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Abstract. We present KangarooTwelve, a fast and secure arbi-
trary output-length hash function aiming at a higher speed than the
FIPS 202’s SHA-3 and SHAKE functions. While sharing many features
with SHAKE128, like the cryptographic primitive, the sponge construc-
tion, the eXtendable Output Function (XOF) and the 128-bit security
strength, KangarooTwelve offers two major improvements over its
standard counterpart. First it has a built-in parallel mode that efficiently
exploits multi-core or SIMD instruction parallelism for long messages,
without impacting the performance for short messages. Second, relying
on the cryptanalysis results on Keccak over the past ten years, we
tuned its permutation to require twice less computation effort while still
offering a comfortable safety margin. By combining these two changes
KangarooTwelve consumes less than 0.55 cycles/byte for long mes-
sages on the latest Intel�’s SkylakeX architectures. The generic security
of KangarooTwelve is guaranteed by the use of Sakura encoding
for the tree hashing and of the sponge construction for the compression
function.

Keywords: Symmetric cryptography · Hash function · Tree hashing
Keccak · Software performance

1 Introduction

Most cryptography involves careful trade-offs between performance and secu-
rity. The performance of a cryptographic function can be objectively measured,
although it can yield a wide spectrum of figures depending on the variety of
hardware and software platforms that the users may be interested in. Out of
these, performance on widespread processors is easily measurable and naturally
becomes the most visible feature. Security on the other hand cannot be mea-
sured. The best one can do is to obtain security assurance by relying on public
scrutiny by skilled cryptanalysts. This is a scarce resource and the gaining of
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insight requires time and reflection. With the growing emphasis on provable secu-
rity reduction of modes, the fact that the security of the underlying primitives
is still based on public scrutiny should not be overlooked.

In this paper we present the hash function KangarooTwelve, or more
exactly an eXtendable Output Function (XOF). KangarooTwelve makes use
of a tree hash mode with Sakura encoding [9,30] and the sponge construc-
tion [7], both proven secure. Its underlying permutation is a member of the
Keccak-p[1600, nr] family, differing from that of Keccak only in the num-
ber of rounds. Since its publication in 2008, the round function of Keccak
was never tweaked [6]. Moreover, as for most symmetric cryptographic primi-
tives, third-party cryptanalysis has been applied to reduced-round versions of
Keccak. Hence KangarooTwelve’s security assurance directly benefits from
nearly ten years of public scrutiny, including all cryptanalysis during and after
the SHA-3 competition [13].

KangarooTwelve gets its low computational workload per bit from using
the Keccak-f [1600] permutation reduced to 12 rounds. Clearly, 12 rounds pro-
vide less safety margin than the full 24 rounds in SHA-3 and SHAKE func-
tions. Still, the safety margin provided by 12 rounds is comfortable as, e.g., the
best published collision attacks at time of writing break Keccak only up to 6
rounds [15,16,36,37].

The other design choice that gives KangarooTwelve great speed for long
messages is the use of a tree hash mode. This mode is transparent for the user in
the sense that the message length fully determines the tree topology. Basically,
the mode calls an underlying sponge-based compression function for each 8192-
byte chunk of message and finally hashes the concatenation of the resulting
digests. We call this the final node growing approach. Clearly, the chunks can
be hashed in parallel.

The main advantage of the final node growing approach is that implementers
can decide on the degree of parallelism their programs support. A simple imple-
mentation could compute everything serially, while another would process two,
four or more branches in parallel using multiple cores, or more simply, a SIMD
instruction set such as the Intel� AVX2TM. Future processors can even con-
tain an increasing number of cores, or wider SIMD registers as exemplified by
the recent AVX-512TM instruction set, and KangarooTwelve will be readily
able to exploit them. The fixed length of the chunks and the fact that the tree
topology is fully determined by the message length improves interoperability:
The hash result is independent of the amount of parallelism exploited in the
implementation.

KangarooTwelve is not the only Keccak-based parallel hash mode. In
late 2016, NIST published the SP 800-185 standard, including a parallelized hash
mode called ParallelHash [31]. Compared to ParallelHash, KangarooTwelve
improves on the speed for short messages. ParallelHash compresses message
chunks to digests in a first stage and compresses the concatenation of the digests
in a second stage. This two-stage hashing introduces an overhead that is costly
for short messages. In KangarooTwelve we apply a technique called kangaroo
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hopping : It merges the hashing of the first chunk of the message and that of the
chaining values of the remaining chunks [9]. As a result, the two stages reduce
to one if the input fits in one chunk with no overhead whatsoever.

