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A B S T R A C T

The functional contribution of the lateral frontal cortex to behavior has been discussed with reference to several
higher-order cognitive domains. In a separate line of research, recent studies have focused on the anatomical
organization of this part of the brain. These different approaches are rarely combined. Here, we combine pre-
vious work using anatomical connectivity that identified a lateral subdivision of the human frontal pole and
work that suggested a general role for rostrolateral prefrontal cortex in processing higher-order relations, irre-
spective of the type of information. We asked healthy human volunteers to judge the relationship between pairs
of stimuli, a task previously suggested to engage the lateral frontal pole. Presenting both shape and face stimuli,
we indeed observed overlapping activation of the lateral prefrontal cortex when subjects judged relations be-
tween pairs. Using resting state functional MRI, we confirmed that the activated region's whole-brain con-
nectivity most strongly resembles that of the lateral frontal pole. Using diffusion MRI, we showed that the
pattern of connections of this region with the main association fibers again is most similar to that of the lateral
frontal pole, consistent with the observation that it is this anatomical region that is involved in relational
processing.

1. Introduction

The human frontal cortex is often thought to be organized as a
hierarchy, ranging from caudal motor areas, via caudal prefrontal areas
involved in higher-order control processes, to the most rostral areas in-
volved in the most abstract levels of control [1,2]. The anterior part of
the prefrontal cortex sits at the top of this cortical hierarchy. It is often
activated in tasks requiring the integration of outcomes of separate
cognitive operations, especially when dealing with information outside
direct environmental demands [3]. Anterior prefrontal cortex's func-
tional interactions can reflect upcoming rather than current task de-
mands [4]. However, although there has been substantial progress in the
understanding of anterior prefrontal function, little is known about its
anatomy. This is partly due to a lack of data from comparable regions in
experimental animals. Recordings in the most anterior part of the cortex
in the macaque monkey have been sparse and have yielded results that
differ substantially from what was predicted based on human neuroi-
maging studies [5], leading some authors to suggest that part of the
human anterior prefrontal cortex might be uniquely human [6].

To investigate the organization of the human frontal lobe, a number
of recent studies used diffusion MRI to parcellate this part of the cortex
based on structural connections to the rest of the brain. The logic of this
approach is that cortical areas can be distinguished based on their
unique pattern of connections, the so-called connectivity fingerprint
[7]; [8]. Areas identified this way often are highly similar to those
identified using traditional cytoarchitectonic methods [9]. A study by
Neubert and colleagues revealed an area of the anterior prefrontal
cortex located between the traditional area 10 and dorsolateral pre-
frontal cortex area 46, which was labeled lateral frontal pole (FPl) [10].
Although its connectivity fingerprint was similar to that of area 46, the
two areas differed in their connectivity with medial frontal and inferior
parietal cortex. Parallel work investigating the cytoarchitecture of the
human frontal pole suggested a subdivision into a medial and a lateral
part [11]. The lateral part was similar in location and had a similar
connectivity profile to FPl. Importantly, Neubert and colleagues com-
pared each human frontal area to areas in the macaque monkey. This
revealed areas with similar connectivity profiles across species for the
medial frontal pole and area 46, but no preferential match for the
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human lateral frontal pole [10,27].
In a separate line of research, Bunge and colleagues reported an area

of the left rostrolateral prefrontal cortex that is involved specifically in
processing higher-order relations between mental representations [12].
This type of information processing goes beyond the learning of vi-
suospatial, temporal, or semantic relationships that are first-order in
nature, defining relations between relations. In a series of studies, they
ruled out that activation of this part of prefrontal cortex was due to task
difficulty and demonstrated its involvement across different paradigms
[13,14]. Recently, Vendetti and Bunge [15] integrated these two re-
search lines, suggesting that the lateral frontal pole identified by Neu-
bert and colleagues is the same region that was activated during rela-
tional processing. Non-human primates can solve the kind of tasks used
in humans to probe processing of higher-order relations, but might do
so using alternative, often much less efficient strategies [16]. This
suggests the presence of specializations for this type of information
processing in the human lineage, possibly involving FPl. Consistent
with this suggestion, integrating different domains of knowledge or
abstracting away from familiar items to apply their rules to novel sti-
muli has been suggested to emerge only late in the human lineage [17].

