Search for Low-Mass Dijet Resonances Using Trigger-Level Jets with the ATLAS Detector in pp Collisions at $\sqrt{s} = 13$ TeV

M. Aaboud et al.* (ATLAS Collaboration)

(Received 11 April 2018; published 22 August 2018)

Searches for dijet resonances with sub-TeV masses using the ATLAS detector at the Large Hadron Collider can be statistically limited by the bandwidth available to inclusive single-jet triggers, whose data-collection rates at low transverse momentum are much lower than the rate from standard model multijet production. This Letter describes a new search for dijet resonances where this limitation is overcome by recording only the event information calculated by the jet trigger algorithms, thereby allowing much higher event rates with reduced storage needs. The search targets low-mass dijet resonances in the range 450–1800 GeV. The analyzed data set has an integrated luminosity of up to 29.3 fb$^{-1}$ and was recorded at a center-of-mass energy of 13 TeV. No excesses are found; limits are set on Gaussian-shaped contributions to the dijet mass distribution from new particles and on a model of dark-matter particles with axial-vector couplings to quarks.

DOI: 10.1103/PhysRevLett.121.081801

Introduction.—If new particles beyond those of the standard model (SM) are directly produced in proton-proton (pp) collisions at the Large Hadron Collider (LHC), they must interact with the constituent partons of the proton, and can therefore also decay into the same partons, resulting in two-jet final states. Quantum chromodynamics (QCD) predicts that dijet events have an invariant mass distribution (m_{jj}) that falls smoothly, whereas a new state decaying to two partons would emerge as a localized excess in the distribution.

Traditional dijet searches at the LHC focus on the production of heavy particles with masses above 900 GeV [1–3]. LHC searches for lighter resonances with small production cross sections have been hampered by restrictions in the data-taking rate of the ATLAS and CMS detectors. Single-jet triggers with a jet p_T threshold below roughly 380 GeV are prescaled, a procedure whereby only a fraction of the events passing the trigger are recorded; hence, dijet events with an invariant mass below 1 TeV are largely discarded by the trigger system, as indicated in Fig. 1. Therefore, despite the large number of pp collisions produced by the LHC, traditional ATLAS and CMS searches are less sensitive to dijet resonances below 900 GeV than searches at the SPS and Tevatron colliders [4–9]. Alternative trigger strategies to search for low-mass resonances include selecting events with jets recoiling against either an energetic photon or an additional energetic jet [10–12], or selecting events with decays to heavy-flavor jets [13,14]. In these cases, additional features in the events reduce the data-taking rates, reducing the sensitivity to low-mass resonances.

This Letter describes an innovative data-taking approach to access the invariant mass region below 1 TeV; only a reduced set of information from the trigger system is recorded and subsequently analyzed. The Trigger-object Level Analysis (TLA) approach allows jet events to be recorded at a peak rate of up to twice the total rate of events using the standard approach, while using less than 1% of...
the total trigger bandwidth [15]. This strategy is used in
dijet resonance searches in $\sqrt{s} = 8$ and 13 TeV LHC pp
collision data by the CMS Collaboration [16,17], and it is
used by the LHCb Collaboration (e.g., [18]). The analysis
presented here uses 29.3 fb$^{-1}$ of $\sqrt{s} = 13$ TeV pp
collision data recorded in 2016 by the ATLAS detector.

ATLAS detector and data sample.—The ATLAS detector
[19] is a multipurpose detector with a forward-backward
symmetric cylindrical geometry and nearly 4π coverage in
solid angle [20], consisting of tracking detectors, calorimeters,
and a muon spectrometer. In the pseudorapidity region $|\eta| < 3.2$, high-granularity lead and liquid-argon
(LAr) electromagnetic sampling calorimeters are used.
A steel and scintillator hadronic tile calorimeter provides
coverage in the range $|\eta| < 1.7$. Hadronic calorimetry in the
endcap region, $1.5 < |\eta| < 3.2$, and electromagnetic and
hadronic calorimetry in the forward region, $3.1 < |\eta| < 4.9$,
are provided by LAr sampling calorimeters. A two-level
trigger system is used to select events for offline storage
[15]. A first-level (L1) trigger based on dedicated hardware
identifies jets from $\Delta \eta \times \Delta \phi = 0.2 \times 0.2$ calorimeter seg-
ments with a sliding-window algorithm. Events passing the
L1 trigger are processed by a software-based high-level
trigger (HLT). The HLT system reconstructs jets using the
anti-k_t algorithm [21,22] with radius parameter $R = 0.4$.
The inputs to this algorithm are groups of contiguous
jet calibrations that the ATLAS offline jet reconstruction
includes is based on the significance of its energy deposit
over calorimeter noise [23]. Jet four-momenta are com-
puted by summing over the four-momenta of the topologi-
ical clusters that compose the jet, with each cluster pointing
to the center of the ATLAS detector and being treated as
massless. The HLT jet reconstruction uses the same
that the ATLAS offline jet reconstruction applies to similar inputs from recorded data events that
include the full detector information [15].

