Search for Low-Mass Dijet Resonances Using Trigger-Level Jets with the ATLAS Detector in pp Collisions at $\sqrt{s} = 13$ TeV

M. Aaboud et al.* (ATLAS Collaboration)

(Received 11 April 2018; published 22 August 2018)

Searches for dijet resonances with sub-TeV masses using the ATLAS detector at the Large Hadron Collider can be statistically limited by the bandwidth available to inclusive single-jet triggers, whose data-collection rates at low transverse momentum are much lower than the rate from standard model multijet production. This Letter describes a new search for dijet resonances where this limitation is overcome by recording only the event information calculated by the jet trigger algorithms, thereby allowing much higher event rates with reduced storage needs. The search targets low-mass dijet resonances in the range 450–1800 GeV. The analyzed data set has an integrated luminosity of up to 29.3 fb$^{-1}$ and was recorded at a center-of-mass energy of 13 TeV. No excesses are found; limits are set on Gaussian-shaped contributions to the dijet mass distribution from new particles and on a model of dark-matter particles with axial-vector couplings to quarks.

DOI: 10.1103/PhysRevLett.121.081801

Introduction.—If new particles beyond those of the standard model (SM) are directly produced in proton-proton (pp) collisions at the Large Hadron Collider (LHC), they must interact with the constituent partons of the proton, and can therefore also decay into the same partons, resulting in two-jet final states. Quantum chromodynamics (QCD) predicts that dijet events have an invariant mass distribution (m_{jj}) that falls smoothly, whereas a new state decaying to two partons would emerge as a localized excess in the distribution.

Traditional dijet searches at the LHC focus on the production of heavy particles with masses above 900 GeV [1–3]. LHC searches for lighter resonances with small production cross sections have been hampered by restrictions in the data-taking rate of the ATLAS and CMS detectors. Single-jet triggers with a jet p_T threshold below roughly 380 GeV are prescaled, a procedure whereby only a fraction of the events passing the trigger are recorded; hence, dijet events with an invariant mass below 1 TeV are largely discarded by the trigger system, as indicated in Fig. 1. Therefore, despite the large number of pp collisions produced by the LHC, traditional ATLAS and CMS searches are less sensitive to dijet resonances below 900 GeV than searches at the SPS and Tevatron colliders [4–9]. Alternative trigger strategies to search for low-mass resonances include selecting events with jets recoiling against either an energetic photon or an additional energetic jet [10–12], or selecting events with decays to heavy-flavor jets [13,14]. In these cases, additional features in the events reduce the data-taking rates, reducing the sensitivity to low-mass resonances.

This Letter describes an innovative data-taking approach to access the invariant mass region below 1 TeV; only a reduced set of information from the trigger system is recorded and subsequently analyzed. The Trigger-object Level Analysis (TLA) approach allows jet events to be recorded at a peak rate of up to twice the total rate of events using the standard approach, while using less than 1% of

![Graph](image-url)
FIG. 1. Comparison between the number of dijet events in the data used by this analysis (black points), the number of events selected by any single-jet trigger (thicker, blue line), and the events selected by single-jet triggers but corrected for the trigger prescale factors (thinner, red line) as a function of the dijet invariant mass (m_{jj}). The definition of y^* is $(y_1 - y_2)/2$, where y_1 and y_2 are the rapidities of the highest- and second-highest p_T jets.
the total trigger bandwidth [15]. This strategy is used in dijet resonance searches in $\sqrt{s} = 8$ and 13 TeV LHC pp collision data by the CMS Collaboration [16,17], and it is used by the LHCb Collaboration (e.g. [18]). The analysis presented here uses 29.3 fb$^{-1}$ of $\sqrt{s} = 13$ TeV pp collision data recorded in 2016 by the ATLAS detector.