Here we tested two suggestions originating from this idea. First, we
aimed to test whether the region identified by Bunge and colleagues on
functional grounds is indeed the same as the region Neubert and col-
leagues identified on anatomical grounds. We used the paradigm de-
veloped by Bunge and colleagues [12] identifying the lateral prefrontal
locus for relational integration to localize this region in our participants
(Fig. 1, left panel). Using resting state functional MRI we investigated
the similarity in whole-brain functional connectivity of regions identi-
fied in the relational processing task with that of FPl and related re-
gions, testing the hypothesis that the functional connectivity of FPl
most closely matches that of the relational integration area (Fig. 1, right
panel). Using diffusion MRI-based tractography we then determined the

pattern of connections of the reported regions with the main association
fibers of the brain and compared them with the patterns of different
anterior prefrontal regions, again testing whether the pattern of FPl
most closely matches the relational integration region (Fig. 1, right
panel). Second, we reasoned that if this region's role in indeed char-
acterized by the processing of higher-order relations we would expect
this to be domain-general. Therefore, we also tested a variant of the
relational integration paradigm using different stimuli, testing whether
FPl is involved independent of the types of stimuli. Rather than using
abstract shape stimuli, we presented face stimuli and asked participants
to judge them on age and ethnicity. Together, this project thus tested
the anatomical area involved in processing higher-order relations and
its domain-generality.

2. Materials and methods

2.1. Participants and setup

19 healthy, right-handed males (age range 18–30 years) partici-
pated in the study after giving written informed consent according to
the institutional guidelines of the local ethics committee (CMO region
Arnhem-Nijmegen, the Netherlands). All participants had normal to
corrected-to-normal vision. Data from three additional participants
were discarded, as they did not perform above chance level in one of
the task conditions.

During the experiment participants lay supine on the MRI scanner
bed and observed visual stimuli projected through a mirror above the
head coil. The presentation of the stimuli was controlled by a PC run-
ning Presentation software version 11.0 (http://www.neurobs.com).
Motor responses were recorded through an MR-compatible button box,
using the index and middle finger of the right hand.

Fig. 1. Schematic overview of the different parts of the study and their relationship. The task-based functional part of the study (left panel) consisted of the relational integration
task of Bunge and colleagues [9] (Non-social condition) and an extension using face stimuli (Social condition). In both cases we focused on the contrast of High versus Low dimension
trials. We then calculated a conjunction of these two contrasts. The anatomical part of the study (right panel) consisted of whole-brain resting state functional connectivity and diffusion
MRI tractography of atlas-based FPm, FPl, and area 46 regions of interest. The whole-brain resting state functional connectivity maps were compared to the same maps from the areas
yielded by the conjunction analysis (left column). The diffusion MRI data was used to construct a connectivity fingerprint with five white matter tracts which was then matched to the same
of the areas yielded by the conjunction analysis (right column).

B. Hartogsveld et al. Behavioural Brain Research 355 (2018) 2–11

3

http://www.neurobs.com


2.2. Behavioral procedure

The task was a mixed blocked and event-related design, and con-
sisted of two counterbalanced blocks, with 80 trials per block. In the
different blocks, participants either performed a version of the task used
by Bunge and colleagues [12] ('Non-social condition') or a similar task
using face stimuli ('Social condition'). On each trial, participants had to
make a judgement about the relation between stimuli ('Low dimension
trials') or about the relation between stimulus relations ('High dimen-
sion trials'). Participants received both written and verbal task in-
structions and performed 10 practice trials before entering the scanner.

Participants were instructed that they would be presented with four
images on the screen at the same time, divided into two pairs (upper
pair with top left and top right image, lower pair with bottom left and
bottom right image) (Fig. 2). Before these images were shown, a cue
word would appear and stay on the screen. In the Non-social condition
block, the cue words were “Shape” (20 trials) or “Texture” (20 trials) on
the Low dimension trials, or “Dimension” (40 trials) on the High di-
mension trials. On the Low dimension trials participants had to de-
termine whether there was a match on the dimension indicated by the
the word in either the top or bottom pair, or both. On High dimension
trials participants had to determine whether there was an equal match
in both pairs (i.e., either a match on shape or match on texture in both
pairs). The stimuli consisted of shapes (squares, circles, and hexagons)
of different textures (dotted, striped, or grid) and different sizes (an
irrelevant dimension).

In the Social condition block, the presented words were “Age” (20
trials) or “Ethnicity” (20 trials) on the Low dimension trials, or
“Dimension” (40 trials) on the High dimension trials. The stimuli con-
sisted of frontal profile faces belonging to three age categories
(young< 30, middle 30–50, and old> 50 years of age), and three
different ethnicity categories (Caucasian, Asian, and Middle-Eastern
including Northern-African and Indian descent) belonging to both sexes
(an irrelevant dimension). The face images were retrieved from the
colour FERET database version 2, from the National Institute of
Standards and Technology [18,19]. They were normalized in size,
background, luminance, brightness, contrast and colour temperature
using Adobe Photoshop CS6 (Adobe Systems, San Jose, CA). To ensure
the images fit in the categories explained above, 16 participants as-
sessed 247 images in a behavioral pilot experiment and only those
stimuli with a correctness score exceeding 66 percent were used in the
experiment.

In all trials participants were first presented with a fixation cross for
500 ms, after which the cue word appeared, joined after 1000 ms by the
two stimulus pairs for a maximum of 5500 ms during which

participants had time to respond. After the response a randomized
inter-trial interval (1000–5000 ms, uniform distribution) was pre-
sented.

2.3. Image acquisition

Images were acquired on a 3 T Siemens Prisma MRI system, using a
standard circular polarized head coil for radio-frequency transmission
and signal reception (20 channel head/neck coil for T1 structural se-
quence, 32 channel head coil for the rest of the sequences). BOLD fMRI
was acquired continuously during performance of each of the two task
conditions. After both tasks a field map image was acquired. Diffusion
MRI was recorded after completion of both task blocks. Resting state
BOLD fMRI and structural T1 scans were acquired in a separate session
on a different date, as was task data from an experiment not reported in
this communication. Resting state BOLD fMRI acquisitions were fol-
lowed by a field map.

2.3.1. Functional MRI
During both tasks, BOLD-sensitive functional images were acquired

using a multiband sequence (acceleration factor 8 with GRAPPA
method, TR 735 ms/TE 39 ms, interleaved acquisition, effective voxel
size 2.4 × 2.4 × 2.4 mm, 64 slices, FoV 210 mm, orientation
T > C− 16.0, phase encoding direction A ≫ P, flip angle 52°, distance
factor 0%). Resting state images were acquired using the same sequence
in a separate session, for 8.5 min. After each functional sequence field
map images were acquired (flip angle 60°, TR 614 ms/TE 4.92 ms). All
scans were aligned using an auto-align head scout sequence, comparing
the images with the built-in brain atlas, to ensure coverage of the entire
neocortex.

2.3.2. Diffusion MRI
Diffusion-weighted data were acquired using echo-planar imaging

(GRAPPA acceleration factor 2, 65 2 mm-thick axial slices, voxel size of
2 × 2 x 2 mm, phase encoding direction A ≫ P, FoV 220 mm). 10 vols
without diffusion weighting (b= 0 sxmm−2), 30 isotropically dis-
tributed directions using a b-value of 750 sxmm−2, and 60 isotropically
distributed directions a b-value of 3000 sxmm−2 were acquired. A vo-
lume without diffusion weighting with reverse phase encoding (P ≫ A)
was also acquired.

2.3.3. T1 structural
High-resolution anatomical images were acquired with a single-shot

MPRAGE sequence (acceleration factor 2 with GRAPPA method, TR
2400 ms/TE 2.13 ms, effective voxel size 1 × 1 x 1 mm, 176 sagittal

Fig. 2. Task protocol. Example trials of the Non-social Condition (High dimension trial, left) and the Social Condition (Low dimension, right). Each trial started with a 500 ms fixation.
Then the cue word appeared, followed after 1000 ms by the two stimuli pairs. Subjects had a maximum of 5500 ms to respond. A 1000–5000 empty screen served as inter-trial interval.
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slices, distance factor 50%, flip angle 8°, orientation A ≫ P, FoV
256 mm).

2.4. Image analysis

2.4.1. Task session
Functional MRI data processing was carried out using FEAT version

6.00, part of FSL (www.fmrib.ox.ac.uk/fsl). Data were motion corrected
using MCFLIRT [20]. Fieldmap-based distortion correction of the
functional images was carried out using FUGUE and registration to
high-resolution structural and standard space images was carried out
using linear registration. Registration from high resolution structural to
standard space was then further refined using nonlinear registration.
Additional preprocessing consisted of motion correction, removal of
non-brain tissue, high-pass filtering using a 100 s cut-off, spatial
smoothing using a Gaussian kernel of FWHM 5 mm, and grand-mean
intensity normalization of the entire 4D dataset by a single multi-
plicative factor. Afterward, the functional data were manually denoised
using probabilistic independent component analysis [21], identifying
and regressing out obvious noise components [22], considering only the
first 10 components of each participant that had the greatest impact to
interfere with task data.

Time-series statistical analysis was carried out using FILM with local
autocorrelation correction [23]. Statistical analysis was performed at
two levels. At the first level, we used an event-related GLM approach for
each participant. The data from the Non-social and Social runs were
analyzed separately. The model consisted of three regressors: one
capturing Low dimension trials to which the subject responded cor-
rectly, one capturing High dimension trials to which the subject re-
sponded correctly, and one capturing trials with erroneous responses.
Events were time-locked to the presentation of the stimulus and mod-
eled as having a duration from the appearance of the stimulus until the
response. Regressors were convolved with a standard gamma function.
The contrast of interest searched for regions more activated on High
dimension as compared to Low dimension trials. On the second level,
we used FSL's Local Analysis of Mixed Effects (FLAME 1) [24] with
outlier deweighting [25] and tested the single group average. Z-statistic
images were thresholded using clusters determined by Z > 2.3 and a
corrected cluster significance threshold of p = 0.05 [26]. A conjunction
of the group-level results was performed using the minimum statistic
[27] and using clusters determined by Z > 2.3.

Activations were assigned to anatomical areas with the help of
probabilistic atlases for visual cortex [28,29], inferior parietal cortex
[9], superior parietal cortex [30], medial and ventral frontal cortex
[31], and dorsal frontal cortex [32]. A region of interest was drawn
using the Harvard-Oxford Structural atlas (https://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/Atlases).

2.4.2. Resting state fMRI data
Functional MRI data obtained during the resting state session were

preprocessed in the same way as the task-based data, including motion
correction, fieldmap correction, denoising, and registration.
Subsequently, we used seed-based correlation analysis [33] to de-
termine, in separate analyses, the resting state functional connectivity
of each region reported in the task-based analyses. A 3 × 3× 3 voxel
mask in MNI152 2 mm standard space was draw around the peak. The
first eigen time series of the task region was extracted and correlated
with the time course of each grey matter voxel while accounting for the
time course of white matter and cerebrospinal fluid (cf. [34]. The re-
sulting correlation maps were warped to MNI standard space, trans-
formed using Fisher's r-to-z transform and subsequently tested at the
group level using a voxel-wise GLM approach. The same was done for
the lateral frontal pole (FPl), the neighboring medial frontal pole

(FPm), and area 46 as defined by the atlas of Neubert and colleagues
[10] (thresholded at 25% of the population, mirrored to the left
hemisphere and once Fig. 4, top left panel) to allow comparison to their
functional connectivity networks.

2.4.3. Diffusion MRI data
We used diffusion MRI to assess whether the connectivity finger-

print of the areas reported in the task-based fMRI experiment was most
similar to that of FPl or area 46 and FPm. Diffusion MRI data processing
was carried out using FDT version 3.0, part of FSL (www.fmrib.ox.ac.
uk/fsl). An additional b= 0 vol with reversed phase-encoding direction
was used for TOPUP distortion correction [35]. Data were corrected for
eddy currents and the results of TOPUP were used to correct the entire
dataset. We used BedpostX to fit a crossing fiber model to the data [36]
using a multi-shell extension to reduce overfitting of crossing fibers due
to non-monoexponential diffusion decay [37]. Up to two fiber or-
ientations per voxel were allowed. This produced voxel-wise posterior
distributions of fiber orientations that were subsequently used in
probabilistic tractography.

Seed regions were drawn in MNI152 2 mm standard space. To not
bias the results we drew all masks within the same coronal section
(y =−2) and used equally sized seeds placed in anatomical regions
that should reliably contain the body of each tract. The seed region for
the cingulum bundle (CB) was placed in the white matter underneath
the cingulate sulcus (cf. [38], centered at [−8 −2 36]); those for the
first, second, third branches of the superior longitudinal fascicle (SLF)
were place in the superior, middle, and inferior frontal gyrus, respec-
tively (cf. [39], centered at [−16 −2 54, −30−2 38], and [−44 −2
26]); and that for the uncinate fascicle (UF) in the floor of the extreme
capsule connecting the frontal and temporal lobes (cf. [40], centered at
[−32 −2 −10]) (Fig. 5, middle left panel). The seed regions were
warped to each subject's diffusion space and tractography was run from
each of them using the default parameters of probtrackx2. Tracking was
constrained by an exclusion mask between the two hemispheres and a
coronal waypoint at y = 22 to only allow tracts to the ipsilateral frontal
cortex. Tractograms were log transformed and normalized to the
maximum value to allow for comparison between the different sized
target areas and subjects (cf. [41]; [42]) and warped to standard space.
We then created the connectivity fingerprints of FPl, FPm, and area 46
by counting how often any of the tractograms reached these areas as
defined by the atlas of Neubert and colleagues [10] (thresholded at 25%
of the population, mirrored to the left hemisphere and once dilated).
The connectivity fingerprints of the areas resulting from the task-based
fMRI experiment were constructed in a similar manner. Connectivity
fingerprint matching was used to assess whether the task-based regions'
fingerprints differed more from those of each of the atlas-based regions
than expected. This technique uses a permutation testing framework to
test whether the connectivity fingerprints differ by permuting the ca-
tegory label 10000 times [27].

3. Results

3.1. Behavioral data

A repeated measures ANOVA with levels CONDITION (Non-social vs
Social) and DIMENSION (High dimension vs Low dimension) on the
percentage correct responses showed that our manipulation was suc-
cessful in that the High dimension trials were more difficult than the
Low dimension trials (Non-social mean 93.0 (sem 2.2) vs 81.3 (3.8);
Social 71.0 (2.0) vs 66.3 (1.7); main effect of DIMENSION F(1,18)
= 16.695, p = 0.001). The Social condition was overall more difficult
than the Non-social condition (main effect of CONDITION F(1,18)
= 63.332, p < 0.001), but there was no interaction between the two
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factors F(1,18) = 3.732, p = 0.069). A similar pattern was evident for
the reaction times on correct trials (Non-social 1970 (119) vs 2386
(149) ms; Social 3123 (173) vs 3673 (204)) with main effects of
DIMENSION (F(1,18) = 43.416, p < 0.001) and CONDITION (F(1,18)
= 103.646, p < 0.001), but no interaction between the two factors (F
(1,18) = 1.938, p= 0.181).

3.2. Functional imaging data

We set out to test the hypothesis that lateral frontal polar cortex
shows more activation in the High dimension as compared to the Low
dimension trials independent of stimulus type. In the Non-social con-
dition this contrast resulted in four large clusters (Fig. 3, top left;
Table 1). The first was a large cluster in the early visual cortex ex-
tending into Crus I of the cerebellum. Activation along the right intra-
parietal sulcus had local maxima in inferior parietal areas PFt, PFm, and
PGa and superior parietal area 7A. Two clusters were found in the
frontal lobe. There was an extended cluster in the medial frontal cortex,
with prominent local maxima in the rostral cingulate zone at the border
with area 32d, in area 8m, and in pre-SMA, and a lateral cluster in the
left hemisphere concentrated in the lateral frontal pole and extending
into area 47m.

Activation for High as compared to Low dimension trials in the
Social condition was much more extended (Fig. 3, top right; Table 1).
The largest activation was located in the left lateral frontal cortex, with
local maxima in the posterior medial frontal gyrus and the dorsal part of
area 44, extending onto the pre-SMA medially, and frontally extending

from area 9/46 V to FPl and 47 m. Activation in the right lateral pre-
frontal cortex did not extend more ventrally than area 46. As in the
Non-social condition, there was extended activation along the intra-
parietal sulcus, albeit bilateral in this condition. Activation was also
present in the cerebellum, including in Crus I that is connected to the
frontal cortex [33]. It was noticeable that activation in the Social
condition High dimension trials was much more extended than in the
Non-social condition. This might in part be due to the fact that subjects
experienced the Social condition as more difficult, as indicated by their
longer reaction times and higher error rates.

The High vs Low dimensional contrast thus showed activation of the
lateral prefrontal cortex in both the Non-social and Social condition.
Overlapping the two activation maps shows a convergence in the left
intra-parietal sulcus, the medial frontal cortex, and in the left lateral
frontal cortex (Fig. 3, bottom left). A conjunction analysis focusing on a
bilateral frontal pole region of interest as defined in the Harvard-Oxford
structural atlas, which encompasses the medial and lateral frontal pole
and parts of the dorsolateral prefrontal cortex, showed a cluster in the
left lateral frontal pole (Fig. 3, bottom right). This cluster had two local
maxima with Z > 3. The most dorsal at [−30 62 12] is most likely to
belong to area 46. The most ventral at [−32 58 −2] was assigned to
FPl according to our previous parcellation-based atlases [10,31].

3.3. Resting state functional MRI data

In previous work, the lateral frontal pole was dissociated from the
neighboring medial frontal pole and area 46 based on their connectivity

Fig. 3. Task-based fMRI results. Top row shows whole brain activations for the contrast of High dimension greater than Low dimension trials for the Non-social (top left) and Social (top
right) trials (thresholded at Z > 2.3). The overlap of these two maps is displayed in the lower left. The lower right panel shows a conjunction analysis of these maps focusing on a region
of interest of the frontal pole (pink), showing an extensive overlap in the lateral frontal pole, extending in to the dorsolateral frontal cortex (cyan).
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with the rest of the brain. We calculated the whole-brain functional
connectivity of each region (Fig. 4 top right). Compared to FPm, the
connectivity of which resembled that of the default mode network in its
strong medial posterior and medial prefrontal loci, FPl connectivity was
more restricted to the posterior mid-cingulate and dorsomedial pre-
frontal cortex. FPl also showed more extended connectivity with bi-
lateral posterior IPL. Compared to FPl, area 46 functional connectivity
was found in the middle part of the cingulate and was more extensive in
dorsomedial prefrontal cortex. Connectivity in the IPL extended more
anteriorly for area 46 than for FPl.

Functional connectivity of the two regions of interest (ROIs) found
in the task-based experiments are displayed in Fig. 4 (bottom right).
Both showed connectivity with the dorsomedial prefrontal cortex,
posterior part of the cingulate, and posterior part of the IPL. To in-
vestigate the similarity of the connectivity maps of the two ROIs with
those of the three atlas-based region, we calculated the spatial corre-
lation for each subject and averaged across the group. This showed that
for both ROIs, the functional connectivity pattern was most similar to
that of the FPl (Fig. 4, bottom left).

Table 1
Functional activations for the High > Low Dimension contrast in both task conditions.

Anatomical region MNI coordinates Maximum Z-stat

x y z

Non-social High > Low Dimension
Visual cortex and cerebellum cluster
Visual cortex V3V −12 −84 −18 3.77
Viusal cortex V2, BA18 −10 −90 −2 3.46
Visual cortex V1, BA17 −8 −86 2 3.41
Cerebellum Lobule VI −26 −64 −30 3.16
Visual cortex V1, BA17 8 −94 0 3.12
Cerebellum Crus I 12 −84 −24 2.94
Medial frontal cluster
Area 8m −6 26 48 3.98
Pre-SMA −16 18 66 3.78
Premotor cortex, BA6 0 16 60 3.78
Cingulate cortex, RCZa 0 32 34 3.59
Cingulate cortex, area 32d −4 32 32 3.59
Area 8m 4 30 40 3.35

Parietal cluster
Inferior parietal lobule PFt 54 −34 60 3.62
Superior parietal lobule 7A 34 −60 64 3.37
Superior parietal lobule 7A 34 −64 58 3.26
Inferior parietal lobule PFm 52 −42 56 2.68
Superior parietal lobule 7PC 42 −52 66 2.60
Inferior parietal lobule PGa 46 −50 50 2.58

Lateral prefrontal cluster
Lateral frontal pole (FPl) −28 64 12 3.51
Lateral frontal pole (FPl) −28 60 6 3.51
Lateral frontal pole (FPl), Area 46 −32 58 −2 3.25
Lateral frontal pole (FPl) −52 50 −4 3.15
Area 47m −40 44 −6 2.99
Area 47m −52 48 12 2.96

Social High > Low Dimension
Frontal cluster
Area 9/46V −44 26 36 4.39
Pre-SMA −2 20 48 4.36
Area 44d −54 18 28 4.26

Anterior dorsal premotor cortex −26 12 64 4.24
Area 9/46V −44 32 42 4.23
Area 9/46V −46 34 38 4.18

Parietal cluster
Inferior parietal lobule PFm −56 −42 56 4.80
Inferior parietal lobule PFt/PFm −44 −52 56 4.76
Superior parietal lobule 7A −34 −60 56 4.64
Inferior parietal lobule PGa −40 −64 58 4.64
Inferior parietal lobule PGa −38 −46 36 4.31
Superior parietal lobule 7A 42 −56 64 4.30

Visual cortex and cerebellum cluster
Cerebellum Crus I 34 −64 −32 3.75
Brain stem −8 −38 −24 3.65
Visual cortex V1, BA17 14 −90 −4 3.64
Cerebellum lobule X −24 −36 −42 3.59
Cerebellum lobule VI 24 −64 −32 3.57
Visual cortex V1, BA17 12 −88 0 3.51

Lateral prefrontal cluster
Area 44d 56 16 32 4.18
Area 9/46V 40 30 40 3.35
Area 9/46V 42 36 44 3.16
Area 46 34 64 20 3.11
Area 9/46V 42 40 42 3.11
Area 9/46D 34 36 54 3.04

B. Hartogsveld et al. Behavioural Brain Research 355 (2018) 2–11

7



3.4. Diffusion MRI data

To corroborate the resting state fMRI results, we used diffusion MRI
tractography to construct connectivity fingerprints of these areas. We
performed tractography seeded in the bodies of cingulum bundle (CB),
the three branches of the superior longitudinal fascicle (SLF1, SLF2,
SLF3), and the uncinate fascicle (UF) in the left hemisphere. We then
assessed how often the tractograms of these tracts passed through target
regions in FPm, FPl, and area 46. Area 46 was distinguished by having
the strongest connectivity with the superior longitudinal fascicle, while
FPm had the strongest connectivity with the cingulum bundle (Fig. 5,
middle).

Similar connectivity fingerprints were constructed for the dorsal
and ventral areas from the conjunction analysis described in the pre-
vious section. These fingerprints were compared to those of FPm, FPl,
and area 46. The dorsal area's connectivity fingerprint (Fig. 5, middle,
in cyan) differed significantly from that of FPm (p = 0.005; Fig. 5, top
left), but not from either FPl (p= 0.348; Fig. 5, top middle) or area 46
(p = 0.119; Fig. 5, top right). In contrast, the connectivity fingerprint of
the ventral area (Fig. 5, middle, in magenta) differed from both FPm
(p = 0.0174; Fig. 5, bottom left) and–marginally–area 46 (p = 0.047;
Fig. 5, bottom right), but not from FPl (p = 0.842; Fig. 5, bottom
middle).

4. Discussion

We set out to test whether the lateral frontal pole (FPl) is activated
in higher-order relational processing independent of stimulus domain
and whether this part of the brain is the same as that identified in
previous anatomical studies of prefrontal cortex. We replicated the re-
sults of Bunge et al. [12], showing that left FPl was active during
processing of higher-order relations between visuospatial stimuli
judged on shape and texture. An overlapping part of frontal cortex was
active during processing of relations between faces judged on age and
ethnicity. The conjunction analysis showed an extended region of ac-
tivation, with a dorsal local maximum located in territory we assigned
to area 46 and a ventral maximum we assigned to FPl based on pre-
viously published atlases. In the same subjects, we established the
whole-brain resting state functional connectivity profiles of the sub-
parts of lateral prefrontal cortex activated in the task and compared
them with the profiles of atlas-based FPl and neighboring medial frontal
pole and area 46. The task-activated regions had a connectivity profile
most similar to that of FPl. We then used diffusion MRI tractography to
investigate which association fibers reached the task-based regions,
creating their structural connectivity fingerprint. These were compared
to the fingerprints of FPl, FPm, and area 46. This showed that the
ventral ROI differed significantly from FPm and area 46, but not FPl.
The dorsal ROI connectivity fingerprint differed from FPm, but not from
both FPl and area 46. In summary, we conclude that activation of

Fig. 4. Resting state functional connectivity results. Top left displays seed regions of atlas-based areas FPm, FPl, and area 46 and top right displays their whole-brain functional
connectivity (thresholded at Z > 3 for display purposes). Bottom right displays whole-brain functional connectivity of the two local maxima of the conjunction analysis (thresholded at
Z > 3 for display purposes). Bottom left depicts the spatial correction between the connectivity maps of the atlas-based regions and the task-based regions of interest shows that both loci
have a pattern most similar to that of FPl.
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lateral prefrontal cortex during processing of higher-order relations
occurs in an extended territory of the left hemisphere that includes FPl,
independent on the type of visual stimuli used.

The task used in the present study was explicitly chosen to replicate
the existing literature on prefrontal cortex activation in relational in-
tegration paradigms. Although this approach was successful, it does
mean that there are certain inferences we cannot draw from the present
data. For instance, as expected the High dimension condition was more
difficult than the Low dimension condition. The current data cannot
rule out that the frontal cortex activation is driven by this effect of
difficulty. However, we chose this paradigm specifically because since
Bunge and colleagues have validated the role of the lateral frontal pole
it in a number of additional experiments, showing that the its role
generalizes across experimental paradigms and is not driven by con-
founding factors (reviewed in [15]). One study in particular showed
that while activation in a working memory task scaled with difficulty in
dorsolateral prefrontal cortex, this was not the case for rostrolateral
prefrontal cortex [13].

The present results indicate a domain-general role for FPl.
Activation of the same parts of lateral prefrontal cortex was present
during the High dimension trials in both the Non-social and Social
blocks, suggesting that this part of the brain is involved in processing
higher-order relationships independent of the type of visual informa-
tion or the content of the relationship. This extends earlier findings by
Wendelken et al. [43] showing involvement of rostrolateral prefrontal
cortex in visuospatial and semantic versions of the relational integra-
tion task. FPl activation was also shown in a meta-analysis of relational

processing task activations [15]. An interesting question is whether this
is the same area that shows increases in activation in tasks not explicitly
designed to probe relational processing. Our earlier parcellation studies
suggested that anatomically defined FPl overlaps with activation coding
value of unchosen options in decision-making tasks [44]. This decision-
making activity, in turn, has been interpreted in terms of comparing
representations in a similar fashion as in the relational integration task
[45]. Future studies might apply our current approach of combing task-
based activation and anatomical data with paradigms shown to activate
lateral prefrontal cortex in a wider range of circumstances, such as
overcoming emotional biases [46].

We have used function connectivity of the task-based regions with
the rest of the brain to establish whether whole-brain connectivity is
similar to that of the lateral frontal pole, as determined previously. We
emphasize that this approach aims to use function connectivity as a
stable measure of a region's place in the larger cerebral network, rather
than time-varying interactions during task performance as in the case of
effective connectivity [47]. Although the networks found using resting
state functional connectivity can show similarities to the sets of regions
that interact during task performance [48], the focus here is on defining
a region's place in the architecture of the brain. Both resting state fMRI
and diffusion MRI rely on indirect observations that are only partially
indicative of anatomical connections as identified using gold standard
tracer methods. The two methods, however, suffer from different and in
some cases opposite problems, and both have been demonstrated to be
highly replicable. The current approach is therefore able to make reli-
able inferences on some aspects of the anatomy of cortical regions, even

Fig. 5. Tractography results. Middle panel shows the connectivity fingerprints of atlas-based FPm, FPl, and area 46 and the two task based regions of interest (ROIs) with five association
tracts (CB: cingulum bundle; SLF: superior longitudinal fascicle; UF: uncinate fascicle). Axes indicate connectivity strengths averaged across the group. Left-most middle panel shows the
location of the white matter regions of interest. Top and bottom row histograms show the results of the permutation tests, assessing whether the observed data (red lines) is more or less
different from the atlas-based area than criterion (blue line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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without direct reference to tracer data, which is impossible to obtain in
the living, human brain (see Smith et al. [49] for a similar approach).

Here, we have concentrated on group-level activation and con-
nectivity patterns. It has recently been demonstrated that both diffusion
MRI tractography [50] and resting state functional connectivity [51,52]
can predict the loci of task activations in individuals. This is particularly
interesting in the light of findings that anterior prefrontal activation
during relational processing emerges late during development and
correlates with structural changes in connected parts of parietal cortex
[53]. Beyond connectivity, a better appreciation of the anatomy of in-
dividual brains can lead to better localization of task-based activations
[54,55]. An extension of the current work will be to establish the re-
lationship between structure and function at the level of the individual.

Relating task-based loci to specific anatomical regions is of course
more than simple book keeping. The connectivity fingerprint is not only
a unique identifier of a cortical region, it also provides clues concerning
the information a region receives and the influence it can exert. In their
original paper on connectivity fingerprints, Passingham and colleagues
[7] illustrated the relationship between areas' connections and their
neurons' response properties. Using this line of argument, in the study
of motivational and cognitive control the connections of different pre-
frontal regions have been a vital ingredient in various proposals on the
relationship between medial and lateral prefrontal cortex and the
hierarchical organization of regions along prefrontal's rostro-caudal
axis [56,2,57]. Moreover, recent debates about the function of the
anterior cingulate cortex (ACC) in cognitive control have relied on
anatomical arguments to demonstrate that human ACC is similar to that
of the macaque and has access to information useful to a region in-
volved in foraging decisions [58]. In summary, understanding con-
nectional anatomy is a vital tool in understanding the neural basis of
motivational and cognitive control.

As discussed in the Introduction, non-human primates have diffi-
culty with the fast processing of relations between cognitive re-
presentations that humans are capable of. The finding that the lateral
frontal pole might not have a clear homolog in the macaque monkey
brain and the current confirmation that this area overlaps with the
region that is activated during relational processing suggest it might be
involved in this human ability. This is not to suggest that this area
suddenly appeared de novo in the human brain, as it is known that
evolution of cortical specializations is much more complicated [59].
Recent work on the evolution of prefrontal cortex has emphasized the
role of its different parts in performing particular computations that
aided its owner in dealing with the specific challenges presented by his
ecological niche [60,61]. We hope that the present work, linking a
particular anatomical region in the human brain to a specific function,
can c inform this approach.
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