After execution of the HLT jet algorithm, only trigger-
level jets with $p_T > 20$ GeV are stored. The stored informa-
tion includes the four-momentum of each jet and a set of
calorimeter variables characterizing the jet [24], such as
information about the jet quality and structure. The average
size of these events is less than 0.5% of the size of full
offline events that contain all detector information. For this
analysis, all events containing at least one L1 jet with $E_T > 100$ GeV are selected and recorded, corresponding to
a total luminosity of 29.3 fb$^{-1}$. Events containing a L1 jet
with $E_T > 75$ GeV are also selected, in a subset of these
data corresponding to 3.6 fb$^{-1}$ that were collected at the
start of the data-taking period. Events with at least one
L1 jet with $E_T > 100$ GeV are therefore included in both
data sets.

Calibration procedure.—After the events are recorded,
the trigger-level jet energy and direction are corrected to
those of simulated particle-level jets built from stable
particles with a lifetime longer than 10 ps, excluding
muons and neutrinos. Before any calibration, the jet p_T
response, defined as the p_T ratio of a trigger-level jet to the
same jet [25] reconstructed offline (offline jet), is between
0.95 and 1.05 in the p_T range considered by this analysis.
Since the energy scale for trigger-level and offline jet are
very similar, the trigger-level jet calibration employs the
same procedure and constants as derived for offline
jets [26], with some modifications to account for the
unavailability of tracking information for trigger-level jets.

In the calibration procedure, summarized in Fig. 2, an
event-by-event jet-area-based calibration [27] is used to
correct for contributions from additional proton-proton
interactions (pileup) in the same and neighboring crossings
of proton bunches. Then, the simulation-based calibration
derived for offline jets is applied to trigger-level jets to
correct both jet energy and direction. Next, calorimeter-
based variables are used to reduce the dependence on the
trigger-level jet flavor and to minimize the impact of energy
leakage. Only variables related to the trigger-level jet
energy fractions in the electromagnetic and hadronic
calorimeters and the minimum number of calorimeter cells
containing 90% of the trigger-level jet energy are used here
since track-based variables, which are normally used in the
offline calibration, are not available. With this correction,
the trigger-level jet energy resolution is improved by 8% at
jet p_T values of 85 GeV and up to 40% for jet p_T values of
1 TeV relative to the previous calibration step. Next, the
calibration corrections that restore the relative calibration
between central and forward jets in data and simulation are
derived for offline jets and applied to trigger-level jets.

After these calibration steps, any residual difference
between trigger-level jets and offline jets is accounted for
in a dedicated correction, based on the p_T response and
derived from data in bins of jet η and p_T. The size of this
correction is on average 1%, with values reaching up to 4%
in the endcap regions of the calorimeter.

Finally, an in situ calibration is obtained from the data-
to-simulation ratio of the p_T balance between offline jets
and well-calibrated objects against which the jets recoil.
Three different types of well-calibrated objects are used to
span the full p_T range of the jets: Z bosons decaying to
electrons or muons, photons, and multijets. A polynomial
in log(p_T) is simultaneously fit to the three input mea-
surements to combine them. The resulting curve is taken as
the calibration correction to be applied to trigger-level jets. In deriving the final calibration curve, the fit is chosen over the simple spline-based combination procedure used for offline jets in Ref. [26]; this procedure is more robust against localized fluctuations in the jet p_T distribution that result in deviations from the expected smoothly falling invariant mass spectrum. Any dependence of the final mass spectrum on the parametrization of the jet energy scale calibration is tested by comparing different parametrizations on the data as well as on simulations. The fitted *in situ* calibration curve is compared to the spline-based smoothing procedure in Fig. 3. After the full calibration procedure, the energy of trigger-level jets is equivalent to that of offline jets to better than 0.05% for invariant masses of 400 GeV and their difference is negligible for invariant masses of 1 TeV.