ATLAS detector and data sample.—The ATLAS detector [19] is a multipurpose detector with a forward-backward symmetric cylindrical geometry and nearly 4π coverage in solid angle [20], consisting of tracking detectors, calorimeters, and a muon spectrometer. In the pseudorapidity region $|\eta| < 3.2$, high-granularity lead and liquid-argon (LAr) electromagnetic sampling calorimeters are used. A steel and scintillator hadronic tile calorimeter provides coverage in the range $|\eta| < 1.7$. Hadronic calorimetry in the endcap region, $1.5 < |\eta| < 3.2$, and electromagnetic and hadronic calorimetry in the forward region, $3.1 < |\eta| < 4.9$, are provided by LAr sampling calorimeters. A two-level trigger system is used to select events for offline storage [15]. A first-level (L1) trigger based on dedicated hardware identifies jets from $|\eta| > 4.9$. The anti-k_T algorithm [21,22] with radius parameter $R = 0.4$ is used. The inputs to this algorithm are groups of contiguous calorimeter cells (topological clusters), in which each cell’s inclusion is based on the significance of its energy deposit over calorimeter noise [23]. Jet four-momenta are computed by summing over the four-momenta of the topological clusters, in which each cell’s inclusion is based on the significance of its energy deposit over calorimeter noise [23]. Jet four-momenta are computed by summing over the four-momenta of the topological clusters, in which each cell’s inclusion is based on the significance of its energy deposit over calorimeter noise [23]. Jet four-momenta are computed by summing over the four-momenta of the topological clusters, in which each cell’s inclusion is based on the significance of its energy deposit over calorimeter noise [23]. Jet four-momenta are computed by summing over the four-momenta of the topological clusters, in which each cell’s inclusion is based on the significance of its energy deposit over calorimeter noise [23]. Jet four-momenta are computed by summing over the four-momenta of the topological clusters, in which each cell’s inclusion is based on the significance of its energy deposit over calorimeter noise [23]. Jet four-momenta are computed by summing over the four-momenta of the topological clusters, in which each cell’s inclusion is based on the significance of its energy deposit over calorimeter noise [23]. Jet four-momenta are computed by summing over the four-momenta of the topological clusters, in which each cell’s inclusion is based on the significance of its energy deposit over calorimeter noise [23].
the calibration correction to be applied to trigger-level jets. In deriving the final calibration curve, the fit is chosen over the simple spline-based combination procedure used for offline jets in Ref. [26]; this procedure is more robust against localized fluctuations in the jet p_T distribution that result in deviations from the expected smoothly falling invariant mass spectrum. Any dependence of the final mass spectrum on the parametrization of the jet energy scale calibration is tested by comparing different parametrizations on the data as well as on simulations. The fitted in situ calibration curve is compared to the spline-based smoothing procedure in Fig. 3. After the full calibration procedure, the energy of trigger-level jets is equivalent to that of offline jets to better than 0.05% for invariant masses of 400 GeV and their difference is negligible for invariant masses of 1 TeV.

Energy scale and resolution uncertainties derived for offline jets [26] are applied to trigger-level jets in the signal simulation, with additional uncertainties equivalent to the size of the final trigger-to-offline correction (1%–3%). The uncertainty due to the modeling of pileup effects and due to the jet parton flavor are derived specifically for trigger-level jets and are comparable to those of offline jets. The jet energy scale uncertainty for trigger-level jets at 200 GeV ranges from 1% at $|\eta| < 0.8$ to 2% in the region between the central and endcap regions ($1.0 < |\eta| < 1.5$).

Event selection.—The dijet event selection for this analysis is similar to the one used in Ref. [3]. Events must contain at least two trigger-level jets with $|\eta| < 2.8$. The leading trigger-level jet must have either $p_T > 185$ GeV or $p_T > 220$ GeV for the $E_T > 75$ GeV and $E_T > 100$ GeV L1 trigger selections, respectively; this ensures that the L1 triggers are fully efficient. The second leading jet must have a $p_T > 85$ GeV. Events that contain jets induced by calorimeter noise bursts, beam-induced background, or cosmic rays are rejected using the same criteria as in Ref. [24], but omitting the track-based charged fraction selection, which is not available for trigger-level jets. This has a negligible effect for this analysis, since most of these backgrounds are already removed by requiring two central jets, as described below. The efficiency and purity of jets passing the selection are measured with a tag-and-probe method using data events with the full detector information. The trigger-level jet reconstruction efficiency is 100% for jets with $p_T > 85$ GeV. The fraction of trigger-level jets that are not reconstructed and selected offline is below 0.1%.

