosensitivity and reversing the epithelial-to-mesenchymal 
transition (64). In breast cancer cells, shRNA against NANOG 
reduced cell proliferation and migration (46). However, in vivo 
targeting of these compounds to CSCs will be a major chal-
lenge. Furthermore, wiping out NANOG by TALEN or shRNA 
(46, 64–66) will not suffice to eradicate cancer. Through a process 
known as plasticity, differentiated cancer cells become CSCs 
by re-expressing NANOG (67–71), which also occurs in non-
pathogenic cells (72). NANOG inhibiting compounds like RNAi 
or small inhibitors, therefore, have to be given lifelong to keep 
the tumor encaged. Thus, although NANOG may be suitable to 
specifically target CSCs, there is a need for novel strategies that 
can also control new CSCs arising through plasticity.

tHe iMMUne systeM as CsC KiLLer

Our body has developed a unique strategy to provide long-term 
protection from pathogens and cancerous cells: the immune 
system. Tumor infiltration by CD8 immune cells is associated 
with prolonged patient survival (73). However, these CD8+ T cells 
are often unable to eradicate the tumor because of inhibition by 
other, immunosuppressive cells in the tumor microenvironment, 
such as regulatory T  cells (Tregs). To reflect the strength of this 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FiGUre 1 | Cellular functions of NANOG in cancer stem cells (CSCs). The transcription factor NANOG is expressed by CSCs and has a variety of functions. 
NANOG is essential to maintain the self-renewal properties of CSCs. Furthermore, NANOG regulates cell proliferation via the interaction with cell cycle proteins,  
such as cyclin D. It also downregulates the expression of E-cadherin, enabling cells to detach and migrate to form distant metastases. Finally, NANOG promotes  
cell survival and resistance to therapy. NANOG interferes with the tumor suppressor p53, protecting cells from apoptosis.
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immunosuppression, an “immunoscore” of a tumor can be 
computed as the ratio between immune stimulating and immune 
inhibiting cells (74). Immunotherapies aim to tip this balance 
toward immune activation. For example, immune checkpoint 
antibodies alleviate immunosuppression and increase patient 
survival, proving that the immune system can combat cancer.

However, can the immune system also prevent further cancer 
growth by attacking stem cell antigens? The first indication comes 
from a study where the immune system was activated by vaccinat-
ing with glioblastoma lysate of either normal cancer cells or CSCs 
(75). The quantity of stem cell antigens is much higher in the CSC 
lysate, which evokes a better immune response against the cancer. 
Other studies have shown that cancer patients as well as healthy 
subjects can have immunological memory against OCT4, a CSC 
transcription factor (76, 77). However, this memory response 
could not cure or prevent cancer. Full responses appear to require 
rejuvenation of the immune system by means of DCs loaded with 
tumor antigens (78). Nevertheless, the existence of immuno-
logical memory against CSC transcription factors is promising, 
as it suggests that it should be possible to generate long-lasting 
immune responses that control the CSCs driving tumor growth.

the tumor Uses several Ways to stop 
immune-Mediated Killing
An important reason why existing anti-tumor immune cells fail 
to eradicate the tumor is active immunosuppression by the tumor 
microenvironment. Surviving tumors have escaped immuno-
logical clearance by paralyzing the immune system, exploiting 
several natural mechanisms by which the body can dampen 
immune reactions. These mechanisms include the attraction 
of immunosuppressive cells (Tregs, myeloid-derived suppressor 
cells), induction of inhibitory cytokines (IL-10, TGF-β), reduc-
tion of MHC class I expression, expression of metabolic enzymes, 

such as indoleamine 2,3-dioxygenase and arginase (which 
breakdown either tryptophan or arginine, respectively) (79), and 
the PD-1–PD-L1 axis (80, 81). Mesenchymal stem cells (MSCs) 
that form part of the tumor microenvironment are able to inhibit 
the immune system. In vitro-cultured MSCs express NANOG 
and the expression of immune-modulatory role is dependent on 
NANOG. Destroying NANOG in activated MSCs in the tumor 
bed by the immune system will limit the immune inhibitors and 
is an added advantage (82). Yet another way to prevent immune 
attack is modification of the lipid pathways, resulting in a block of 
T-cell proliferation (83). Checkpoint antibodies relieve part of this 
inhibition and thereby prolong overall survival (84). However, 
as tumors use multiple immunosuppressive strategies, a single 
antagonist will be unable to fully abrogate immunosuppression 
and eradicate the tumor. It is, therefore, crucial to also look at 
other methods to tip the balance back in favor of anti-cancer 
immunity.