Energy scale and resolution uncertainties derived for offline jets [26] are applied to trigger-level jets in the signal simulation, with additional uncertainties equivalent to the size of the final trigger-to-offline correction (1%–3%). The uncertainty due to the modeling of pileup effects and due to the jet parton flavor are derived specifically for trigger-level jets and are comparable to those of offline jets. The jet energy scale uncertainty for trigger-level jets at 200 GeV ranges from 1% at $|\eta| < 0.8$ to 2% in the region between the central and endcap regions ($1.0 < |\eta| < 1.5$).

Event selection.—The dijet event selection for this analysis is similar to the one used in Ref. [3]. Events must contain at least two trigger-level jets with $|\eta| < 2.8$. The leading trigger-level jet must have either $p_T > 185$ GeV or $p_T > 220$ GeV for the $E_T > 75$ GeV and $E_T > 100$ GeV L1 trigger selections, respectively; this ensures that the L1 triggers are fully efficient. The second leading jet must have a $p_T > 85$ GeV. Events that contain jets induced by calorimeter noise bursts, beam-induced background, or cosmic rays are rejected using the same criteria as in Ref. [24], but omitting the track-based charged fraction selection, which is not available for trigger-level jets. This has a negligible effect for this analysis, since most of these backgrounds are already removed by requiring two central jets, as described below. The efficiency and purity of jets passing the selection are measured with a tag-and-probe method using data events with the full detector information. The trigger-level jet reconstruction efficiency is 100% for jets with $p_T > 85$ GeV. The fraction of trigger-level jets that are not reconstructed and selected offline is below 0.1%.

This analysis searches for a dijet resonance with a mass between 450 and 1800 GeV. Two different selection criteria are used for different but overlapping ranges of the m_{jj} spectrum. To search for resonances with 700 GeV $< m_{jj} < 1800$ GeV, events are required to have $|y^\star| < 0.6$, where $y^\star = (y_1 - y_2)/2$ and y_1 and y_2 are the rapidities of the highest- and second-highest p_T trigger-level jets. To search for lower-mass resonances, with $m_{jj} > 450$ GeV, events with $|y^\star| < 0.3$ are selected from the smaller data sample requiring a L1 jet with $E_T > 75$ GeV. The more stringent choice of $|y^\star| < 0.3$ selects higher-p_T jets at a given invariant mass and thus provides a mass distribution that is unbiased by the leading-jet selection from $m_{jj} = 450$ GeV.

Background estimation.—The invariant mass spectrum expected from SM dijet production is predicted to be smooth and falling. Prior dijet searches at various collision energies [7,28–32] have found a variety of simple functional forms to describe this shape; however, given the statistical precision of the data and the wide invariant mass range covered by this search, none of the simple, simple functional forms can provide a good description of the data.

The SM background distribution is determined using a sliding-window fit [3], where a fitted functional form is evaluated at the bin at the center of a window, which then slides in one-bin steps along the m_{jj} distribution. The evaluated background estimates evaluated in each bin are then collated to form the final background estimate. The signal selection with $|y^\star| < 0.6$ uses a window size of 19 bins in the m_{jj} spectrum from 531 to 2080 GeV, which spans 34 bins in total. The signal selection with $|y^\star| < 0.3$ uses a window size of 27 bins over a total of 40 bins, in the range $400 < m_{jj} < 2080$ GeV. The bin sizes have been chosen according to the simulated invariant mass resolution: $\sigma_{p_T}/p_T = 10.6/p_T^{0.27}/\sqrt{p_T^{0.039}}$. The sliding window, however, can not be extended beyond the lower edge of the m_{jj} range used in each signal selection. Therefore, for the first 9 (13) bins in the $|y^\star| < 0.6$ ($|y^\star| < 0.3$) signal selection, which corresponds to one half of the window size, the window is fixed to the lower edge of the spectrum and instead of evaluating the fitted functional form at the window center, it is evaluated for each bin in turn. For invariant masses higher than the m_{jj} range used for the search, the window is allowed to extend.
beyond the range, to 2970 (3490) GeV for the $|y^*| < 0.6$ (0.3) signal selection, and the fit is evaluated at the center of the window.