This analysis searches for a dijet resonance with a mass between 450 and 1800 GeV. Two different selection criteria are used for different but overlapping ranges of the m_{jj} spectrum. To search for resonances with 700 GeV < $m_{jj} < 1800$ GeV, events are required to have $|y^*| < 0.6$, where $y^* = (y_1 - y_2)/2$ and y_1 and y_2 are the rapidities of the highest- and second-highest p_T trigger-level jets. To search for lower-mass resonances, with $m_{jj} > 450$ GeV, events with $|y^*| < 0.3$ are selected from the smaller data sample requiring a L1 jet with $E_T > 75$ GeV. The more stringent choice of $|y^*| < 0.3$ selects higher-p_T jets at a given invariant mass and thus provides a mass distribution that is unbiased by the leading-jet selection from $m_{jj} = 450$ GeV.

Background estimation.—The invariant mass spectrum expected from SM dijet production is predicted to be smooth and falling. Prior dijet searches at various collision energies [7,28–32] have found a variety of simple functional forms to describe this shape; however, given the statistical precision of the data and the wide invariant mass range covered by this search, none of the simple, single functional forms can provide a good description of the data.

The SM background distribution is determined using a sliding-window fit [3], where a fitted functional form is evaluated at the bin at the center of a window, which then slides in one-bin steps along the m_{jj} distribution. The evaluated background estimates evaluated in each bin are then collated to form the final background estimate.

The signal selection with $|y^*| < 0.6$ uses a window size of 19 bins in the m_{jj} spectrum from 531 to 2080 GeV, which spans 34 bins in total. The signal selection with $|y^*| < 0.3$ uses a window size of 27 bins over a total of 40 bins, in the range $400 < m_{jj} < 2080$ GeV. The bin sizes have been chosen according to the simulated invariant mass resolution: $\sigma_{mjj} / p_T = 10.6/ p_T \oplus 0.27/ \sqrt{p_T} \oplus 0.039$. The sliding window, however, can not be extended beyond the lower edge of the m_{jj} range used in each signal selection. Therefore, for the first 9 (13) bins in the $|y^*| < 0.6$ ($|y^*| < 0.3$) signal selection, which corresponds to one half of the window size, the window is fixed to the lower edge of the spectrum and instead of evaluating the fitted functional form at the window center, it is evaluated for each bin in turn. For invariant masses higher than the m_{jj} range used for the search, the window is allowed to extend...
beyond the range, to 2970 (3490) GeV for the \(|y^*| < 0.6\) (0.3) signal selection, and the fit is evaluated at the center of the

In each sliding window, three functional forms are fit to the data: a five-parameter function of the form

\[
f(x) = p_1 (1 - x)^{p_2} x^{p_3} x + p_4 \ln x + p_5 \ln x^2, \tag{1}
\]

where \(p_i\) are free parameters and \(x \equiv m_{jj}/\sqrt{s}\); a four-

function, which is the same as Eq. (1) but with \(p_5 = 0\); and a four-parameter function used by the UA2 Collaboration [28], defined as

\[
f(x) = \frac{p_1}{x^{p_2}} e^{-p_3 x - p_4 x^2}. \tag{2}
\]

The function used for each signal selection is the one that yields the best \(\chi^2\) over the full fitted \(m_{jj}\) range. An alternative function is chosen to evaluate a systematic uncertainty. For the signal selection with \(|y^*| < 0.6\), Eq. (1) is used, yielding a \(\chi^2\) \(p\) value of 0.13, while the alternative function is the four-parameter function with a \(\chi^2\) \(p\) value of 0.11. For the signal selection with \(|y^*| < 0.3\), the four-parameter version of Eq. (1) yields the best \(\chi^2\) \(p\) value of 0.42 and the alternative function is Eq. (2), with a \(\chi^2\) \(p\) value of 0.35.