Cytotoxic t Cells need target Molecules 
to Kill tumor Cells
Another factor that may hamper T cell responses against CSCs 
is insufficient expression of HLA class I. Before cytotoxic T lym-
phocytes (CTLs) can kill a tumor cell, they must first recognize 
tumor antigens presented on HLA class I. Whereas, several 
studies reported reduced expression of HLA class I on CSCs, 
other studies nevertheless found a cytotoxic CD8 T cell response 
against CSCs [reviewed in Ref. (85)]. CSCs lacking HLA class 
I should be recognized by NK cells. In ovarian cancer, NK cells 
obtained from CD34 hematopoietic stem cells destroy cancer 
cells in a sphere assay, a classical way to culture CSCs (86).

MHC class I expression in stem cell marker positive cells can be 
analyzed using single cell m-RNA sequencing. The Broad Institute 
performed single cell mRNA sequencing in oligodendrogliomas 
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FiGUre 3 | HLA expression in oligodendroglioma. Expression pattern of HLA-A (a) and HLA-B (B) in oligodendrocytes, astrocytes, and cancer stem cells. Every 
dot represents a single cells. Oligodendrocytes lineage (positive X, negative Y), astrocytes lineage (negative X, negative Y), and stem cells (positive Y). Expression 
level indicated by colors from gray (low expression) to red (high expression).

FiGUre 2 | Differentiation hierarchy in oligodendrogliomas. Differentiation 
hierarchy based on differentiation scores (X) and stem cell scores (Y).  
Three distinct expression programs: oligodendrocyte (positive X, negative Y), 
astrocyte (negative X, negative Y), and stem cells (positive Y). Each dot 
represents a single cell. Reprinted by permission from Tirosh et al. (87).
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CSCs and their differentiated offspring (Figure 2) (87). A stem 
cell score and a lineage score was computed for each cell, enabling 
classification as stem cell, astrocyte, or oligodendrocyte. These 
data are available online (https://portals.broadinstitute.org/
single_cell), and allowed us to investigate HLA class I expres-
sion on CSCs. Analysis showed that CSCs express HLA-A and B 
(Figure 3). Only a minority of CSCs and mature cancer cells did 
not express HLA class I.

Although these results suggest that it is feasible to evoke 
a CTL response against CSCs, HLA class I negative CSCs and 
mature cancer cells will escape elimination, forming a phenotype 
 invincible by CD8+ T cells (88). These cells regain HLA class I 
during this dedifferentiation (89). This “soft” HLA class I loss 
can be resolved by administering IFN-γ or revering epigenetic 
modifications via HDAC inhibitors (90).

Importantly, we detected HLA class I on NANOG positive 
cells in ascites of ovarian cancer patients (Figure  4), whereas 
NANOG negative tumor cells were partially HLA class I negative. 
Apparently, the conversion of more mature cancer cells into CSCs 
(plasticity) requires epigenetic changes that allow re-expression 
of HLA class I. These findings suggest that CSCs expressing 
NANOG should be vulnerable for CD8 attack.

dC VaCCination aGainst nanoG: CtL 
MeMory as GUard aGainst CsCs

Dendritic cell vaccination could evoke cytotoxic T cells directed 
to CSCs and might induce immunological memory. Thus, this 
approach could not only eradicate existing CSCs but also pro-
vide the long-term ability to remove new CSCs arising through 
plasticity.

While over 100 trials have tried to boost the immune system 
by injecting autologous DCs loaded with aberrantly expressed 
or mutated proteins (neoantigens) (91, 92), only a few DC vac-
cination trials try to target CSCs. Several problems currently 
hamper the efficacy of these DC vaccination approaches against 
CSCs. First, they generally rely on isolation of autologous CSCs 
and loading of DCs with CSC lysates (75, 93, 94), a personal 
approach that is labor intensive and is hindered by the current 
lack of surface makers that can reliably isolate CSCs. Second, 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive
https://portals.broadinstitute.org/single_cell
https://portals.broadinstitute.org/single_cell


FiGUre 4 | Cancer stem cells in high-grade serous ovarian cancer ascites. (a) Isolated mononuclear cells from ascites of ovarian cancer patients (n = 13) were 
stained for CD45, NANOG, and HLA-ABC. NANOG positivity was assessed in the CD45− population to exclude immune cells. NANOG− and NANOG+ cells were 
gated and HLA-ABC expression was analyzed in both populations. Gray line = isotype control; black line = sample. (B) Percentage of NANOG+ cells in ascites.  
(C) Percentage of HLA-ABC positive cells in the NANOG− and NANOG+ population. Red line indicates mean.
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it remains unknown which neoantigens in the lysate elicit an 
immune response, and the number of these immunogenic neoan-
tigens depends on the tumor. For example, colon cancer has five 
times more mutations than breast cancer (95). A high mutation 
rate increases the chance that neoantigens are presented to the 
immune system. But, neoantigens also need to bind with strong 
affinity to HLA class I molecules, as this determines the strength 
of the immune response (96). Current DC vaccination strategies 
against CSCs, therefore, have limited control over the initiated 
immune response and might not be suitable for every tumor type.

A more elegant way to eradicate CSCs is to load autologous 
DCs with specific peptides rather than tumor lysate, as this 
approach would provide better control over the immune response 
generated. Specifically, we propose loading DCs with NANOG 
peptides. Because cancer cells re-express NANOG when they 
regain stem cell properties, generation of immunological memory 
after DC vaccination against NANOG would help the immune 
system to cope with CSC plasticity.

We, therefore, used the NetMHCpan algorithm to determine 
which peptides from the NANOG protein can bind to HLA class 
I (97). Several HLA types are able to bind multiple NANOG pep-
tides that could be presented to T cells (Table 1). In patients with 
HLA types that lack strong binders (e.g., HLA-A2), peptides from 
other CSC transcription factors, such as SOX2 or OKT4a, could 
be used (Table 2). As individuals generally have 4 to 6 different 

HLA class I molecules, cocktails of NANOG peptides that bind 
to the different HLA molecules should induce a potent immune 
response against CSCs. These results suggest that it is feasible to 
create DC vaccines tuned to the needs of individual patients.

WHy do We not HaVe MeMory 
t CeLLs?

Apparently, no immunity against NANOG exists in normal con-
ditions or cancer would never develop. This suggests that while 
antigen-presenting cells may present NANOG, this presentation 
fails to trigger cytotoxic T cells. Several factors may account for 
this discrepancy. The strength of the immune response depends 
on the duration of antigen presentation, the affinity of peptides 
for HLA, and the abundance of peptides. The latter is evident 
from melanoma, where a normal protein (gp100) becomes 
immunogenic upon upregulation in malignant cells (98, 99). The 
peptides presented on the cell’s surface are continuously refreshed 
to reflect the internal intracellular pool of peptides. Peptides 
of less expressed proteins will typically be presented on HLA 
molecules in very low quantities that will be rapidly replaced 
for more abundant peptides. Moreover, both CSCs and DCs, the 
main presenters of antigenic peptides, are extremely rare. The 
chance that a DC encounters a CSC presenting NANOG peptides 
is, therefore, very low. Thus, immunity against NANOG requires 
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taBLe 2 | Predicted SOX2 and OCT4A peptides that bind to HLA-A.

pos HLa peptide score % rank BindLevel

soX2
275 HLA-A*02:01 SMYLPGAEV 0.669833 0.2687 ≤SB
131 HLA-A*02:01 LLAPGGNSM 0.42905 0.6673 ≤WB
58 HLA-A*02:01 KMAQENPKM 0.375814 0.7882 ≤WB
125 HLA-A*02:01 YTLPGGLLA 0.257884 1.1925 ≤WB
236 HLA-A*02:01 ALGSMGSVV 0.203653 1.468 ≤WB
216 HLA-A*02:01 YMNGSPTYS 0.146827 1.9276 ≤WB

oCt4a
268 HLA-A*02:01 GLEKDVVRV 0.719995 0.2203 ≤SB
249 HLA-A*02:01 FLQCPKPTL 0.645456 0.2944 ≤SB
72 HLA-A*02:01 GMAYCGPQV 0.492133 0.5388 ≤WB
203 HLA-A*02:01 LLQKWVEEA 0.419854 0.6892 ≤WB
163 HLA-A*02:01 TQADVGLTL 0.372758 0.795 ≤WB
332 HLA-A*02:01 ALYSSVPFP 0.166148 1.7452 ≤WB
93 HLA-A*02:01 SQPEGEAGV 0.164799 1.7569 ≤WB

Peptide length 9; rank threshold for strong binding peptide 0.500; rank threshold for 
weak binding peptide 2.000; SB, strong binding; WB, weak binding; predicted peptides 
were generated using NetMHCpan Version 4.0 (http://www.cbs.dtu.dk/services/
NetMHCpan/).

taBLe 1 | Predicted peptides from NANOG that bind to the most common 
HLA-A types.

pos HLa peptide score % rank BindLevel

128 HLA-A*01:01 LSNILNLSY 0.925578 0.0772 ≤SB
288 HLA-A*01:01 QTMDLFLNY 0.876012 0.122 ≤SB
170 HLA-A*01:01 SAPTYPSLY 0.553264 0.4238 ≤SB
275 HLA-A*01:01 NVIQQTTRY 0.402377 0.669 ≤WB
233 HLA-A*01:01 NQAWNSPFY 0.263582 1.033 ≤WB
285 HLA-A*01:01 STPQTMDLF 0.212155 1.2491 ≤WB
27 HLA-A*01:01 VICGPEENY 0.125078 1.9183 ≤WB

131 HLA-A*02:01 ILNLSYKQV 0.236804 1.29 ≤WB
266 HLA-A*02:01 ALEAAGEGL 0.195211 1.5189 ≤WB
124 HLA-A*02:01 QMQELSNIL 0.18792 1.5702 ≤WB
297 HLA-A*02:01 SMNMQPEDV 0.150866 1.8894 ≤WB

147 HLA-A*03:01 RMKSKRWQK 0.726852 0.1333 ≤SB
288 HLA-A*03:01 QTMDLFLNY 0.521822 0.3469 ≤SB
78 HLA-A*03:01 TSAEKSVAK 0.453863 0.4542 ≤SB
160 HLA-A*03:01 KNSNGVTQK 0.229502 1.0894 ≤WB
79 HLA-A*03:01 SAEKSVAKK 0.170143 1.3846 ≤WB
143 HLA-A*03:01 FQNQRMKSK 0.150921 1.5158 ≤WB
129 HLA-A*03:01 SNILNLSYK 0.103267 1.9548 ≤WB

282 HLA-A*24:02 RYFSTPQTM 0.944242 0.0464 ≤SB
135 HLA-A*24:02 SYKQVKTWF 0.808316 0.1963 ≤SB
173 HLA-A*24:02 TYPSLYSSY 0.745947 0.2532 ≤SB
205 HLA-A*24:02 TWSNQTQNI 0.563898 0.4686 ≤SB
285 HLA-A*24:02 STPQTMDLF 0.452306 0.6464 ≤WB
240 HLA-A*24:02 FYNCGEESL 0.356878 0.8489 ≤WB
276 HLA-A*24:02 VIQQTTRYF 0.261095 1.1693 ≤WB
292 HLA-A*24:02 LFLNYSMNM 0.247165 1.2256 ≤WB
218 HLA-A*24:02 NHSWNTQTW 0.233086 1.2872 ≤WB
213 HLA-A*24:02 IQSWSNHSW 0.194124 1.4867 ≤WB
235 HLA-A*24:02 AWNSPFYNC 0.15336 1.7525 ≤WB
157 HLA-A*24:02 NWPKNSNGV 0.129894 1.959 ≤WB

275 HLA-A*26:01 NVIQQTTRY 0.945984 0.0055 ≤SB
288 HLA-A*26:01 QTMDLFLNY 0.925988 0.0076 ≤SB
50 HLA-A*26:01 TVSPLPSSM 0.436104 0.2259 ≤SB
285 HLA-A*26:01 STPQTMDLF 0.420456 0.2396 ≤SB
170 HLA-A*26:01 SAPTYPSLY 0.327707 0.3584 ≤SB
233 HLA-A*26:01 NQAWNSPFY 0.135179 0.9734 ≤WB
49 HLA-A*26:01 ETVSPLPSS 0.12096 1.0868 ≤WB
268 HLA-A*26:01 EAAGEGLNV 0.114943 1.1405 ≤WB
128 HLA-A*26:01 LSNILNLSY 0.100328 1.2837 ≤WB
173 HLA-A*26:01 TYPSLYSSY 0.100053 1.2865 ≤WB
246 HLA-A*26:01 ESLQSCMQF 0.094491 1.3466 ≤WB
276 HLA-A*26:01 VIQQTTRYF 0.078035 1.5685 ≤WB
166 HLA-A*26:01 TQKASAPTY 0.071117 1.6778 ≤WB
169 HLA-A*26:01 ASAPTYPSL 0.059168 1.9468 ≤WB

Peptide length 9; rank threshold for strong binding peptide 0.500; rank threshold for weak 
binding peptide 2.000; SB, strong binding; WB, weak binding; predicted peptides were 
generated using NetMHCpan Version 4.0 (http://www.cbs.dtu.dk/services/NetMHCpan/).
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a boost by either vaccination or by administration of DCs loaded 
with NANOG peptides. This approach would increase the number 
of DCs presenting CSC antigens, and also allows for the selection 
of suitable peptides based on the patient’s HLA type.

do IN VITRO raised CtL KiLL CsCs?

To assess the potential of vaccination with NANOG-loaded DCs, 
it is crucial to investigate whether CTLs raised against NANOG 
in  vitro are capable of killing CSCs. Current approaches come 
with limitations that make it difficult to assess the killing capacity 
of CTLs directed to CSCs. For example, recent data indicate that 

adherent cells only harbor a minute amount of CSCs, but it is hard 
to generate a cell line from tumor tissue.

To circumvent this problem, it is possible to grow spheroids 
from tumor tissue using low adhesive culture plates and special, 
serum-free media supplemented with the growth factors EGF 
and FGF (100–105). As these cultures go into apoptosis when the 
CSC is destroyed, as shown for the food supplements and NK cells 
(86), T cell killing of CSCs can be investigated by analyzing the 
shrinkage of spheroids co-cultured with in vitro raised T cells.

However, spheroids are rather simple structures that do not 
capture the complexity of an organ and are thus unsuitable 
to assess side effects. So far, we do not know if immunity to 
NANOG is detrimental for the patient. For melanoma patients, 
we sometimes observe vitiligo around a reactive mole, indicating 
that CTLs also attack normal melanocytes. Although in  vivo 
experiments in xenotransplanted mice with siRNA against 
NANOG did not show adverse effects on normal mouse tissues. 
These results should be interpreted with caution as it is unknown 
whether siRNA also inhibits murine Nanog. Moreover, mice have 
a different MHC class I and thus present other peptides from 
murine Nanog.

organoids as a Method to explore  
the safety of Vaccination With  
nanoG-Loaded dC
Organoids from CSCs and normal stem cells would be a better 
approach to test both the efficacy and safety of CTLs raised 
against NANOG (106–109). Organoids are 3D structures grown 
from stem cells that are able to recapitulate organ structure and 
organ-specific cell types. They can be grown from embryonic or 
induced pluripotent stem cells, from organ-restricted adult stem 
cells, or from isolated CSCs. Organoid models currently exist for 
many different tissues, including brain, lung, small intestine, and 
kidney (110, 111). Living NANOG-expressing stem cells can be 
obtained by labeling cells with NANOG nanoflares and sorting 
the positive cells (112, 113). This enables to test DC vaccination 

http://www.cbs.dtu.dk/services/NetMHCpan/
http://www.cbs.dtu.dk/services/NetMHCpan/
http://www.cbs.dtu.dk/services/NetMHCpan/
https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive
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against NANOG in a more natural 3D environment, solving the 
limitations of current in vitro and in vivo approaches.

ConCLUsion

Reduction of the tumor mass, by either surgery or radiotherapy, is 
typically the first treatment for solid tumors. However, complete 
removal of the tumor mass is impossible in some cancer types, 
leading to disease recurrence when chemotherapy fails to eradi-
cate remaining CSCs. DC vaccination against NANOG could 
solve this problem by specifically removing CSCs that fuel cancer 
growth. Importantly, these vaccines can be tuned to the patient’s 
HLA type to maximize response rates. If NANOG peptides can-
not be presented by a patient’s HLA class I molecules, peptides 
against other stem cell transcription factor SOX2 or OKT4 may 
be used.

Despite the promise of this CSC targeting approach, durable 
immune responses will likely require a combination of DC vac-
cination with other therapies. Chemotherapy is not suitable in 
combination with DC vaccination, as it attacks hematopoietic 
cells in the bone marrow, making it difficult to recover enough 
autologous DCs for vaccination. To ensure an optimal immune 
response, inhibiting cells and soluble inhibitors should be 
removed as much as possible. Combining DC vaccination against 
NANOG with immune checkpoint inhibitors might help to over-
come immunosuppressive mechanisms, and thereby potentiate 
the immune response directed against NANOG.

MateriaLs and MetHods

patient Material
Ascites was obtained from stage III and IV high-grade serous 
ovarian cancer patients before start of the treatment. The 
study was carried out in accordance with the guidelines and 
regulation of the Radboudumc. The protocol was approved by 
the “Commissie Mensgebonden Onderzoek” (CMO Arnhem-
Nijmegen). All subjects gave informed consent in accordance 
with the Declaration of Helsinki. Some samples were obtained 
before written consent was needed. Ascites was considered as 
waste material and only oral informed consent was necessary. All 
patients gave this oral informed consent to help future patients 
and were aware that it was not for their own benefit but for 
research purposes.

Flow Cytometry staining
Mononuclear cells from ascites were isolated using Ficoll-gradient 
centrifugation (Axis Shield) (114). Cells were washed with PBA 
(PBS/0.5% BSA/0.01% NaN3) and blocked for 10  min in PBA 
with 2% FcR blocking reagent (Miltenyi). Afterwards, cells were 

incubated for 30 min with a-CD45-V450 (1:50, BS Biosciences) 
and a-HLA-ABC-APC (1:4, Miltenyi). Subsequently, cells were 
fixed in 4% PFA and permeabilized with PBA containing 0.5% 
saponin (Sigma). Next, cells were incubated for 30  min with 
a-NANOG-PE (R&D Systems). Samples were measured on a BD 
FACS Verse and analyzed using FlowJo Version 10.

data aVaiLaBiLity stateMent

The datasets analyzed for this study can be found in the Broad 
Institute single cell portal (https://portals.broadinstitute.org/single_
cell/study/oligodendroglioma-intra-tumor-heterogeneity#study-
summary). All other relevant datasets for this study are included 
in the manuscript.

etHiCs stateMent

Ascites was obtained from stage III and IV high-grade serous 
ovarian cancer patients before start of the treatment. The study was 
carried out in accordance with the guidelines and regulations of 
the Radboudumc. The protocol was approved by the “Commissie 
Mensgebonden Onderzoek” (CMO Arnhem-Nijmegen). All sub-
jects gave informed consent in accordance with the Declaration 
of Helsinki. Some samples were obtained before written consent 
was needed. Ascites was considered as waste material and only 
oral informed consent was necessary. All patients gave this oral 
informed consent to help future patients and were aware that it 
was not for their own benefit but for research purposes.
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