In each sliding window, three functional forms are fit to the data: a five-parameter function of the form

$$f(x) = p_1(1 - x)p_2x^2p_3 + p_1ln x + p_3ln x^2,$$

where p_i are free parameters and $x \equiv m_{jj}/\sqrt{s}$; a four-parameter function, which is the same as Eq. (1) but with $p_3 = 0$; and a four-parameter function used by the UA2 Collaboration [28], defined as

$$f(x) = \frac{p_1}{x^p_2} e^{-p_3x^2-p_4x^2}. \quad (2)$$

The function used for each signal selection is the one that yields the best χ^2 over the full fitted m_{jj} range. An alternative function is chosen to evaluate a systematic uncertainty. For the signal selection with $|y^*| < 0.6$, Eq. (1) is used, yielding a χ^2 p value of 0.13, while the alternative function is the four-parameter function with a χ^2 p value of 0.11. For the signal selection with $|y^*| < 0.3$, the four-parameter version of Eq. (1) yields the best χ^2 p value of 0.42 and the alternative function is Eq. (2), with a χ^2 p value of 0.35.

The size of the sliding window is optimized to yield the best χ^2 value for the full m_{jj} range while still being larger than the width of the expected signals and therefore insensitive to potential signal contributions. This latter requirement is checked by including signal models in pseudo-data samples and studying the dependence of the signal sensitivity on different window sizes.

Systematic uncertainties in the estimate of the background used in setting limits include the uncertainty due to the choice of functional form and uncertainties in the fit parameter values. The effect of the choice of functional form is evaluated by comparing the nominal function to the alternative. The uncertainties in the fit parameter values are evaluated using pseudoexperiments, where the pseudodata are drawn from Poisson fluctuations around the nominal background model.

Results and limits.—Figure 4 shows the invariant mass distributions for dijet events in each signal region including the results from the sliding-window background estimates. The χ^2 p value of the overall background is 0.13 for the $|y^*| < 0.6$ signal selection and 0.42 for the $|y^*| < 0.3$ signal selection, indicating that the data agrees well with the background estimate. The most discrepant interval identified by the BumpHunter algorithm [33,34] is 889–1007 GeV for events with $|y^*| < 0.6$. Accounting for statistical uncertainties only, the probability of observing a deviation at least as significant as that observed in data, anywhere in this distribution, is 0.44 and corresponds to significance of 0.16σ. Thus, there is no evidence of any localized excess.

Limits are set on both a leptophobic Z' simplified dark-matter model [36] and a generic Gaussian model. The Z' simplified model assumes axial-vector couplings to SM quarks and to a Dirac fermion dark-matter candidate. No interference with the SM is simulated. Signal samples were generated so that the decay rate of the Z' into dark-matter particles is negligible and the dijet production rate and resonance width depend only on the coupling of the Z' to quarks, g_q, and the mass of the resonance, $m_{Z'}$ [9]. The model’s matrix elements were calculated in MADGRAPH 5 [37] and parton showering was performed in PYTHIA 8 [38] with the A14 set of tuned parameters for underlying event [39] and NNPDF2.3 parton distribution functions [40]. The width of a Z' resonance with $g_q = 0.10$, including parton shower and detector resolution effects, is approximately 7%. Limits are set on the cross section, σ, times acceptance, A, times branching ratio, B, of the model, and then displayed in the $(g_q, m_{Z'})$ plane [41]. The acceptance for a mass of 550 GeV is 20% for a Z' simplified model with $g_q = 0.10$ for the $|y^*| < 0.3$ signal selection, and 41% for a signal of mass equal to 750 GeV for the $|y^*| < 0.6$ signal selection.