The size of the sliding window is optimized to yield the best \(\chi^2\) value for the full \(m_{jj}\) range while still being larger than the width of the expected signals and therefore insensitive to potential signal contributions. This latter requirement is checked by including signal models in pseudo-data samples and studying the dependence of the signal sensitivity on different window sizes.

Systematic uncertainties in the estimate of the background used in setting limits include the uncertainty due to the choice of functional form and uncertainties in the fit parameter values. The effect of the choice of functional form is evaluated by comparing the nominal function to the alternative. The uncertainties in the fit parameter values are evaluated using pseudoeperiments, where the pseudodata are drawn from Poisson fluctuations around the nominal background model.

Results and limits.—Figure 4 shows the invariant mass distributions for dijet events in each signal region including the results from the sliding-window background estimates. The \(\chi^2\) \(p\) value of the overall background is 0.13 for the \(|y^*| < 0.6\) signal selection and 0.42 for the \(|y^*| < 0.3\) signal selection, indicating the data agrees well with the background estimate. The most discrepant interval identified by the BumpHunter algorithm [33,34] is 889–1007 GeV for events with \(|y^*| < 0.6\). Accounting for statistical uncertainties only, the probability of observing a deviation at least as significant as that observed in data, anywhere in this distribution, is 0.44 and corresponds to significance of 0.16\(\sigma\). Thus, there is no evidence of any localized excess.

FIG. 4. The reconstructed dijet mass distribution (filled points) for events in the \(|y^*| < 0.3\) and \(|y^*| < 0.6\) signal regions. Solid lines depict the background estimate obtained by a sliding-window fit. Overall agreement between the background estimate and the data is quantified by the \(\chi^2\) \(p\) value. The most discrepant localized excess in either signal region identified by the BumpHunter algorithm is indicated by the vertical lines. The open points show two possible signal models. The lower panels show the bin-by-bin significances of differences between the data and the background estimate, considering only statistical uncertainties (see Ref. [35]).

Limits are set on both a leptophobic \(Z'\) simplified dark-matter model [36] and a generic Gaussian model. The \(Z'\) simplified model assumes axial-vector couplings to SM quarks and to a Dirac fermion dark-matter candidate. No interference with the SM is simulated. Signal samples were generated so that the decay rate of the \(Z'\) into dark-matter particles is negligible and the dijet production rate and resonance width depend only on the coupling of the \(Z'\) to quarks, \(g_{q'}\), and the mass of the resonance, \(m_{Z'}\) [9]. The model’s matrix elements were calculated in MadGraph 5 [37] and parton showering was performed in Pythia 8 [38] with the A14 set of tuned parameters for underlying event [39] and NNPDF2.3 parton distribution functions [40].

The width of a \(Z'\) resonance with \(g_{q'} = 0.10\), including parton shower and detector resolution effects, is approximately 7%. Limits are set on the cross section, \(\sigma\), times acceptance, \(A\), times branching ratio, \(B\), of the model, and then displayed in the \((g_{q'}, m_{Z'})\) plane [41]. The acceptance for a mass of 550 GeV is 20% for a \(Z'\) simplified model with \(g_{q'} = 0.10\) for the \(|y^*| < 0.3\) signal selection, and 41% for a signal of mass equal to 750 GeV for the \(|y^*| < 0.6\) signal selection.

Limits are also set on a generic model where the signal is modeled as a Gaussian contribution to the observed \(m_{jj}\) distribution. For a given mean mass, \(m_G\), four different Gaussian widths are considered: a width equal to the simulated mass resolution (which ranges between 4% and 6%), and the fixed fractions 5%, 7%, and 10% of \(m_G\). As the width increases, the expected signal contribution is distributed across more bins. Wider signals are
the choice of the fit function and the uncertainty in the fit.

Systematic uncertainties in the background estimate include methodology similar to that detailed in Ref. [42]. These criteria are often met if the m_{jj} distribution for a signal approaches a Gaussian distribution after applying the kinematic selection criteria of the resonance analysis, so that 95% of the signal lies within 20% of the Gaussian mean mass. Models of new resonances with an intrinsic width much smaller than 5% of its mass should be compared to the results with a width equal to the experimental resolution. For models with a larger width, the limit that best matches their width should be used. More-detailed instructions can be found in Appendix A of Ref. [31].

A Bayesian method is applied to the data and simulation of the signal models at a series of discrete masses to set 95% credibility-level upper limits on the cross section times acceptance [30] for the signals described above. The method uses a constant prior for the signal cross section and Gaussian priors for nuisance parameters corresponding to systematic uncertainties. For both observed and expected limits, the sliding window fit is performed for each value of the mass parameter, adding the tested signal shape with a floating normalization to the functional forms stated above. The expected limits are calculated using pseudoexperiments generated from the fit parameters of those functional forms. The uncertainties on the Z' signal model include the jet energy scale and the luminosity. The impact of the jet energy resolution uncertainty is negligible. For the Gaussian model, a constant jet energy scale uncertainty of 3% is applied in accordance with the measured impact of this uncertainty on the Z' samples. The uncertainty in the integrated luminosity is $\pm 2.2\%$, derived following a methodology similar to that detailed in Ref. [42]. The systematic uncertainties in the background estimate include the choice of the fit function and the uncertainty in the fit parameter values, as described above.

Figure 5 shows limits on the coupling to quarks, g_{q}, as a function of the mass $m_{Z'}$ for the Z' model. Figure 6 shows limits on a possible Gaussian contribution with a width equal to the detector resolution as a function of the mean mass, m_G. In both the Z' and Gaussian models, upper limits for masses from 450 to 700 GeV are derived using the distribution with $|y^*| < 0.3$, which is sensitive to the lower masses. Limits for masses above 700 GeV are derived from the m_{jj} distribution with $|y^*| < 0.6$, except for Gaussian signals with a width of 10% where only the $|y^*| < 0.3$ distribution is used.

The limit results show an upward fluctuation at masses of approximately 1 TeV in the $|y^*| < 0.6$ signal region. This is not seen in Fig. 4; when searching for excesses in the data, a background-only hypothesis is used for the sliding window fit. In the observed and expected limits, the fit includes the signal shape in addition to the background parameterization, and can adapt to local data fluctuations that mimic a signal shape. The $|y^*| < 0.6$ signal region, which uses a smaller sliding-window size, is especially sensitive to the difference in the two approaches. Therefore,

![Figure 5](image_url)

FIG. 5. The 95% credibility-level observed and expected upper limits on g_{q} as a function of $m_{Z'}$ for the Z' model described in the text. The lower-mass part of the limits from Ref. [3] is also shown. Couplings above the solid lines are excluded. The solid and dashed lines represent the observed and expected limits, respectively, and are obtained accounting for the scaling of the signal cross section with g_{q}. The different y^* selections are described in the text.

![Figure 6](image_url)

FIG. 6. The 95% credibility-level observed upper limits on $\sigma \times A \times B$ for two jets for a hypothetical signal producing a Gaussian contribution to the observed m_{jj} distribution. The limits are shown for a relative width σ_G/m_G corresponding to a width equal to the detector mass resolution. While the vertical axis is shared by the two selections, this signal acceptance varies; thus, the two sets of limit points relate to two different interpretations of $\sigma \times A \times B$ (see text for some typical acceptance values used for models considered by this search). The different y^* selections are described in the text.
limits were not set on signals with a width of 10% for the $|y^i| < 0.6$ signal region as the signal is too wide for the sliding-window size.

Conclusions.—In conclusion, this analysis searches for resonances with masses between 450 GeV and 1800 GeV in dijet events using trigger-level jets in 29.3 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data recorded by the ATLAS detector at the LHC. The invariant mass distribution presents no significant local excesses compared to the estimated SM background. This analysis provides 95% credibility-level limits on Z' signals and cross sections for new processes that would produce a Gaussian contribution to the dijet mass distribution. Over much of the mass range, the sensitivity to the coupling to quarks, g_q, is improved by a factor of 2 or more compared to pre-LHC and 13 TeV ATLAS results, and is comparable to CMS searches at $\sqrt{s} = 8$ and 13 TeV using this technique. Gaussian contributions with effective cross sections times acceptance ranging from approximately 6.5 pb at 450 GeV, to 0.4 pb at 700 GeV, to 0.05 pb at 1800 GeV are excluded.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not have been operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; DFG and AvH Foundation, Germany; EPSRC and STFC, United Kingdom; DOE and NSF, United States of America; and many other agencies. Computing resources are listed in Ref.

[19] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upwards. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. The rapidity, y, is defined as $\frac{1}{2} \ln [(E + p_z)/(E - p_z)]$, where E denotes the energy of the jet and p_z the momentum component of the jet along the beam direction. Angular distance is measured in units of $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$.

[39] Limits on the coupling are obtained accounting for the scaling of the signal cross section with q_T^2.

INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
Physics Department, Southern Methodist University, Dallas, Texas, USA
Physics Department, University of Texas at Dallas, Richardson, Texas, USA
Department of Physics, Stockholm University, Sweden
Oskar Klein Centre, Stockholm, Sweden
Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany
Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
Department of Physics, Duke University, Durham, North Carolina, USA
SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
INFN e Laboratori Nazionali di Frascati, Frascati, Italy
II. Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland
Dipartimento di Fisica, Università di Genova, Genova, Italy
INFN Sezione di Genova, Italy
II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France
Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, China
Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
Department of Physics, Indiana University, Bloomington, Indiana, USA
INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
ICTP, Trieste, Italy
Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Sezione di Trieste, Udine, Italy
INFN Sezione di Lecce, Italy
Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
INFN Sezione di Lecce, Italy
Dipartimento di Fisica, Università di Milano, Milano, Italy
INFN Sezione di Milano, Italy
Dipartimento di Fisica, Università di Napoli, Napoli, Italy
INFN Sezione di Napoli, Italy
Dipartimento di Fisica, Università di Pavia, Pavia, Italy
INFN Sezione di Pavia, Italy
Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
INFN Sezione di Pisa, Italy
Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
INFN Sezione di Roma, Italy
INFN Sezione di Roma Tor Vergata, Italy
Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
INFN Sezione di Roma Tre, Italy
Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
INFN-TIFPA, Italy
Università degli Studi di Trento, Trento, Italy
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
University of Iowa, Iowa, City Iowa, USA
Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA
Joint Institute for Nuclear Research, Dubna, Russia
Department of Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJJ), Juiz de Fora, Brazil
Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
Universidade Federal de São João del Rei (UFSJ), São João del Rei, Brazil
Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Egham, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Louisiana Tech University, Ruston, Louisiana, USA
Fysiska institutionen, Lunds universitet, Lund, Sweden
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
Departamento de Física Teorica C-15 and CIfAFF, Universidad Autónoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst, Massachusetts, USA
Department of Physics, McGill University, Montreal, Quebec, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, University of Michigan, Ann Arbor, Michigan, USA
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Belarus
Group of Particle Physics, University of Montreal, Montreal, Quebec, Canada
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
National Research Nuclear University MEPhI, Moscow, Russia
D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb, Illinois, USA
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
Novosibirsk State University Novosibirsk, Russia
Department of Physics, New York University, New York, New York, USA
Ohio State University, Columbus, Ohio, USA
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA
Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA
LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan