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Abstract

Let K be any field with charK 6= 2, 3. We classify all cubic homoge-

neous polynomial maps H over K with rkJH ≤ 2. In particular, we show

that, for such an H , if F = x + H is a Keller map then F is invertible,

and furthermore F is tame if the dimension n 6= 4.

1 Introduction

Let K be an arbitrary field and K[x] := K[x1, x2, . . . , xn] the polynomial ring
in n variables. For a polynomial map F = (F1, F2, . . . , Fm) ∈ K[x]m, we denote
by JF := (∂Fi

∂xj
)m×n the Jacobian matrix of F and degF := maxi degFi the

degree of F . A polynomial map H ∈ K[x]m is called homogeneous of degree d
if each Hi is zero or homogeneous of degree d.

A polynomial map F ∈ K[x]n is called a Keller map if detJF ∈ K∗. The
Jacobian conjecture asserts that any Keller map is invertible if charK = 0; see
[8] or [1]. It is still open for any dimension n ≥ 2.

Following [14], we call a polynomial automorphism elementary if it is of the
form (x1, . . . , xi−1, cxi + a, xi+1, . . . , xn), where c ∈ K∗ and a ∈ K[x] contains
no xi. Furthermore, we call a polynomial automorphism tame if it is a finite
composition of elementary ones. The definitions of elementary and tame may be
different in other sources, but (as long as K is a generalized Euclidean ring) the
definitions of tame are equivalent. The Tame Generators Problem asks if every
polynomial automorphism is tame. It has an affirmative answer in dimension 2
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for arbitrary characteristic (see [10, 11]) and a negative answer in dimension 3
for the case of charK = 0 (see [14]), and is still open for any n ≥ 4.

A polynomial map F = x +H ∈ K[x]n is called triangular if Hn ∈ K and
Hi ∈ K[xi+1, . . . , xn], 1 ≤ i ≤ n − 1. A polynomial map F is called linearly
triangularizable if it is linearly conjugate to a triangular map, i.e., there exists
an invertible linear map T ∈ GLn(K) such that T−1F (Tx) is triangular. A
linearly triangularizable map is tame.

Some special polynomial maps have been investigated in the literature. For
example, when charK = 0, a Keller map F = x + H ∈ K[x]n is shown to
be linearly triangularizable in the cases: (1) n = 3 and H is homogeneous
of arbitrary degree d (de Bondt and van den Essen [6]); (2) n = 4 and H
is quadratic homogeneous (Meisters and Olech [12]); (3) n = 9 and F is a
quadratic homogeneous quasi-translation (Sun [16]); (4) n arbitrary and H is
quadratic with rkJH ≤ 2 (De Bondt and Yan [7]), and to be tame in the
case (5) n = 5 and H is quadratic homogeneous (de Bondt [2] and Sun [17]
independently), and to be invertible in the case (6) n = 4 and H is cubic
homogeneous (Hubbers [9]). For the case of arbitrary characteristic, de Bondt
[5] described the Jacobian matrix JH of rank two for any quadratic polynomial
map H and showed that if JH is nilpotent then JH is similar to a triangular
one.

In this paper, we investigate cubic homogeneous polynomial maps H with
rkJH ≤ 2 for any dimension n when charK 6= 2, 3. In Section 2, we classify
all such maps (Theorem 2.7). And in Section 3, we show that for such an H , if
F = x +H is a Keller map, then it is invertible and furthermore it is tame if
the dimension n 6= 4 (Theorem 3.4).

2 Cubic homogeneous maps H with rkJH ≤ 2

For a polynomial map H ∈ K[x]m, we write trdegK K(H) for the transcendence
degree ofK(H) overK. It is well-known that rkJH = trdegK K(H) ifK(H) ⊆
K(x) is separable, in particular if charK = 0; see [8, Proposition 1.2.9]. And
for arbitrary characteristic, one has rkJH ≤ trdegK K(H); see [4] or [13].

It was shown in [5] that when charK 6= 2, for any quadratic polynomial map
H with rkJH ≤ 2, one has rkJH = trdegK K(H). We will show that when
charK 6= 2, 3, for any cubic homogeneous polynomial map H with rkJH ≤ 2,
one has rkJH = trdegK K(H). The notation a|x=c below means to substitute
x by c in a.