Limits are also set on a generic model where the signal is modeled as a Gaussian contribution to the observed m_{jj} distribution. For a given mean mass, m_G, four different Gaussian widths are considered: a width equal to the simulated mass resolution (which ranges between 4% and 6%), and the fixed fractions 5%, 7%, and 10% of m_G. As the width increases, the expected signal contribution is distributed across more bins. Wider signals are
window fit. In the observed and expected limits, the fit includes the signal shape in addition to the background parameterization, and can adapt to local data fluctuations that mimic a signal shape. The $|y^*| < 0.6$ signal region, which uses a smaller sliding-window size, is especially sensitive to the difference in the two approaches. Therefore, A Bayesian method is applied to the data and simulation of the signal models at a series of discrete masses to set 95% credibility-level upper limits on the cross section times acceptance [30] for the signals described above. The method uses a constant prior for the signal cross section and Gaussian priors for nuisance parameters corresponding to systematic uncertainties. For both observed and expected limits, the sliding window fit is performed for each value of the mass parameter, adding the tested signal shape with a floating normalization to the functional forms stated above. The expected limits are calculated using pseudoexperiments generated from the fit parameters of those functional forms. The uncertainties on the Z' signal model include the jet energy scale and the luminosity. The impact of the jet energy resolution uncertainty is negligible. For the Gaussian model, a constant jet energy scale uncertainty of 3% is applied in accordance with the measured impact of this uncertainty on the Z' samples. The uncertainty in the integrated luminosity is $\pm 2.2\%$, derived following a methodology similar to that detailed in Ref. [42]. The systematic uncertainties in the background estimate include the choice of the fit function and the uncertainty in the fit parameter values, as described above.

Figure 5 shows limits on the coupling to quarks, g_q, as a function of the mass m_Z' for the Z' model. Figure 6 shows limits on a possible Gaussian contribution with a width equal to the detector resolution as a function of the mean mass, m_G. In both the Z' and Gaussian models, upper limits for masses from 450 to 700 GeV are derived using the distribution with $|y^*| < 0.3$, which is sensitive to the lower masses. Limits for masses above 700 GeV are derived from the m_{jj} distribution with $|y^*| < 0.6$, except for Gaussian signals with a width of 10% where only the $|y^*| < 0.3$ distribution is used.

The limit results show an upward fluctuation at masses of approximately 1 TeV in the $|y^*| < 0.6$ signal region. This is not seen in Fig. 4; when searching for excesses in the data, a background-only hypothesis is used for the sliding
limits were not set on signals with a width of 10% for the $|\gamma^*| < 0.6$ signal region as the signal is too wide for the sliding-window size.

Conclusions.—In conclusion, this analysis searches for resonances with masses between 450 GeV and 1800 GeV in dijet events using trigger-level jets in 29.3 fb$^{-1}$ of \sqrt{s} = 13 TeV proton-proton collision data recorded by the ATLAS detector at the LHC. The invariant mass distribution presents no significant local excesses compared to the estimated SM background. This analysis provides 95% credibility-level limits on Z' signals and cross sections for new processes that would produce a Gaussian contribution to the dijet mass distribution. Over much of the mass range, the sensitivity to the coupling to quarks, g_q, is improved by a factor of 2 or more compared to pre-LHC and \sqrt{s} = 8 and 13 TeV ATLAS results, and is comparable to CMS searches at \sqrt{s} = 8 and 13 TeV using this technique. Gaussian contributions with effective cross sections times acceptance ranging from approximately 6.5 pb at 450 GeV, to 0.4 pb at 700 GeV, to 0.05 pb at 1800 GeV are excluded.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSTD, CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IFRF, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNISW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [43].

[20] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upwards. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln\tan(\theta/2)$. The rapidity, y, is defined as $\frac{1}{2}\ln[(E + p_z)/(E - p_z)]$, where E denotes the energy of the jet and p_z the momentum component of the jet along the beam direction. Angular distance is measured in units of $\Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2}$.

[25] The trigger-level and offline jets are matched within a radius of $\Delta R = 0.4$.