Finally, KangarooTwelve is a concrete application of the Sakura encod-
ing, which yields secure tree hash modes by construction [9].

After setting up some notation conventions in Sect. 2, we specify Kanga-
rooTwelve in Sect. 3. Section 4 gives a rationale and Sect. 5 introduces a closely
related variant called MarsupilamiFourteen. In Sect. 6, we discuss implemen-
tation aspects and display benchmarks for recent processors.

2 Notation

A bit is an element of Z2. A string of bits is denoted using single quotes, e.g., ‘0’
or ‘111’. The concatenation of two strings a and b is denoted a||b. The truncation
of a string s to its first n bits is denoted �s�n. The n times repetition of a bit ‘s’
is denoted ‘sn’, e.g. ‘1104’ = ‘110000’. The empty string is denoted as ∗.

A byte is a string of 8 bits. The byte b0, b1, . . . , b7 can also be represented by
the integer value

∑
i 2

ibi written in hexadecimal. E.g., the bit string 11110010
can be equivalently written as 0x4F as depicted in Fig. 1. The function enc8(x)
encodes the integer x, with 0 ≤ x ≤ 255, as a byte with value x.

The length in of a byte string s is denoted ‖s‖. (0x00)n denotes the n times
repetition of the byte 0x00.

Fig. 1. Example of byte representation

3 Specifications of KangarooTwelve

KangarooTwelve is an eXtendable Output Function (XOF). It takes as input
a message M and an optional customization string C, both byte strings of vari-
able length.

KangarooTwelve produces unrelated outputs on different couples (M,C).
The customization string C is meant to provide domain separation, namely,
for two different customization strings C1 �= C2, KangarooTwelve gives two
independent functions of M . In practice, C is typically a short string, such as a
name, an address or an identifier (e.g., URI, OID). KangarooTwelve naturally
maps to a XOF with a single input string M by setting the customization string
input C to the empty string. This allows implementing it with a classical hash
function API.

As a XOF, the output of KangarooTwelve is unlimited, and the user can
request as many output bits as desired. It can be used for traditional hashing
simply by generating outputs of the desired digest size.

We provide a reference implementation and test vectors in [11].
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3.1 The Inner Compression Function F

The core of KangarooTwelve is the Keccak-p[1600, nr = 12] permutation,
i.e., a version of the permutation used in SHAKE and SHA-3 instances reduced
to nr = 12 rounds [30]. We build a sponge function F on top of this permutation
with capacity set to c = 256 bits and therefore with rate r = 1600 − c = 1344.
It makes use of multi-rate padding, indicated by pad10∗1. Following [30], this is
expressed formally as:

F = sponge[Keccak-p[1600, nr = 12],pad10∗1, r = 1344].

On top of the sponge function F , KangarooTwelve uses a Sakura-
compatible tree hash mode, which we describe shortly.

3.2 The Merged Input String S

First, we merge M and C to a single input string S in a reversible way by
concatenating:

– the input message M ;
– the customization string C;
– the length in bytes of C encoded using length_encode (‖C‖) as in

Algorithm 1.

Algorithm 1. The function length_encode(x)
Input: an integer x in the range 0 ≤ x ≤ 256255 − 1
Output: a byte string

Let l be the smallest integer in the range 0 ≤ l ≤ 255 such that x < 256l

Let x =
∑l−1

i=0 xi256
i with 0 ≤ xi ≤ 255 for all i

return enc8(xl−1)|| . . . ||enc8(x1)||enc8(x0)||enc8(l)

Examples:
length_encode(0) returns 0x00
length_encode(12) returns 0x0C||0x01
length_encode(65538) returns 0x01||0x00||0x02||0x03

Then, the input string S is cut into chunks of B = 8192 bytes, i.e.,

S = S0||S1|| . . . ||Sn−1,

with n =
⌈

‖S‖
B

⌉
and where all chunks except the last one must have exactly B

bytes. Note that there is always one block as S consists of at least one byte.
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3.3 The Tree Hash Mode

When ‖S‖ > B, we have n > 1 and KangarooTwelve builds a tree with the
following final node Node∗ and inner nodes Nodei with 1 ≤ i ≤ n − 1:

Nodei = Si||‘110’
CVi = �F (Nodei)�256
Node∗ = S0||‘11062’||CV1|| . . . ||CVn−1||length_encode(n − 1)

||0xFF||0xFF||‘01’
KangarooTwelve(M,C) = F (Node∗).

The chaining values CVi have length c = 256 bits. This is illustrated in Fig. 2.

Fig. 2. Schematic of KangarooTwelve for ‖S‖ > B, with arrows denoting calls to F .

When ‖S‖ ≤ B, we have n = 1 and the tree reduces to its single final node
Node∗ and KangarooTwelve becomes:

Node∗ = S||‘11’
KangarooTwelve(M,C) = F (Node∗).

3.4 Security Claim

We make a flat sponge claim [8] with 255 bits of claimed capacity in Claim 1.
Informally, it means that KangarooTwelve shall offer the same security
strength as a random oracle whenever that offers a strength below 128 bits
and a strength of 128 bits in all other cases. We discuss the implications of the
claim more in depth in Sect. 4.1.
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Claim 1 (Flat Sponge Claim [8]). The success probability of any attack on
KangarooTwelve shall not be higher than the sum of that for a random oracle
and

1 − e− N2

2256 ,

with N the attack complexity in calls to Keccak-p[1600, nr = 12] or its inverse.
We exclude from the claim weaknesses due to the mere fact that the function can
be described compactly and can be efficiently executed, e.g., the so-called random
oracle implementation impossibility [24], as well as properties that cannot be
modeled as a single-stage game [33].

Note that 1 − e− N2

2256 < N2

2256 .

4 Rationale

In this section, we provide some more in-depth explanations on the design choices
in KangarooTwelve.

4.1 Implications of the Security Claim

The flat sponge claim covers all attacks up to a given security strength of 128
bits. Informally, saying that a cryptographic function has a security strength of
s bits means that no attacks exist with complexity N and success probability p
such that N/p < 2s [26].

The claim covers quasi all practically revelant security of Kanga-
rooTwelve including that of traditional hashing: collision, preimage and second
preimage resistance. To achieve 128-bit security strength, the output n must be
chosen long enough so that there are no generic attacks (i.e., also applicable to
a random oracle) that violate 128-bit security. So for 128-bit (second) preimage
security the output should be at least 128 bits, and for 128-bit collision security
the output should be at least 256 bits.

For many primitives the security strength that can be claimed degrades under
multi-target attacks by log2 M bits with M the number of targets. This is not
the case for the flat sponge claim. As an example, let us take the case of a
multi-target preimage attack versus a single-target preimage attack.

– In a (single-target) preimage attack, the adversary is given a n-bit challenge
y and has to find an input x such that �f(x)�n = y. A random oracle offers
n bits of security strength: After N attempts, the total success probability is
p with p ≈ N2−n. So we have that N/p ≈ 2n for N < 2n and the security
strength for a random oracle is n. For KangarooTwelve we claim security
strength min (n, 128) bits in this case.

– In an M -target preimage attack, the adversary is given M challenges, y1 to
yM , and she succeeds if she find an input x such that �f(x)�n = yi for any
of the challenges. A random oracle with N attempts has success probability
p with of p ≈ MN2−n, and hence N/p ≈ 2n/M . So the security strength
for the random oracle reduces to n − logM bits. For KangarooTwelve we
claim security strength min (n − logM, 128) bits in this case.
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Clearly, the reduction in security due to M targets is generic and independent
of the security strength. It can be compensated for by increasing the output
length n by logM bits.

4.2 Security of the Mode

The security of the mode, or the generic security, relies on both the sponge
construction and on the tree hash mode. The latter is Sakura-compatible so
that it automatically satisfies the conditions of soundness and guarantees security
against generic attacks, see [9, Theorem 1] and [10, Theorem 1]. In both cases,
the bottleneck is the ability to generate collisions in the chaining values, or
equivalently, collisions of the inner hash function.

The probability of inner collisions in the sponge construction is N2/2c+1,
with N the number of blocks [7]. Regarding the collisions in the chaining values
of the tree hash mode, the probability is at most q2/2c+1 [10, Theorem 1] with q
the number of queries to F . Since each query to F implies at least one block to be
processed by the sponge construction, we have q ≤ N and we can bound the sum
of the two probabilities as N2/2c+1 + q2/2c+1 ≤ N2/2(c−1)+1. This expression
is equivalent as if c was one bit less than with a single source of collisions, and
Claim 1 takes this into account by setting the claimed capacity to c − 1 = 255
bits.

We formalize the security of KangarooTwelve’s mode of operation in the
following theorem. We can see the combination of the tree hash mode and the
sponge construction as applied in KangarooTwelve as a mode of operation
of a permutation and call it K.

Theorem 1. The advantage of differentiating K, where the underlying permu-
tation is uniformly chosen among all the possible 1600-bit permutations, is upper
bounded by

2N2 + N

2c+1
,

with N the number of calls to the underlying permutation.

Proof. By the triangle inequality, the advantage in distinguishing K calling a
random permutation from a random oracle is upper bounded by the sum of two
advantages:
– that of distinguishing the tree hash mode calling as inner function a random

function F from a random oracle;
– that of distinguishing the sponge construction calling a random permutation

from a random function.

The former advantage is upper bounded by q2/2c+1, where q is the number
of calls to F . This follows from Theorem 1 of [10] for any sound tree hash mode,
and from Theorem 1 of [9] that says that any Sakura-compatible tree hash
mode is sound. We show that the tree hash mode is indeed Sakura-compatible
in Sect. 4.3.

Following Theorem 2 of [7], the latter advantage is upper bounded by (N2 +
N)/2c+1. Adding the two bounds and using q ≤ N proves our theorem. 	
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4.3 Sakura Compatibility

To show Sakura-compatibility, we use the following terminology. The inputs
to the underlying hash function are called nodes. Each node consists of one or
more hops, and a hop is either a chunk of the message or a sequence of chaining
values.

The encoding of the nodes follows [9, Sect. 3.1]:

– When n = 1, the tree reduces to a single node. This is the final node, and it
contains a single message hop consisting of the input string S followed by the
frame bits “message hop” ‘1’ and “final node” ‘1’.

– When n > 1, there are inner nodes and the final node.
• Each inner node contains a message hop consisting of a chunk Si followed

by the frame bit “message hop” ‘1’; a simple padding bit ‘1’ and “inner
node” ‘0’.

• The final node contains two hops: a message hop followed by a chaining
hop. The message hop is the first chunk of the input string S0 followed
by the frame bit “message hop” ‘1’ and a padding string ‘1′||‘062’ to align
the chaining hop to 64-bit boundaries. The chaining hop consists of the
concatenation of the chaining values, the coded number of chaining values
(length_encode(n − 1)), the indication that there was no interleaving
(I = ∞, coded with the bytes 0xFF||0xFF) and the frame bits “chaining
hop” ‘0’ and “final node” ‘1’.

4.4 Choice of B

We fix the size of the message chunks to make KangarooTwelve a function
without parameters. This frees the user from the burden of this technical choice
and facilitates interoperability.

In particular, we chose B = 8192. First, we chose a power of two as this can
help fetching bulk data in time-critical applications. For instance, when hashing
a large file, we expect the implementation to be faster and easier if the chunks
contain a whole number of disk sectors.

As for the order of magnitude of B, we took into account following consider-
ations. For each B-byte block there is a 32-byte chaining value in the final node,
giving rise to a relative processing overhead of about 32/B. Choosing B = 213,
this is only 2−8 ≈ 0.4%.

Another concern is the number of unused bytes in the last r-bit block of the
input to F . We have r = 1344 bits or R = r/8 = 168 bytes. When cutting the
chunk Si into blocks of R bytes, it leaves W = −(B + 1) mod R unused bytes
in the last block. It turns out that W reaches a minimum for B = 27+6n with
n ≥ 0 an integer. Its relative impact, W

B , decreases as B increases. For small
values, e.g., B ∈ {128, 256, 512}, this is about 30%, while for B = 8192 it drops
below 0.5%.

There is a tension between a larger B and the exploitable parallelism. Increas-
ing B would further reduce these two overhead factors, but it would also delay
the benefits of parallelism to longer messages.
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Finally, the choice of B bounds the degree of parallelism that an implemen-
tation can fully exploit. An implementation can in principle compute the final
node and leaves in parallel, but if more than B/32 leaves are processed at once,
the final node grows faster than B bytes at a time. The chosen value of B allows
a parallelism up to degree B/32 = 256.

4.5 Choice of the Number of Rounds

Opting for the Keccak-p[1600, nr = 12] permutation is a drastic reduction in
the number of rounds compared to the nominal Keccak and to the SHA-3
standard. Still, there is ample evidence from third-party cryptanalysis that the
switch to Keccak-p[1600, nr = 12] leaves a safety margin similar to the one in
the SHA-2 functions.

Currently, the best collision attack applicable to KangarooTwelve or any
SHA-3 instance works only when the permutation is reduced to 5 rounds [36].
The attack extends to 6 rounds if more degrees of freedom are available and
requires a reduction of the capacity from 256 to 160 bits. Preimage attacks
reach an even smaller number of rounds [21]. Hence our proposal has a safety
margin of 7 out of 12 rounds w.r.t. collision and (second) preimage resistance.

Structural distinguishers is the term used for properties of a specific function
that are very unlikely to be present in a random function. Zero-sum distringuish-
ers were applied to the Keccak-p[1600, nr] family of permutations in a number
of publications [3,14,21]. They allow producing a set of input and of output
values that both sum to zero, and this in about half the time it would be needed
on a random permutation with only black-box access. These structural distin-
guishers are of nice theoretical interest, but they do not pose a threat as they do
not extend to distringuishers on sponge functions that use Keccak-p[1600, nr],
see, e.g., [35].

The structural distinguisher on the Keccak sponge function that does reach
the highest number of rounds is the keystream prediction by Dinur et al. [17].
It works when the permutation is reduced to 9 rounds, with a time and data
complexity of 2256, and allows to predict one block of output. This is above the
security claim of KangarooTwelve, but the same authors propose a variant
that works on 8 rounds with a time and data complexity of 2128, leaving a
safety margin of 4 rounds or 33% for KangarooTwelve against this rather
academic attack. Examples of structural distinguishers for the Keccak sponge
function with practical complexity and reaching the highest number of rounds
are reported by Huang et al. and work up to 7 rounds [22].

In comparison, SHA-256 has a collision attack on 31 (out of 64) steps and
its compression function on 52 steps [23,25]. SHA-512’s compression function
admits collision attacks with practical complexities for more than half of its
steps [18].
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5 MarsupilamiFourteen

While KangarooTwelve claims a strong notion of 128-bit security strength,
and we believe any security beyond it is purely of theoretical interest, some users
may wish to use a XOF or hash function with higher security strength. In partic-
ular, when defining a cipher suite or protocol aiming for 256-bit security strength,
all cryptographic functions shall have at least 256-bit security. Coming forward
to such requests, in this section we present a variant of KangarooTwelve with
511-bit claimed capacity.

Addressing a claimed capacity of 511 bits requires an increase of both the
capacity in F and length of chaining values in the tree hash mode to at least
512 bits. Taking exactly c = 512 bits is sufficient for resisting generic attacks
below the claim. As for Keccak-p-specific attacks, the increase of the claimed
capacity to 511 bits increases the available budget of attackers and hence reduces
the safety margin. In many types of attack, adding a round in the primitive
(permutation or block cipher) increases the attack complexity by a large factor.
Or the other way round, if one wishes to keep the same safety margin, an increase
of the attack complexity must be compensated by adding rounds.

We did the exercise and the result is MarsupilamiFourteen. It has the
same specifications as KangarooTwelve, with the following exceptions:

– The capacity and chaining values are 64-byte long instead of 32 bytes. This
reduces the sponge rate in F to 136 bytes.

– The number of rounds of Keccak-p[1600, nr] is 14 instead of 12.
– The claimed capacity in the flat sponge claim is 511 bits instead of 255.

The computational workload per bit is roughly 45% higher than that of Kan-
garooTwelve.

Naturally, even thicker safety margins are achieved with the standard
FIPS 202 instances or ParallelHash [30,31].

6 Implementation

We implemented KangarooTwelve in C and made it available in the Keccak
code package (KCP) [12]. We now review different aspects of this implementation
and its performance.

6.1 Byte Representation

KangarooTwelve assumes that its inputs M and C are byte strings. Sakura
encoding works at the bit level and adds padding and suffixes so that the input
to the function F is a string of bits whose length is in general not a multiple of
8.

It is common practice in implementations of Keccak to represent the last
few bits of a string as a delimited suffix [12]. The delimited suffix is a byte that
contains the last |X| mod 8 bits of a string X, with |X| the length of X in bits,
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followed by the delimiter bit ‘1’, and ending with the necessary number of bits ‘0’
to reach a length of 8 bits. When absorbing the last block in the sponge function
F , the delimiter bit coincides with the first bit ‘1’ of the pad10∗1 padding rule.
An implementation can therefore process the first �|X|/8� bytes of the string S
and, in the last block, simply add the delimited suffix and the second bit of the
pad10∗1 padding rule at the last position of the outer part of the state (i.e., at
position r − 1, with r the rate).

Following the convention in Sect. 2, the delimited suffix of a string with last
bits (s0, . . . , sn−1) can be represented by the value 2n +

∑n−1
i=0 si2i in hexadec-

imal. For KangarooTwelve, this concretely means that the final node with
‖S‖ ≤ B has suffix ‘11’ and delimited suffix 0x07. With ‖S‖ > B the intermedi-
ate nodes with trailing bits ‘110’ use 0x0B (as depicted in Fig. 3), and the final
node ending with ‘01’ will have 0x06 as delimited suffix.

Fig. 3. Example of delimited suffix

On a similar note, the 64-bit string ‘11062’ in the final node is represented
by the bytes 0x03||(0x00)7, still following the convention in Sect. 2.

This approach is taken by the Internet Research Task Force RFC draft
describing KangarooTwelve [38] and in the reference source code in [11].

6.2 Structuring the Implementation

The implementation has an interface that accepts the input message M in pieces
of arbitrary sizes. This is useful if a file, larger than the memory size, must be
processed. The customization string C can be given at the end.

We have integrated the KangarooTwelve code in KCP as illustrated
on Fig. 4. In particular, we instantiate the sponge construction on top of
Keccak-p[1600, nr = 12] to implement the function F , at least to compute the
final node. The function F on the leaves is computed as much in parallel as pos-
sible, i.e., if at least 8B input bytes are given by the caller, it uses a function that
computes 8 times Keccak-p[1600, nr = 12] in parallel; if it is not available and if
at least 4B bytes are given, it computes 4×Keccak-p[1600, nr = 12] in parallel;
and so on. If no parallel implementation exists for the given platform, or if not
enough bytes are given by the caller, it falls back on a serial implementation like
for the final node.

The KCP foresees that the serial and parallel implementations of the
Keccak-p permutation can be optimized for a given platform. In contrast, the
code for the tree hash mode and the sponge construction is generic C, without
optimizations for specific platforms, and it accesses the optimized permutation-
level functions through an interface called SnP (for a single permutation) or
PlSnP (for permutations computed in parallel) [12].
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Fig. 4. The structure of the code implementing KangarooTwelve in the KCP.

To input large messages M , the state to maintain between two calls internally
uses two queues: one for the final node and one for the current leaf. To save
memory, the input bytes are absorbed directly into the state of F as they arrive.
Hence, the state reduces to two times the state of F . Of course, if a message is
known to be smaller than or equal to B bytes, one could further save one queue.

6.3 256-bit SIMD

Current mainstream PC processors, in the Intel� Haswell and Skylake families,
support a 256-bit SIMD instruction set called AVX2TM. We can exploit it to
compute 4 × Keccak-p[1600, nr = 12] efficiently, even on a single core.

On an Intel� CoreTM i5-6500 (Skylake), we measured that one evaluation of
Keccak-p[1600, nr = 12] takes about 450 cycles, while 2 in parallel about 730
cycles and 4×Keccak-p[1600, nr = 12] about 770 cycles. This does not include
the time needed to add the input bytes to the state. Yet, this clearly points out
that the time per byte decreases with the degree of parallelism.

Figure 5 displays the number of cycles for input messages up to 150,000 bytes.
Microscopically, the computation time steps up for every additional R = 168
bytes, but this is not visible on the figure. The time needed to hash messages
of length smaller than 168 bytes thus represents the smallest granularity and is
reported in Table 1. Note that if many very short messages have to be processed,
they can be batched so as to use a parallel implementation. This case is also
reported in Table 1.

Macroscopically, when ‖S‖ < B, the time is a straight line with a slope of
about 2.89 cycles/byte, i.e., the speed for F implemented serially. At ‖S‖ =
B = 8192, there is a slight bump (a) as the tree gets a leaf, which causes
an extra evaluation of Keccak-p[1600, nr = 12]. When ‖S‖ = 3B = 24,576,
two leaves can be computed in parallel and the number of cycles drops. When
‖S‖ = 5B = 40, 960, four leaves can be computed in parallel and we see another
drop. From then on, the same pattern repeats and one can easily identify the
slopes of serial, ×2 and ×4 parallel implementations of Keccak-p[1600, nr = 12].

In our implementation, the final node is always processed with a serial imple-
mentation. In principle, a more advanced implementation could process the final
node in parallel with the leaves. In more details, it would process the first chunk
S0 in parallel with the first few leaves, and it would buffer about B bytes of
chaining values and so as to process them in parallel with leaves. However, at
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Table 1. The overall speed for very short messages (‖S‖ < 168) in cycles, very short
messages when batched in cycles/message, for short messages (‖S‖ ≤ 8192) and for
long (‖S‖ � 8192) messages in cycles/byte. The figures assume a single core in each
case.

Intel�CoreTM Very short m. Batched v.s.m. Short m. Long m.

Intel�CoreTM i5-4570 (Haswell) 618 c 242 c/m 3.68 c/b 1.44 c/b

Intel�CoreTM i5-6500 (Skylake) 486 c 205 c/m 2.89 c/b 1.22 c/b

Intel�CoreTM i7-7800X (SkylakeX) 395 c 92 c/m 2.35 c/b 0.55 c/b

this point, we preferred code simplicity over speed optimization. Similarly, one
could in principle remove the peaks of Fig. 5 and make it monotonous. It could
be achieved by using, e.g., the fast 4 × Keccak-p[1600, nr = 12] implementation
even if there are less than 4B bytes available, with some dummy input bytes.
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Fig. 5. The number of cycles of KangarooTwelve on an Intel�CoreTM i5-6500 (Sky-
lake) as a function of the input message size.

Figure 6 shows the implementation cost in cycles per bytes. To determine
the speed in cycles per byte for long messages in our implementation, we need
to take into account both the time to process 4B input bytes in 4 leaves (or a
multiple thereof) and 4 chaining values in the final node. Regarding the latter,
21 chaining values fit in exactly 4 blocks of R = 168 bytes. Hence, we measure
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Fig. 6. The number of cycles per byte of KangarooTwelve on an Intel�CoreTM

i5-6500 (Skylake) as a function of the input message size.

the time taken to process an extra 84B = lcm(4B, 21B) bytes. These results are
reported in Table 1, together with measurements on short messages.

6.4 512-bit SIMD

Recently, Intel� started shipping processors with the AVX-512TM instruction
set. It supports 512-bit SIMD instructions, enabling efficient implementations
of 8 × Keccak-p[1600, nr = 12]. In addition to a higher degree of parallelism,
some new features of AVX-512TM benefit to the implementation of Kanga-
rooTwelve, of ParallelHash and of Keccak in general.

– Rotation instructions. With the exception of AMD’s XOPTM, earlier SIMD
instruction sets did not include a rotation instruction. This means that the
cyclic shifts in θ and ρ had to be implemented with a sequence of three
instructions (shift left, shift right, XOR). With a rotation instruction, cyclic
shifts are thus reduced from three to one instruction.

– Three-input binary functions. AVX-512TM offers an instruction that produces
an arbitrary bitwise function of three binary inputs. In θ, computing the
parity takes four XORs, which can be reduced to two applications of this new
instruction. Similarly, the non-linear function χ can benefit from it to directly
compute ax + (ax+1 + 1)ax+2.
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Table 2. Speed comparison. All figures are in cycles per byte for long messages, unless
otherwise specified.

Function SkylakeX Skylake Haswell

KangarooTwelve 0.55 1.22 1.44

KangarooTwelve (≤8KiB) 2.35 2.89 3.68

ParallelHash128 0.96 2.31 2.73

Blake2bp 1.39 1.34 1.37

Blake2sp 1.22 1.29 1.39

SHAKE128 4.28 5.56 7.09

MD5 4.33 4.54 4.93

SHA-1 3.05 3.07 4.15

SHA-256 6.65 6.91 9.27

SHA-512 4.44 4.64 6.54

Blake2b 2.98 3.04 3.08

Blake2s 4.26 4.85 5.34

Blake-256 5.95 6.76 7.52

Blake-512 4.48 5.19 5.68

Grøstl-256 7.24 8.13 9.35

Grøstl-512 9.95 11.31 13.51

JH 13.04 15.14 15.09

Skein 4.48 5.18 5.34

– 32 registers. Compared to AVX2TM, the new processors increase the num-
ber of registers from 16 to 32. As Keccak-p has 25 lanes, this significantly
decreases the need to move data between memory and registers.

We report in Table 1 the speed of our current implementation on a machine
equipped with a processor in the Intel� SkylakeX family, supporting this instruc-
tion set [12].

6.5 Comparison with Other Functions

To put the speed of KangarooTwelve in perspective, we compare it to typ-
ical hash functions, including the traditional standards MD5, SHA-1 and SHA-
2 [28,29,34], the SHA-3 finalists [2,19,20,39], the popular Blake2 functions [4]
and some SHA-3 instances [30,31]. For consistency, wherever possible we per-
formed benchmarks on three machines in our possession. Moreover, we cross-
checked with the publicly available eBASH results [5] and in case of discrepancy,
we selected the fastest. For the traditional hash functions, the fastest implemen-
tation often came from OpenSSL [32]. For Blake2, we included some specific
AVX2TM code by Samuel Neves [27]. Note that the comparison on SkylakeX
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must be taken with care, as not all implementations available at the time of this
benchmarking are fully optimized for the AVX-512TM instruction set.

Table 2 shows the results. We first list hash functions that explicitly exploit
SIMD instructions with a built-in tree hash mode, such as ParallelHash and
Blake2{b, s}p, and compare them to KangarooTwelve for long messages (or
when it is used for hashing multiple messages in parallel).

It is interesting to compare the other hash functions to KangarooTwelve
when it is restricted to serial processing (as for short messages), to see its speed
gain already before the parallelism kicks in. Of course, such a restriction does
not exist when hashing a large file, and in practice the comparison should also
be made with KangarooTwelve for long messages.

7 Conclusion

KangarooTwelve can be seen as a new member of the Keccak family. It
inherits all the properties of the family such as suitability in hardware and resis-
tance against side-channel attacks, but grew up with a strong focus on software
performance and interoperability. We tuned the mode and the primitive to offer
a tremendous computational speedup in many applications while keeping a com-
fortable security margin. The latter is confirmed by the cryptanalysis results on
Keccak accumulated over the last ten years, which are directly applicable to
the new sibling. Also, all existing Keccak implementations can be reused with
minimal effort thanks to the layered approach in the design. For instance, Kan-
garooTwelve benefits immediately from the new SHA-3 hardware support
recently introduced in the ARMv8.2 instruction set [1].

The speedup benefits to both low-end and high-end processors. For the low
end, one immediately benefits from the reduction in the number of rounds, and
care was taken not to add overhead in the case of short messages.

At the high end, we observed that KangarooTwelve gets significant per-
formance improvements in recent processors, which go beyond the mere gain due
to parallelism. Part of these improvements come from the choice of low-latency
Boolean operations in the primitive that superscalar architectures can imple-
ment efficiently, as demonstrated in the latest Intel�’s SkylakeX processors with
the introduction of three-input binary functions.

On such a processor, KangarooTwelve processes long messages at
0.55 cycles/byte. At this speed, it would require only one of its cores to process,
in real-time, the output of 10 high-speed solid-state drives (SSD), i.e., accumu-
lated bandwidth of more than 7 GB/s per core (assuming a clock frequency
of 4 GHz). This simply illustrates that with KangarooTwelve the speed of
hashing is no longer a bottleneck in software applications.

Acknowledgements. Our implementation for the serial processing is based on the
AVX2TM code written by Andy Polyakov for OpenSSL. We would also like to thank
the anonymous reviewers for their constructive comments.
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