Theorem 2.1. Let s ≤ n. Take

x̃ := (x1, x2, . . . , xs) and L := K(xs+1, xs+2, . . . , xn).

To prove that for (homogeneous) polynomial maps H ∈ K[x]m of degree d,

rkJH = r implies trdegK K(H) = r, for every r < s, (2.1)
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it suffices to show that for (homogeneous) polynomial maps H̃ ∈ L[x̃]s of degree
d,

trdegLL(H̃) = s implies rkJx̃H̃ = s. (2.2)

Proof. Suppose that H ∈ K[x]m is (homogeneous) of degree d, such that (2.1)
does not hold. Then there exists an r < s such that rkJH = r < trdegK K(H).
We need to show that (2.2) does not hold.

Let s′ = trdegK K(H). Assume without loss of generality thatH1, H2, . . . , Hs′

are algebraically independent over K, and that the components of

H ′ :=
(
H1, H2, . . . , Hs′ , x

d
s′+1, x

d
s′+2, . . . , x

d
s

)

are algebraically independent over K if s′ < s. Then

rkJH ′ ≤ r + (s− s′) < s = trdegK K(H ′).

For the case of s′ ≥ s, just take H ′ = (H1, H2, . . . , Hs), and we have also
rkJH ′ ≤ r < s.

Notice that (2.1) is also unsatisfied for H ′. So, replacing H by H ′, we may
assume that H ∈ K[x]s with rkJH = r < trdegK K(H) = s.

One may observe that H1(x1, x1x2, x1x3, . . . , x1xn) is algebraically indepen-
dent over K of x2, x3, . . . , xn. On account of the Steinitz Mac Lane exchange
lemma, we may assume without loss of generality that the components of

(
H(x1, x1x2, x1x3, . . . , x1xn), xs+1, xs+2, . . . , xn

)

are algebraically independent overK. Then the components ofH(x1, x1x2, x1x3,
. . . , x1xn) are algebraically independent over L := K(xs+1, xs+2, . . . , xn), and
so are the components of

H̃ := H(x1, x2, . . . , xs, x1xs+1, x1xs+2, . . . , x1xn) ∈ L[x̃]s,

where x̃ = (x1, x2, . . . , xs). That is, trdegLL(H̃) = s.
Let G := (x1, x2, . . . , xs, x1xs+1, x1xs+2, . . . , x1xn). Then it follows from the

chain rule that
Jx̃H̃ = (JH)|x=G · Jx̃G,

so rkJx̃H̃ ≤ rk(JH)|x=G ≤ rkJH < s. Therefore (2.2) does not hold for H̃ ,
which completes the proof.

Lemma 2.2. Let H ∈ K[x]m be a polynomial map of degree d and r := rkJH.
Denote by |K| the cardinality of K.

(i) If |K| > (d − 1)r and JH · x = 0, then there exist S ∈ GLm(K) and
T ∈ GLn(K), such that for H̃ := SH(Tx),

H̃|x=er+1
=

(
Ir 0
0 0

)
.
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(ii) If |K| > (d − 1)r + 1 and JH · x 6= 0, then there exist S ∈ GLm(K) and
T ∈ GLn(K), such that for H̃ := SH(Tx),

H̃|x=e1 =

(
Ir 0
0 0

)
.

Moreover, |K| may be one less (i.e. at least (d−1)r and (d−1)r+1 respectively)
if every nonzero component of H is homogeneous.

Proof. (i) Assume without loss of generality that

a0 := detJx1,x2,...,xr
(H1, H2, . . . , Hr) 6= 0.

Suppose that |K| > (d − 1)r. It follows by [3, Lemma 5.1 (i)] that there exists
a vector w ∈ Kn such that a0(w) 6= 0. So rk

(
JH

)∣∣
x=w

= r. There exist n− r

independent vectors vr+1, vr+2, . . . , vn ∈ Kn, such that
(
JH

)∣∣
x=w

· vi = 0 for
i = r + 1, r + 2, . . . , n. And we may take vr+1 = w since

(
JH

)∣∣
x=w

· w =
(
JH · x

)∣∣
x=w

= 0.

Take T = (v1, v2, · · · , vn) ∈ GLn(K). From the chain rule, we deduce that
(
J (H(Tx))

)∣∣
x=er+1

· ei = (JH)|x=Ter+1
· Tei = (JH)|x=w · vi (1 ≤ i ≤ n).

In particular, rkJ (H(Tx))
∣∣
x=er+1

= r and the last n−r columns of
(
J (H(Tx))

)∣∣
x=er+1

are zero. There exists S ∈ GLm(K) such that

(
J (SH(Tx))

)∣∣
x=er+1

= S ·
(
J (H(Tx))

)∣∣
x=er+1

=

(
Ir 0
0 0

)
.

(2) Suppose that |K| > (d− 1)r+1. Since JH ·x 6= 0, we may assume that

rk
(
JH · x,Jx2,x3,...,xr

H
)
= r,

and that

a1 := det
(
J (H1, H2, . . . , Hr) · x,Jx2,x3,...,xr

(H1, H2, . . . , Hr)
)
6= 0.

It follows by [3, Lemma 5.1 (i)] that there exists w ∈ Kn such that a1(w) 6=
0. One may observe that rk

(
JH

)∣∣
x=w

= r and thus there exist independent

vectors vr+1, vr+2, . . . , vn ∈ Kn, such that
(
JH

)∣∣
x=w

· vi = 0 for i = r + 1,

r + 2, . . . , n. Since
(
JH · x

)∣∣
x=w

is the first column of a full column rank
matrix, we have (

JH
)∣∣

x=w
· w =

(
JH · x

)∣∣
x=w

6= 0.

So v1 := w is independent of vr+1, vr+2, . . . , vn.
Take T = (v1, v2, · · · , vn) ∈ GLn(K). Then
(
J (H(Tx))

)∣∣
x=e1

· ei = (JH)|x=Te1 · Tei = (JH)|x=w · vi (1 ≤ i ≤ n).

The rest of the proof of (ii) is similar to that of (i).
The last claim follows from [3, Lemma 5.1 (ii)], as an improvement to [3,

Lemma 5.1 (i)].
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Proposition 2.3. Assume that charK /∈ {1, 2, . . . , d}. Then for any cubic
homogeneous polynomial map H ∈ K[x]m of degree d with rkJH ≤ 1, the
components of H are linearly dependent over K in pairs, and one has rkJH =
trdegK K(H).

Proof. The case rkJH = 0 is obvious, so let rkJH = 1. On account of Lemma
2.2, we may assume that JH |x=e1 = E11. Let j ≥ 2. Since degx1

Hj < d, we

infer that either Hj = 0, or degx1

∂
∂x1

Hj < degx1

∂
∂xi

Hj for some i ≥ 2, where
degx1

0 = −∞. The latter is impossible due to rkJH = 1, so Hj = 0. This
holds for all j ≥ 2, which yields the desired results.

Lemma 2.4. Let H = (h, x2
1x2, x

2
2x3) or (h, x

2
1x3, x

2
2x3) ∈ K[x1, x2, x3]

3, where
h is cubic homogeneous, and assume that charK 6= 2, 3. Then rkJH =
trdegKK(H).

Proof. It suffices to consider the case of rkJH = 2. Define a derivation D on
A = K[x1, x2, x3] as follows: for any f ∈ A,

D(f) =
x1x2x3

H2H3

detJH .

In the case H = (h, x2
1x2, x

2
2x3), an easy calculation shows that D = x1∂x1

−
2x2∂x2

+ 4x3∂x3
. Then for any term u = xd1

1 xd2

2 xd3

3 ∈ A, D(u) = (d1 − 2d2 +
4d3)u. And thus kerD := {g ∈ A | D(g) = 0}, the kernel of D, is linearly
spanned by all terms u with d1 − 2d2 + 4d3 = 0. So the only cubic terms in
kerD are x2

1x2 and x2
2x3. Since rkJH = 2, we have detJH = 0 and thus

h ∈ kerD, which implies that h is a linear combinations of x2
1x2 and x2

2x3.
Thus trdegKK(H) = 2.

In the case H = (h, x2
1x3, x

2
2x3), one may verify that x2

1x3, x1x2x3 and x2
2x3

are the only cubic terms in kerD. The conclusion follows similarly.

Theorem 2.5. Assume that charK 6= 2, 3. Then for any cubic homogeneous
polynomial map H ∈ K[x]m with rkJH ≤ 2, one has rkJH = trdegK K(H).

Proof. Due to Theorem 2.1, and replacing L there by K, we may assume that
H ∈ K[x1, x2, x3]

3, and it suffices to show that

trdegKK(H) = 3 implies rkJH = 3,

or equivalently,
detJH = 0 implies trdegKK(H) < 3. (2.3)

So assume that detJH = 0. Since we may replace K by an extension field
to make it large enough, it follows by Lemma 2.2 that we may assume that(
JH

)∣∣
x=e1

= E11 + E22. Then JH is of the form




x2
1 + ∗ ∗ ∗
∗ x2

1 + ∗ ∗

∗ ∗ ∂H3

∂x3


 ,
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where the x1-degree of each element ∗ is less than 2. Observing the terms with
x1-degree ≥ 5 in detJH , we have that ∂H3

∂x3
∈ K[x2, x3]. Notice that H2 and

H3 are of the form:

H2 = x2
1x2 + b10x1x

2
3 + b11x1x2x3 + b12x1x

2
2 + b0(x2, x3);

H3 = c12x1x
2
2 + c00x

3
3 + c01x2x

2
3 + c02x

2
2x3 + c03x

3
2.

We shall show that x2
2 | H3, i.e., c00 = c01 = 0.

Noticing that the part of x1-degree 4 of detJH is
(
∂H3

∂x3
− ∂H2

∂x1∂x3

∂H3

∂x1∂x2

)
x4
1,

we see that ∂H3

∂x3
− ∂H2

∂x1∂x3

∂H3

∂x1∂x2
= 0. Consequently,

(3c00x
2
3 + 2c01x2x3 + c02x

2
2) = (2b10x3 + b11x2)(2c12x2)

so

c00 = 0 c01 = 2b10c12 c02 = 2b11c12

One may observe that the coefficient of x3
1x

3
3 in detJH is 2c01b10 = 0, which

we can combine with c01 = 2b10c12 to obtain c01 = 0. Therefore,

H3 = (c12x1 + c03x2 + c02x3)x
2
2.

Moreover, if c12 = 0 then c02 = 2b11c12 = 0 and thus H3 = c03x
3
2.

We distinguish two cases.

• Case 1: c12 6= 0 and c12x1 + c03x2 + c02x3 ∤ Hi for some i.

Then H3 is the product of two linear forms, of which two are distinct.
Hence we can compose H with invertible linear maps on both sides, to
obtain a map H ′ for which H ′

2 = x2
1x2, and x2 ∤ H ′

1.

Notice that H ′

1(1, 0, t) 6= 0. As K has at least 5 elements, it follows from
[3, Lemma 5.1 (i)] that there exists a λ ∈ K, such that H ′

1(1, 0, λ) 6= 0.
Hence the coefficient of x3

1 in H ′

1(x1, x2, x3+λx1) is nonzero. Furthermore,
H ′

2(x1, x2, x3 + λx1) = x2
1x2.

Replacing H ′ by H ′(x1, x2, x3+λx1), we may assume that H ′

2 = x2
1x2 and

that H ′

1 contains x3
1 as a term. We may even assume that the coefficient

of x3
1 in H ′

1 equals 1. Then JH ′|x=e1 is of the form




1 ∗ a
0 1 0
∗ ∗ ∗


 ,

and has rank 2. Furthermore, v3 = (−a, 0, 1)t belongs to its null space.
We may apply the proof of Lemma 2.2 on H ′ by taking T = (e1, e2, v3)

and taking an appropriate S ∈ GL3(K) such that H̃ := SH ′(Tx) satisfies

J H̃ |x=e1 = SJH ′|x=Te1T = E11 + E22. Notice that Tx is of the form
(L1, x2, L3), and observing the form of JH ′|x=e1 one may also choose Sx

to be of the form (∗, x2, ∗). Then H̃2 = L2
1x2.
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So we can compose H̃ with an invertible linear map on the right, to obtain
a map H̃ ′ for which H̃ ′

2 = x2
1x2 and H̃ ′

3 = x2
2L

′ for some linear form L′.

Suppose first that L′ is a linear combination of x1 and x2. If H̃ ′

1 ∈

K[x1, x2], then we are done. Otherwise, we have detJx1,x2
(H̃ ′

2, H̃
′

3) = 0,
and then by Proposition 2.3, trdegKK(H ′

2, H
′

3) < 2.

Suppose next that L′ is not a linear combination of x1 and x2. Then we
may assume that H̃ ′

3 = x2
2x3. By Lemma 2.4 (i), trdegKK(H̃ ′) < 3.

• Case 2: c12 = 0 or c12x1 + c03x2 + c02x3 | Hi for all i.

Since x2
2 | H3, we can compose H with invertible linear maps on both

sides, to obtain a map H ′ for which H ′

1 ∈ {x3
1, x

2
1x2}. After a possible

interchange ofH ′

2 andH ′

3, the first two rows of JH ′ are independent. Now
we may apply the proof of Lemma 2.2 to H ′, more precisely, there exist
S, T ∈ GL3(K) such that H̃ := SH ′(Tx) satisfies J H̃ |x=e1 = E11 + E22.
If we choose w such that first two rows of (JH ′)x=w are independent, then
we can take S such that Sx = (f1x1 + f2x2, g1x1 + g2x2, ∗). By repeating

the discussion for H̃ as for H above, we may assume that H̃3 = Lx2
2 for

some linear form L.

Let Tx = (L1, L2, L3). Notice that H ′

1(Tx) ∈ {L3
1, L

2
1L2} and that

H ′

1(Tx) is a linear combination of H̃1 and H̃2. Hence we can com-

pose H̃ with a linear map on the left, to obtain a map H̃ ′ for which
H̃ ′

2 ∈ {L3
1, L

2
1L2} and H̃ ′

3 = Lx2
2.

Suppose first that H̃ ′

2 = L2
1L2. Then c12 6= 0, so c12x1+ c03x2+ c02x3 | Hi

for all i. From this, we infer that L2 | H̃i and L2 | H̃ ′

i for all i. As

x2 ∤ H̃1, we deduce that L and L2 are dependent linear forms, which are
independent of x2. If L and L2 are linear combinations of L1 and x2, then
we can reduce to Proposition 2.3, and otherwise we can reduce to Lemma
2.4 (ii).

Suppose next that H̃ ′

2 = L3
1. If L, L1 and x2 are linearly dependent over

K, then we can reduce to Proposition 2.3. Otherwise, H̃ is as H in the
previous case.

Remark 2.6. Inspired by Lemma 2.4, we investigated maps H of which the
components are terms, and searched for H with algebraically independent com-
ponents for which detJH = 0. One can infer that H is as such, if and only if
the matrix with entries degxi

Hj has determinant zero over K, but not over Z.
We found the following non-homogeneous H as above over fields of charac-

teristic 5:
(x3

1x2, x1x
2
2), (x2

1x2, x1x
2
3, x2x3)

with the following homogenizations respectively:

(x3
1x2, x1x

2
2x3, x

4
3), (x2

1x2, x1x
2
3, x2x3x4, x

3
4)

7



Besides these homogenizations, we found the following homogeneous H over
fields of characteristic 5:

(x2
1x

2
3, x1x

3
2, x2x

3
3), (x4x

2
1, x1x

2
2, x2x

2
3, x3x

2
4)

We conclude with a homogeneous H over fields of characteristic 7, and a homo-
geneous H over any characteristic p ∈ {1, 2, . . . , d} respectively:

(x3x
3
1, x1x

3
2, x2x

3
3), (xd

1 , x
d−p
1 xp

2)

These examples show that the conditions in Proposition 2.3 and Theorem 2.5
cannot be relaxed.

Theorem 2.7. Suppose that charK 6= 2, 3 and let H ∈ K[x]m be cubic homoge-
neous. Let r := rkJH and suppose that r ≤ 2. Then there exist S ∈ GLm(K)
and T ∈ GLn(K), such that for H̃ := SH(Tx), one of the following statements
holds:

(1) H̃r+1 = H̃r+2 = · · · = H̃m = 0;

(2) r = 2 and H̃ ∈ K[x1, x2]
m;

(3) r = 2 and KH̃1 +KH̃2 + · · ·+KH̃m = Kx3x
2
1 ⊕Kx3x1x2 ⊕Kx3x

2
2.

Furthermore, we may take S = T−1 if m = n.

Proof. By Theorem 2.5, trdegK K(H) = rkJH = r ≤ 2. Since H is homoge-
neous, we have trdegK K(tH) = r as well, where t is a new variable.

Suppose first that r ≤ 1. It follows by [4, Theorem 2.7] that we may take H̃
as in (1).

Suppose next that r = 2. By [4, Theorem 2.7], H is of the form g · h(p, q),
such that g, h and (p, q) are homogeneous and deg g + deg h · deg(p, q) = 3.

If deg h ≤ 1, then every triple of components of h is linearly dependent over
K, and thus we may take H̃ as in (1). If deg h = 3, then deg(p, q) = 1 and
deg g = 0, whence we may take H̃ as in (2).

So assume that deg h = 2. Then deg(p, q) = 1 and deg g = 1. If g is a
linear combination of p and q, then we may take H̃ as in (2). If g is not a linear
combination of p and q, then we may take H̃ as in (3) or (1).

Finally, if m = n and H̃ = SH(Tx) is as in (1), then SH(S−1x) =
H̃(T−1S−1x) is still as in (1). So we may take S = T−1. If m = n and
H̃ = SH(Tx) is as in (2) or (3), then T−1H(Tx) = T−1S−1H̃ is still as in (2)
or (3), whence we may also take S = T−1.

3 Cubic homogeneous Keller maps x + H with

rkJH ≤ 2

For two matrices M,N ∈ Matn(K[x]), we say that M is similar over K to N ,
if there exists T ∈ GLn(K) such that N = T−1MT .

8



Theorem 3.1. Let F = x+H ∈ K[x]n be a Keller map with trdegK K(H) = 1.
Then JH is similar over K to a triangular matrix, and the following statements
are equivalent:

(1) detJF = 1;

(2) JH is nilpotent;

(3) (JH) · (JH)|x=y = 0, where y = (y1, y2, . . . , yn) are n new variables.

Proof. Since trdegK K(H) = 1, by [4, Corollary 3.2] there exists a polynomial
p ∈ K[x] such that Hi ∈ K[p] for each i. Say that Hi = hi(p), where hi ∈ K[t]
for each i. Write h′

i =
∂
∂t
hi, then

JH = h′(p) · J p. (3.1)

Assume without loss of generality that

h′

1 = h′

2 = · · · = h′

s = 0,

and that
0 ≤ deg h′

s+1 < deg h′

s+2 < · · · < deg h′

n.

For s < i < n,

deg h′

i(p) = deg h′

i · deg p ≤ (deg h′

i+1 − 1) · deg p = deg h′

i+1(p)− deg p.

Since the degrees of the entries of J p are less than deg p, we deduce from
(3.1) that the nonzero entries on the diagonal of JH have different degrees in
increasing order. Furthermore, the nonzero entries beyond the (s + 1)th entry
on the diagonal of JH have positive degrees.

By (3.1), rk(−JH) ≤ 1, and thus n − 1 eigenvalues of −JH are zero. It
follows that the trailing degree of the characteristic polynomial of −JH is at
least n− 1. More precisely,

det(tIn + JH) = tn − tr(−JH) · tn−1,

and thus
detJF =

(
tn − tr(−JH) · tn−1

)∣∣
t=1

= 1 + trJH .

Observe that the diagonal of JH is totally zero, except maybe the (s + 1)th
entry, which is a constant.

So ∂
∂xi

p = 0 for all i > s + 1, and JH is lower triangular. If the (s + 1)th
entry on the diagonal of JH is nonzero, then (1), (2) and (3) do not hold. If
the (s + 1)th entry on the diagonal of JH is zero, then ∂

∂xi
p = 0 for all i > s,

whence (1), (2) and (3) hold.

Let H ∈ K[x]n be homogeneous of degree d ≥ 2. Then x + H is a Keller
map if and only if JH is nilpotent; see for example [8, Lemma 6.2.11]. So we
first investigate nilpotent matrices over K[x].
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Lemma 3.2. Let N ∈ Mat2(K[x]) such that N is nilpotent. Then there exist
a, b, c ∈ K[x] such that

N = c

(
ab −b2

a2 −ab

)
.

Furthermore, N is similar over K to a triangular matrix if and only if a and b
are linearly dependent over K.

Proof. Since detN = 0, we may write N in the form

N = c ·

(
b

a

)
·
(
a −b̃

)
,

where a, b ∈ K[x] and b̃, c ∈ K(x). Since trN = 0, we have b̃ = b. If we choose
a and b to be relatively prime, then c ∈ K[x] as well.

Furthermore, a and b are linearly dependent over K if and only if the rows
of N are linearly dependent over K, if and only if N is similar over K to a
triangular matrix.

Lemma 3.3. Let H ∈ K[x]2 be cubic homogeneous, such that Jx1,x2
H is nilpo-

tent. Then there exists T ∈ GL2(K) such that for H̃ := T−1H
(
T (x1, x2), x3,

x4, . . . , xn

)
, one of the following statements holds:

(1) Jx1,x2
H̃ is a triangular matrix;

(2) there are independent linear forms a, b ∈ K[x], such that

Jx1,x2
H̃ =

(
ab −b2

a2 −ab

)
and Jx1,x2

(
a
b

)
=

(
0 0
0 0

)
;

(3) charK = 3 and there are independent linear forms a, b ∈ K[x], such that

Jx1,x2
H̃ =

(
ab −b2

a2 −ab

)
and Jx1,x2

(
a
b

)
=

(
0 1
1 0

)
.

Proof. Suppose that (1) does not hold. By Lemma 3.2, there are a, b, c ∈ K[x],
such that

Jx1,x2
H = c

(
ab −b2

a2 −ab

)

where a and b are linearly independent over K. As H is cubic homogeneous,
the entries of Jx1,x2

H are quadratic homogeneous, so c ∈ K and a and b are
independent linear forms.

If we take

T =

(
c 0
0 1

)
, then Jx1,x2

H̃ =

(
ãb̃ −b̃2

ã2 −ãb̃

)
,

where ã = c · a|x1=cx1
and b̃ = c−1 · b|x1=cx1

.
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We claim that the coefficient k2 of x2 in b̃ is 0. Suppose conversely that
k2 6= 0. Then the coefficient of x3

2 in

3H̃1 = Jx1,x2
H̃1 ·

(
x1

x2

)
= b̃(x1ã− x2b̃)

is nonzero. In particular, charK 6= 3. One may verify that

Jx1,x2
(H̃1 +

1

3
k−1
2 b̃3) = (c̃b̃, 0),

where c̃ := ã+k−1
2 b̃( ∂

∂x1
b̃). As a consequence, ∂

∂x2
(c̃b̃) = ∂

∂x1
0 = 0. Furthermore,

c̃ and b̃ are independent, just like ã and b̃. By ∂
∂x2

(c̃b̃) = 0, we have c̃b̃ ∈

K[x1, x3, x4, . . . , xn] if charK 6= 2. Since c̃ and b̃ are independent, we deduce
that if charK = 2 then c̃b̃ ∈ K[x1, x3, x4, . . . , xn] as well. Since the coefficient λ
of x2 in b̃ is nonzero, we have c̃ = 0, a contradiction.

So the coefficient of x2 in b̃ is 0. Similarly, the coefficient of x1 in ã is 0.
Consequently,

Jx1,x2

(
ã

b̃

)
=

(
0 λ
µ 0

)
,

where λ, µ ∈ K. Therefore

Jx1,x2
H̃ =

(
(λx2 + · · · )(µx1 + · · · ) −(µx1 + · · · )2

(λx2 + · · · )2 −(λx2 + · · · )(µx1 + · · · )

)
.

So the coefficient of x2
1x2 in 2H̃1 is equal to both λµ and −2µ2. Similarly, the

coefficient of x1x
2
2 in 2H̃2 is equal to both λµ and −2λ2. It follows that either

λ = µ = 0 or 0 6= λ = −2µ = 4λ. In the former case, H̃ satisfies (2). In the latter
case, charK = 3 and λ = µ. Replacing H̃ by λH̃

(
λ−1(x1, x2), x3, x4, . . . , xn

)
,

we have that H̃ satisfies (3).

Theorem 3.4. Suppose that charK 6= 2, 3. Let H ∈ K[x]n be cubic homoge-
neous such that x+H is a Keller map, i.e., JH is nilpotent.

(i) If rkJH = 1, then there exists T ∈ GLn(K) such that for H̃ := T−1H(Tx),

H̃1 ∈ K[x2, x3, x4, . . . , xn],

H̃2 = H̃3 = H̃4 = · · · = H̃n = 0.

(ii) If rkJH = 2, then either H is linearly triangularizable or there exists
T ∈ GLn(K) such that for H̃ := T−1H(Tx),

H̃1 − (x1x3x4 − x2x
2
4) ∈ K[x3, x4, . . . , xn],

H̃2 − (x1x
2
3 − x2x3x4) ∈ K[x3, x4, . . . , xn],

H̃3 = H̃4 = · · · = H̃n = 0.
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Furthermore, x + tH is invertible over K[t] if rkJH ≤ 2, where t is a new
variable. Moreover, x + tH is even tame over K[t] if either rkJH = 1 or
rkJH = 2 and n 6= 4. In particular, x + λH is invertible and tame under the
above condition respectively for every λ ∈ K.

Proof. We may take H̃ as in (1), (2) or (3) of Theorem 2.7. If rkJH = 1, then
H̃ is as in (1) of Theorem 2.7, i.e., H̃i = 0, 2 ≤ i ≤ n, whence (i) holds because
trJ H̃ = 0. So assume that rkJH = 2. Notice that JH is nilpotent.

If H̃ is as in (1) or (2) of Theorem 2.7, i.e., H̃i = 0, 3 ≤ i ≤ n or H̃ ∈
K[x1, x2]

n, then Jx1,x2
(H̃1, H̃2) is nilpotent.

If H̃ is as in (3) of Theorem 2.7, i.e., KH̃1 +KH̃2 + · · ·+KH̃n = Kx3x
2
1 ⊕

Kx3x1x2 ⊕ Kx3x
2
2, then H̃3 = 0, because x−1

3 H̃3 is the constant part with
respect to x3 of trJ H̃ = 0. So Jx1,x2

(H̃1, H̃2) is nilpotent in any case.
One may observe that, in all the cases (1), (2) and (3) of Theorem 2.7, if

Jx1,x2
(H̃1, H̃2) is similar over K to a triangular matrix, then J H̃ is similar over

K to a triangular matrix, and so is JH , and thus H is linearly triangularizable.
Now suppose Jx1,x2

(H̃1, H̃2) is not similar over K to a triangular matrix.

Noticing that charK 6= 2, 3, Jx1,x2
(H̃1, H̃2) must be as in (2) of Lemma 3.3, i.e.,

Jx1,x2
H̃ =

(
ab −b2

a2 −ab

)
and Jx1,x2

(
a
b

)
=

(
0 0
0 0

)
,

where a, b are linearly independent linear forms.
If H̃1 ∈ K[x1, x2, x3], then a, b ∈ k[x3], a contradiction. So H̃ is not as in

(2) or (3) of Theorem 2.7, and thus is as in (1) of Theorem 2.7, i.e., H̃3 = H̃4 =
· · · = H̃n = 0. Consequently, by linear coordinate transformation, we may take
H̃ such that a = x3 and b = x4. So (ii) holds.

For the last claim, when rkJH = 1, H̃ is of the form in (i), whence x+ tH̃

is elementary and thus tame. When rkJH = 2, H̃ is of the form in (ii), and it
suffices to show the following automorphism

F =
(
x1 + tx4(x3x1 − x4x2), x2 + tx3(x3x1 − x4x2), x3, x4, x5

)

is tame over K[t].
For that purpose, let w = t(x3x1 − x4x2) and let D := x4∂x1

+ x3∂x2
be a

derivation of K[t][x1, x2, x3, x4]. Observe that D is triangular and w ∈ kerD,
and that F = (exp(wD), x5). Therefore F is tame over K[t] due to the following
Lemma 3.5.

Recall that a derivation D of K[x] is called locally nilpotent if for every
f ∈ K[x] there exists an m such that Dm(f) = 0. For such a derivation,
expD :=

∑
∞

i=0
1

i!
Di is a polynomial automorphism of K[x]. A derivation D of

K[x] is called triangular if D(xi) ∈ K[xi+1, . . . , xn] for i = 1, 2, . . . , n − 1 and
D(xn) ∈ K. A triangular derivation is locally nilpotent.

Lemma 3.5. Let D be a triangular derivation of K[t][x] and w ∈ kerD i.e.
D(w) = 0. Then (exp(wD), xn+1) is tame over K[t].
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Proof. From [15, Corollary], it follows that there exists a k such that (exp(wD),
xn+1, xn+2, . . . , xn+k) is tame over K(t). Inspecting the proof of [15, Corollary]
yields that (exp(wD), xn+1) is tame over K[t].
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