PHYSICAL REVIEW LETTERS 121, 081801 (2018)
Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
Department of Physics, University of Arizona, Tucson, Arizona, USA
Department of Physics, University of Texas at Arlington, Arlington, Texas, USA
Physics Department, National and Kapodistrian University of Athens, Athens, Greece
Physics Department, National Technical University of Athens, Zografou, Greece
Department of Physics, University of Texas at Austin, Austin, Texas, USA
Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
Department of Physics, Bogazici University, Istanbul, Turkey
Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Institut de Física d’Altes Energies (IAFE), Barcelona Institute of Science and Technology, Barcelona, Spain
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
Physics Department, Tsinghua University, Beijing, China
Department of Physics, Nanjing University, Nanjing, China
University of Chinese Academy of Science (UCAS), Beijing, China
Institute of Physics, University of Belgrade, Belgrade, Serbia
Department for Physics and Technology, University of Bergen, Bergen, Norway
Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Centro de Investigaciones, Universidad Antonio Nariño, Bogota, Colombia
Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
Physikalisches Institut, Universität Bonn, Bonn, Germany
Department of Physics, Boston University, Boston, Massachusetts, USA
Department of Physics, Brandeis University, Waltham, Massachusetts, USA
Transilvania University of Brasov, Brasov, Romania
Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca, Romania
University Politehnica Bucharest, Bucharest, Romania
West University in Timisoara, Timisoara, Romania
Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic
Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
Physics Department, Brookhaven National Laboratory, Upton, New York, USA
Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, University of Cape Town, Cape Town, South Africa
Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa
School of Physics, University of the Witwatersrand, Johannesburg, South Africa
Department of Physics, Carleton University, Ottawa, Ontario, Canada
Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco
Centre National de l’Energie des Sciences Techniques Nucleaires (CENESN), Rabat, Morocco
Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco
Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
Faculté des sciences, Université Mohammed V, Rabat, Morocco
CERN, Geneva, Switzerland
Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France
Nevis Laboratory, Columbia University, Irvington, New York, USA
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Dipartimento di Fisica, Università della Calabria, Rende, Italy
INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
1
Physics Department, Southern Methodist University, Dallas, Texas, USA
2
Physics Department, University of Texas at Dallas, Richardson, Texas, USA
3
Department of Physics, Stockholm University, Sweden
4
Oskar Klein Centre, Stockholm, Sweden
5
Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany
6
Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
7
Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
8
Department of Physics, Duke University, Durham, North Carolina, USA
9
SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
10
INFN e Laboratori Nazionali di Frascati, Frascati, Italy
11
II. Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
12
Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland
13
Dipartimento di Fisica, Università di Genova, Genova, Italy
14
INFN Sezione di Genova, Italy
15
II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
16
SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
17
LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France
18
Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
19
Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, China
20
Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
21
School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai, China
22
Tsung-Dao Lee Institute, Shanghai, China
23
Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
24
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
25
Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
26
Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
27
Department of Physics, University of Hong Kong, Hong Kong, China
28
Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
29
Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
30
Department of Physics, Indiana University, Bloomington, Indiana, USA
31
INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
32
ICTP, Trieste, Italy
33
Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
34
INFN Sezione di Lecce, Italy
35
Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
36
INFN Sezione di Milano, Italy
37
Dipartimento di Fisica, Università di Milano, Milano, Italy
38
INFN Sezione di Napoli, Italy
39
Dipartimento di Fisica, Università di Napoli, Napoli, Italy
40
INFN Sezione di Pavia, Italy
41
Dipartimento di Fisica, Università di Pavia, Pavia, Italy
42
INFN Sezione di Pisa, Italy
43
Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
44
INFN Sezione di Roma, Italy
45
Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
46
INFN Sezione di Roma Tor Vergata, Italy
47
Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
48
INFN Sezione di Roma Tre, Italy
49
Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
50
INFN-TIFPA, Italy
51
Università degli Studi di Trento, Trento, Italy
52
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
53
University of Iowa, Iowa, City Iowa, USA
54
Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA
55
Joint Institute for Nuclear Research, Dubna, Russia
Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Brazil
Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
Universidade Federal de São João del Rei (UFSJ), São João del Rei, Brazil
Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Egham, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Louisiana Tech University, Ruston, Louisiana, USA
Fysiska institutionen, Lunds universitet, Lund, Sweden
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
Departmento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst, Massachusetts, USA
Department of Physics, McGill University, Montreal, Quebec, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, University of Michigan, Ann Arbor, Michigan, USA
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Belarus
Group of Particle Physics, University of Montreal, Montreal, Quebec, Canada
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
National Research Nuclear University MEPhI, Moscow, Russia
D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb, Illinois, USA
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
Novosibirsk State University Novosibirsk, Russia
Department of Physics, New York University, New York, New York, USA
Ohio State University, Columbus, Ohio, USA
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA
Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA
LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan