Classification of cubic homogeneous polynomial maps with Jacobian matrices of rank two

Michiel de Bondt

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University
Nijmegen, The Netherlands

Xiaosong Sun

School of Mathematics, Jilin University, Changchun 130012, China

Abstract

Let K be any field with $\text{char}K \neq 2, 3$. We classify all cubic homogeneous polynomial maps H over K with $\text{rk} JH \leq 2$. In particular, we show that, for such an H, if $F = x + H$ is a Keller map then F is invertible, and furthermore F is tame if the dimension $n \neq 4$.

1 Introduction

Let K be an arbitrary field and $K[x] := K[x_1, x_2, \ldots, x_n]$ the polynomial ring in n variables. For a polynomial map $F = (F_1, F_2, \ldots, F_m) \in K[x]^m$, we denote by $JF := (\frac{\partial F_i}{\partial x_j})_{m \times n}$ the Jacobian matrix of F and $\text{deg} F := \max_i \text{deg} F_i$ the degree of F. A polynomial map $H \in K[x]^m$ is called homogeneous of degree d if each H_i is zero or homogeneous of degree d.

A polynomial map $F \in K[x]^n$ is called a Keller map if $\det JF \in K^*$. The Jacobian conjecture asserts that any Keller map is invertible if $\text{char}K = 0$; see [8] or [1]. It is still open for any dimension $n \geq 2$.

Following [13], we call a polynomial automorphism elementary if it is of the form $(x_1, \ldots, x_{i-1}, cx_i + a, x_{i+1}, \ldots, x_n)$, where $c \in K^*$ and $a \in K[x]$ contains no x_i. Furthermore, we call a polynomial automorphism tame if it is a finite composition of elementary ones. The definitions of elementary and tame may be different in other sources, but (as long as K is a generalized Euclidean ring) the definitions of tame are equivalent. The Tame Generators Problem asks if every polynomial automorphism is tame. It has an affirmative answer in dimension 2.

*deBondt@math.ru.nl
†Corresponding author, E-mail: sunxs@jlu.edu.cn
for arbitrary characteristic (see [10, 11]) and a negative answer in dimension 3 for the case of \(\text{char} K = 0 \) (see [14]), and is still open for any \(n \geq 4 \).

A polynomial map \(F = x + H \in K[x]^n \) is called triangular if \(H_i \in K[x_{i+1}, \ldots, x_n], 1 \leq i \leq n-1 \). A polynomial map \(F \) is called linearly triangularizable if it is linearly conjugate to a triangular map, i.e., there exists an invertible linear map \(T \in \text{GL}_n(K) \) such that \(T^{-1}F(Tx) \) is triangular. A linearly triangularizable map is tame.

Some special polynomial maps have been investigated in the literature. For example, when \(\text{char} K = 0 \), a Keller map \(F = x + H \in K[x]^n \) is shown to be linearly triangularizable in the cases: (1) \(n = 3 \) and \(H \) is homogeneous of arbitrary degree (de Bondt and van den Essen [6]); (2) \(n = 4 \) and \(H \) is quadratic homogeneous (Meisters and Olech [12]); (3) \(n = 9 \) and \(F \) is a quadratic homogeneous quasi-translation (Sun [16]); (4) \(n \) arbitrary and \(H \) is quadratic with \(\text{rk} J_H \leq 2 \) (De Bondt and Yan [7]), and to be tame in the case (5) \(n = 5 \) and \(H \) is quadratic homogeneous (de Bondt [2] and Sun [17] independently), and to be invertible in the case (6) \(n = 4 \) and \(H \) is cubic homogeneous (Hubbers [9]). For the case of arbitrary characteristic, de Bondt [5] described the Jacobian matrix \(J_H \) of rank two for any quadratic polynomial map \(H \) and showed that if \(J_H \) is nilpotent then \(J_H \) is similar to a triangular one.

In this paper, we investigate cubic homogeneous polynomial maps \(H \) with \(\text{rk} J_H \leq 2 \) for any dimension \(n \) when \(\text{char} K \neq 2, 3 \). In Section 2, we classify all such maps (Theorem 2.7). And in Section 3, we show that for such an \(H \), if \(F = x + H \) is a Keller map, then it is invertible and furthermore it is tame if the dimension \(n \neq 4 \) (Theorem 3.4).

2 Cubic homogeneous maps \(H \) with \(\text{rk} J_H \leq 2 \)

For a polynomial map \(H \in K[x]^m \), we write \(\text{trdeg}_K K(H) \) for the transcendence degree of \(K(H) \) over \(K \). It is well-known that \(\text{rk} J_H = \text{trdeg}_K K(H) \) if \(K(H) \subseteq K(x) \) is separable, in particular if \(\text{char} K = 0 \); see [8, Proposition 1.2.9]. And for arbitrary characteristic, one has \(\text{rk} J_H \leq \text{trdeg}_K K(H) \); see [4] or [13].

It was shown in [5] that when \(\text{char} K \neq 2 \), for any quadratic polynomial map \(H \) with \(\text{rk} J_H \leq 2 \), one has \(\text{rk} J_H = \text{trdeg}_K K(H) \). We will show that when \(\text{char} K \neq 2, 3 \), for any cubic homogeneous polynomial map \(H \) with \(\text{rk} J_H \leq 2 \), one has \(\text{rk} J_H = \text{trdeg}_K K(H) \). The notation \(a|_{x=c} \) below means to substitute \(x \) by \(c \) in \(a \).

Theorem 2.1. Let \(s \leq n \). Take

\[
\tilde{x} := (x_1, x_2, \ldots, x_s) \quad \text{and} \quad L := K(x_{s+1}, x_{s+2}, \ldots, x_n).
\]

To prove that for (homogeneous) polynomial maps \(H \in K[x]^m \) of degree \(d \),

\[
\text{rk} J_H = r \quad \text{implies} \quad \text{trdeg}_K K(H) = r, \quad \text{for every} \ r < s,
\]

(2.1)
Lemma 2.2. Let it suffices to show that for (homogeneous) polynomial maps $\tilde{H} \in L[\bar{x}]^{s}$ of degree d,
\[
\text{trdeg}_{L}(\tilde{H}) = s \implies \text{rk} \mathcal{J}_{\bar{x}} \tilde{H} = s. \tag{2.2}
\]

Proof. Suppose that $H \in K[x]^{m}$ is (homogeneous) of degree d, such that (2.1) does not hold. Then there exists an $r < s$ such that $\text{rk} \mathcal{J}H = r < \text{trdeg}_{K} K(H)$. We need to show that (2.2) does not hold.

Let $s' = \text{trdeg}_{K} K(H)$. Assume without loss of generality that $H_{1}, H_{2}, \ldots, H_{s'}$ are algebraically independent over K, and that the components of
\[
H' := (H_{1}, H_{2}, \ldots, H_{s'}, x_{s'+1}^{d}, x_{s'+2}^{d}, \ldots, x_{s}^{d})
\]
are algebraically independent over K if $s' < s$. Then
\[
\text{rk} \mathcal{J}H' \leq r + (s - s') < s = \text{trdeg}_{K} K(H').
\]

For the case of $s' \geq s$, just take $H' = (H_{1}, H_{2}, \ldots, H_{s})$, and we have also $\text{rk} \mathcal{J}H' \leq r < s$.

Notice that (2.1) is also unsatisfied for H'. So, replacing H by H', we may assume that $H \in K[x]^{s}$ with $\text{rk} \mathcal{J}H = r < \text{trdeg}_{K} K(H) = s$.

One may observe that $H_{1}(x_{1}, x_{1}x_{2}, x_{1}x_{3}, \ldots, x_{1}x_{n})$ is algebraically independent over K of $x_{2}, x_{3}, \ldots, x_{n}$. On account of the Steinitz Mac Lane exchange lemma, we may assume without loss of generality that the components of
\[
(H(x_{1}, x_{1}x_{2}, x_{1}x_{3}, \ldots, x_{1}x_{n}), x_{s+1}, x_{s+2}, \ldots, x_{n})
\]
are algebraically independent over K. Then the components of $H(x_{1}, x_{1}x_{2}, x_{1}x_{3}, \ldots, x_{1}x_{n})$ are algebraically independent over $L := K(x_{s+1}, x_{s+2}, \ldots, x_{n})$, and so are the components of
\[
\tilde{H} := H(x_{1}, x_{2}, \ldots, x_{s}, x_{1}x_{s+1}, x_{1}x_{s+2}, \ldots, x_{1}x_{n}) \in L[\bar{x}]^{s},
\]
where $\bar{x} = (x_{1}, x_{2}, \ldots, x_{s})$. That is, $\text{trdeg}_{L}(\tilde{H}) = s$.

Let $G := (x_{1}, x_{2}, \ldots, x_{s}, x_{1}x_{s+1}, x_{1}x_{s+2}, \ldots, x_{1}x_{n})$. Then it follows from the chain rule that
\[
\mathcal{J}_{\bar{x}} \tilde{H} = (\mathcal{J}H)|_{x=G} \cdot \mathcal{J}_{\bar{x}} G,
\]
so $\text{rk} \mathcal{J}_{\bar{x}} \tilde{H} \leq \text{rk}(\mathcal{J}H)|_{x=G} \leq \text{rk} \mathcal{J}H < s$. Therefore (2.2) does not hold for \tilde{H}, which completes the proof. \hfill \Box

Lemma 2.2. Let $H \in K[x]^{m}$ be a polynomial map of degree d and $r := \text{rk} \mathcal{J}H$. Denote by $|K|$ the cardinality of K.

(i) If $|K| > (d - 1)r$ and $\mathcal{J}H : x = 0$, then there exist $S \in \text{GL}_{m}(K)$ and $T \in \text{GL}_{n}(K)$, such that for $\tilde{H} := SH(Tx)$,
\[
\tilde{H}|_{x=e_{r+1}} = \begin{pmatrix} I_{r} & 0 \\ 0 & 0 \end{pmatrix}.
\]
Lemma 5.1 (i). The rest of the proof of (ii) is similar to that of (i). So

\[H|_{x=e_1} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}. \]

Moreover, \(|K|\) may be one less (i.e. at least \((d-1)r\) and \((d-1)r+1\) respectively) if every nonzero component of \(H\) is homogeneous.

Proof. (i) Assume without loss of generality that

\[a_0 := \det \mathcal{J}_{x_1, x_2, \ldots, x_r}(H_1, H_2, \ldots, H_r) \neq 0. \]

Suppose that \(|K| > (d-1)r\). It follows by [3] Lemma 5.1 (i)] that there exists a vector \(w \in K^n\) such that \(a_0(w) \neq 0\). So \(\text{rk} (\mathcal{J}H)|_{x=w} = r\). There exist \(n-r\) independent vectors \(v_{r+1}, v_{r+2}, \ldots, v_n \in K^n\), such that \(\mathcal{J}H|_{x=w} \cdot v_i = 0\) for \(i = r+1, r+2, \ldots, n\). And we may take \(v_{r+1} = w\) since

\[(\mathcal{J}H)|_{x=w} \cdot w = (\mathcal{J}H \cdot x)|_{x=w} = 0. \]

Take \(T = (v_1, v_2, \ldots, v_n) \in \text{GL}_n(K)\). From the chain rule, we deduce that

\[(\mathcal{J}(H(Tx)))|_{x=e_{r+1}} \cdot e_i = (\mathcal{J}H)|_{x=Tv_{r+1}} \cdot Te_i = (\mathcal{J}H)|_{x=w} \cdot v_i \quad (1 \leq i \leq n). \]

In particular, \(\text{rk} \mathcal{J}(H(Tx))|_{x=e_{r+1}} = r\) and the last \(n-r\) columns of \(\mathcal{J}(H(Tx))|_{x=e_{r+1}}\) are zero. There exists \(S \in \text{GL}_m(K)\) such that

\[(\mathcal{J}(SH(Tx)))|_{x=e_{r+1}} = S \cdot (\mathcal{J}(H(Tx)))|_{x=e_{r+1}} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}. \]

(2) Suppose that \(|K| > (d-1)r+1\). Since \(\mathcal{J}H \cdot x \neq 0\), we may assume that

\[\text{rk} \left(\mathcal{J}H \cdot x, \mathcal{J}x_2, x_3, \ldots, x_r, H \right) = r, \]

and that

\[a_1 := \det \left(\mathcal{J}(H_1, H_2, \ldots, H_r) \cdot x, \mathcal{J}x_2, x_3, \ldots, x_r, (H_1, H_2, \ldots, H_r) \right) \neq 0. \]

It follows by [3] Lemma 5.1 (i)] that there exists \(w \in K^n\) such that \(a_1(w) \neq 0\). One may observe that \(\text{rk} (\mathcal{J}H)|_{x=w} = r\) and thus there exist independent vectors \(v_{r+1}, v_{r+2}, \ldots, v_n \in K^n\), such that \(\mathcal{J}H|_{x=w} \cdot v_i = 0\) for \(i = r+1, r+2, \ldots, n\). Since \(\mathcal{J}H \cdot x|_{x=w}\) is the first column of a full column rank matrix, we have

\[(\mathcal{J}H)|_{x=w} \cdot w = (\mathcal{J}H \cdot x)|_{x=w} \neq 0. \]

So \(v_1 := w\) is independent of \(v_{r+1}, v_{r+2}, \ldots, v_n\).

Take \(T = (v_1, v_2, \ldots, v_n) \in \text{GL}_n(K)\). Then

\[(\mathcal{J}(H(Tx)))|_{x=e_1} \cdot e_i = (\mathcal{J}H)|_{x=Tv_1} \cdot Te_i = (\mathcal{J}H)|_{x=w} \cdot v_i \quad (1 \leq i \leq n). \]

The rest of the proof of (ii) is similar to that of (i).

The last claim follows from [3] Lemma 5.1 (ii), as an improvement to [3] Lemma 5.1 (i)].
Proposition 2.3. Assume that char\(K \notin \{1, 2, \ldots, d\}\). Then for any cubic homogeneous polynomial map \(H \in K[x]^m\) of degree \(d\) with \(\text{rk} \mathcal{J}H \leq 1\), the components of \(H\) are linearly dependent over \(K\) in pairs, and one has \(\text{rk} \mathcal{J}H = \text{trdeg}_K K(H)\).

Proof. The case \(\text{rk} \mathcal{J}H = 0\) is obvious, so let \(\text{rk} \mathcal{J}H = 1\). On account of Lemma \ref{lem:2.2}, we may assume that \(\mathcal{J}H|_{x = e_1} = E_{11}\). Let \(j \geq 2\). Since \(\deg_{x_1} H_j < d\), we infer that either \(H_j = 0\), or \(\deg_{x_1} \frac{\partial}{\partial x_1} H_j < \deg_{x_1} \frac{\partial}{\partial x_1} H_j\) for some \(i \geq 2\), where \(\deg_{x_1} 0 = -\infty\). The latter is impossible due to \(\text{rk} \mathcal{J}H = 1\), so \(H_j = 0\). This holds for all \(j \geq 2\), which yields the desired results.

Lemma 2.4. Let \(H = (h, x_1^2 x_2, x_2^2 x_3)\) or \((h, x_1^2 x_3, x_2^2 x_3) \in K[x_1, x_2, x_3]^3\), where \(h\) is cubic homogeneous, and assume that \(\text{char} K \neq 2, 3\). Then \(\text{rk} \mathcal{J}H = \text{trdeg}_K K(H)\).

Proof. It suffices to consider the case of \(\text{rk} \mathcal{J}H = 2\). Define a derivation \(D\) on \(A = K[x_1, x_2, x_3]\) as follows: for any \(f \in A\),

\[
D(f) = \frac{x_1 x_2 x_3}{H_2 H_3} \det \mathcal{J}H.
\]

In the case \(H = (h, x_1^2 x_2, x_2^2 x_3)\), an easy calculation shows that \(D = x_1 \partial_{x_1} - 2x_2 \partial_{x_2} + 4x_3 \partial_{x_3}\). Then for any term \(u = x_1^{d_1} x_2^{d_2} x_3^{d_3} \in A\), \(D(u) = (d_1 - 2d_2 + 4d_3)u\). And thus \(\ker D := \{g \in A \mid D(g) = 0\}\), the kernel of \(D\), is linearly spanned by all terms \(u\) with \(d_1 - 2d_2 + 4d_3 = 0\). So the only cubic terms in \(\ker D\) are \(x_1^2 x_2\) and \(x_2^2 x_3\). Since \(\text{rk} \mathcal{J}H = 2\), we have \(\det \mathcal{J}H = 0\) and thus \(h \in \ker D\), which implies that \(h\) is a linear combinations of \(x_1^2 x_2\) and \(x_2^2 x_3\). Thus \(\text{trdeg}_K K(H) = 2\).

In the case \(H = (h, x_1^2 x_3, x_2^2 x_3)\), one may verify that \(x_1^2 x_3, x_1 x_2 x_3\) and \(x_2^2 x_3\) are the only cubic terms in \(\ker D\). The conclusion follows similarly.

Theorem 2.5. Assume that \(\text{char} K \neq 2, 3\). Then for any cubic homogeneous polynomial map \(H \in K[x]^m\) with \(\text{rk} \mathcal{J}H \leq 2\), one has \(\text{rk} \mathcal{J}H = \text{trdeg}_K K(H)\).

Proof. Due to Theorem \ref{thm:2.1} and replacing \(L\) there by \(K\), we may assume that \(H \in K[x_1, x_2, x_3]^3\), and it suffices to show that

\[
\text{trdeg}_K K(H) = 3 \text{ implies } \text{rk} \mathcal{J}H = 3,
\]

or equivalently,

\[
\det \mathcal{J}H = 0 \text{ implies } \text{trdeg}_K K(H) < 3. \tag{2.3}
\]

So assume that \(\det \mathcal{J}H = 0\). Since we may replace \(K\) by an extension field to make it large enough, it follows by Lemma \ref{lem:2.2} that we may assume that \(\mathcal{J}(H)|_{x = e_1} = E_{11} + E_{22}\). Then \(\mathcal{J}H\) is of the form

\[
\begin{pmatrix}
 x_1^2 + * & * & * \\
 * & x_1^2 + * & * \\
 * & * & \frac{\partial H_j}{\partial x_3}
\end{pmatrix},
\]
where the x_1-degree of each element $*$ is less than 2. Observing the terms with x_1-degree ≥ 5 in $\det JH$, we have that $\frac{\partial H_k}{\partial x_3} \in K[x_2, x_3]$. Notice that H_2 and H_3 are of the form:

$$H_2 = x_1^2 x_2 + b_1 x_1 x_3^2 + b_1 x_1 x_2 x_3 + b_1 x_2 x_3^2 + b_1(x_2, x_3);$$

$$H_3 = c_0 x_1 x_2^2 + c_0 x_3^3 + c_0 x_2 x_3^2 + c_0 x_3 x_2^2 + c_0 x_3^3.$$

We shall show that $x_2^2 \mid H_3$, i.e., $c_0 = c_1 = 0$.

Noticing that the part of x_1-degree 4 of $\det JH$ is $(\frac{\partial H_1}{\partial x_3} - \frac{\partial H_2}{\partial x_1} - \frac{\partial H_3}{\partial x_1}) x_1^4$, we see that $\frac{\partial H_1}{\partial x_3} - \frac{\partial H_2}{\partial x_1} - \frac{\partial H_3}{\partial x_1} = 0$. Consequently,

$$(3c_0 x_3^2 + 2c_0 x_2 x_3 + c_0 x_2^2) = (2b_{10} x_3 + b_{11} x_2)(2c_{12} x_2)$$

so

$$c_0 = 0, \quad c_1 = 2b_{10} c_{12}, \quad c_0 = 2b_{11} c_{12}.$$

One may observe that the coefficient of $x_1^3 x_3^2$ in $\det JH$ is $2c_0 b_{10} = 0$, which we can combine with $c_0 = 2b_{10} c_{12}$ to obtain $c_0 = 0$. Therefore,

$$H_3 = (c_1 x_1 + c_0 x_2 + c_0 x_3) x_2^2.$$

Moreover, if $c_{12} = 0$ then $c_0 = 2b_{11} c_{12} = 0$ and thus $H_3 = c_0 x_3 x_2^3$.

We distinguish two cases.

- **Case 1:** $c_{12} \neq 0$ and $c_{12} x_1 + c_0 x_2 + c_0 x_3 \mid H_i$ for some i.

Then H_3 is the product of two linear forms, of which two are distinct. Hence we can compose H with invertible linear maps on both sides, to obtain a map H' for which $H'_2 = x_1^2 x_2$, and $x_2 \mid H'_1$.

Notice that $H'_1(1, 0, t) \neq 0$. As K has at least 5 elements, it follows from [3, Lemma 5.1 (i)] that there exists a $\lambda \in K$, such that $H'_1(1, 0, \lambda) \neq 0$. Hence the coefficient of x_1^3 in $H'_1(x_1, x_2, x_3 + \lambda x_1)$ is nonzero. Furthermore, $H'_2(x_1, x_2, x_3 + \lambda x_1) = x_1^2 x_2$.

Replacing H' by $H'(x_1, x_2, x_3 + \lambda x_1)$, we may assume that $H'_2 = x_1^2 x_2$ and that H'_1 contains x_1^3 as a term. We may even assume that the coefficient of x_1^3 in H'_1 equals 1. Then $\det JH'|_{x_3 = e_1}$ is of the form

$$\begin{pmatrix}
1 & * & a \\
0 & 1 & 0 \\
* & * & *
\end{pmatrix},$$

and has rank 2. Furthermore, $v_3 = (-a, 0, 1)^t$ belongs to its null space. We may apply the proof of Lemma 2.2 on H' by taking $T = (e_1, e_2, v_3)$ and taking an appropriate $S \in \text{GL}_3(K)$ such that $\tilde{H} := SH'(Tx)$ satisfies $\det \tilde{H}|_{x = e_1} = S \det JH'|_{x = T e_1} = E_{11} + E_{22}$. Notice that Tx is of the form (L_1, x_2, L_3), and observing the form of $\det JH'|_{x = e_1}$ one may also choose $S x$ to be of the form $(*, x_2, *)$. Then $\tilde{H}_2 = L_1^2 x_2$.

6
So we can compose \tilde{H} with an invertible linear map on the right, to obtain a map \tilde{H}' for which $\tilde{H}'_2 = x_1^2 x_2$ and $\tilde{H}'_3 = x_2^3 L'$ for some linear form L'.

Suppose first that L' is a linear combination of x_1 and x_2. If $\tilde{H}'_1 \in K[x_1, x_2]$, then we are done. Otherwise, we have $\det \mathcal{J}_{x_1 x_2}(\tilde{H}'_2, \tilde{H}'_3) = 0$, and then by Proposition 2.3 \(\text{trdeg}_K K(\tilde{H}'_2, \tilde{H}'_3) < 2 \).

Suppose next that L' is not a linear combination of x_1 and x_2. Then we may assume that $\tilde{H}'_3 = x_2^2 x_3$. By Lemma 2.4 \(\text{(i)} \), \(\text{trdeg}_K K(\tilde{H}') < 3 \).

- **Case 2:** $c_{12} = 0$ or $c_{12} x_1 + c_{03} x_2 + c_{02} x_3 \mid H_i$ for all i.

Since $x_2^2 \mid H_3$, we can compose H with invertible linear maps on both sides, to obtain a map H' for which $H'_1 \in \{x_1^3, x_1^2 x_2\}$. After a possible interchange of H'_2 and H'_3, the first two rows of $\mathcal{J} H'$ are independent. Now we may apply the proof of Lemma 2.2 to H', more precisely, there exist $S, T \in \text{GL}_3(K)$ such that $\tilde{H} := S \mathcal{H}'(T x)$ satisfies $\mathcal{J} \tilde{H}|_{x=x_1} = E_{11} + E_{22}$.

If we choose w such that first two rows of $(\mathcal{J} H')_{x=w}$ are independent, then we can take S such that $S x = (f_1 x_1 + f_2 x_2, g_1 x_1 + g_2 x_2, \ast)$. By repeating the discussion for \tilde{H} as for H above, we may assume that $\tilde{H}_3 = L x_2^2$ for some linear form L.

Let $T x = (L_1, L_2, L_3)$. Notice that $H'_1(T x) \in \{L_1^3, L_1^2 L_2\}$ and that $H'_1(T x)$ is a linear combination of \tilde{H}_1 and \tilde{H}_2. Hence we can compose \tilde{H} with a linear map on the left, to obtain a map \tilde{H}' for which $H'_2 \in \{L_1^3, L_1^2 L_2\}$ and $H'_3 = L x_2^2$.

Suppose first that $\tilde{H}'_2 = L_1^2 L_2$. Then $c_{12} \neq 0$, so $c_{12} x_1 + c_{03} x_2 + c_{02} x_3 \mid H_i$ for all i. From this, we infer that $L_2 \mid \tilde{H}_i$ and $L_2 \mid \tilde{H}'_i$ for all i. As $x_2 \not\mid \tilde{H}_1$, we deduce that L and L_2 are dependent linear forms, which are independent of x_2. If L and L_2 are linear combinations of L_1 and x_2, then we can reduce to Proposition 2.3, and otherwise we can reduce to Lemma 2.4 \(\text{(ii)} \).

Suppose next that $\tilde{H}'_2 = L_1^3$. If L, L_1 and x_2 are linearly dependent over K, then we can reduce to Proposition 2.3. Otherwise, \tilde{H} is as H in the previous case.

Remark 2.6. Inspired by Lemma 2.4, we investigated maps H of which the components are terms, and searched for H with algebraically independent components for which $\det \mathcal{J} H = 0$. One can infer that H is as such, if and only if the matrix with entries $\deg_{x_i} H_j$ has determinant zero over K, but not over \mathbb{Z}.

We found the following non-homogeneous H as above over fields of characteristic 5:

$$(x_1^3 x_2, x_1 x_2^2), \quad (x_1^2 x_2, x_1 x_2^2, x_2 x_3)$$

with the following homogenizations respectively:

$$(x_1^3 x_2, x_1 x_2^2 x_3, x_3^4), \quad (x_1^2 x_2, x_1 x_2^2, x_2 x_3 x_4, x_3^3)$$
Besides these homogenizations, we found the following homogeneous H over fields of characteristic 5:

$$(x_1^2x_3^3, x_1x_2^3, x_2x_3^2), \quad (x_4x_1^2, x_1x_2^2, x_2x_3^2, x_3x_4^2)$$

We conclude with a homogeneous H over fields of characteristic 7, and a homogeneous H over any characteristic $p \in \{1, 2, \ldots, d\}$ respectively:

$$(x_3x_1^3, x_1x_2^3, x_2x_3^2), \quad (x_4^d, x_1^{d-r}x_2^r)$$

These examples show that the conditions in Proposition 2.3 and Theorem 2.5 cannot be relaxed.

Theorem 2.7. Suppose that $\text{char} K \neq 2, 3$ and let $H \in K[x]^m$ be cubic homogeneous. Let $r := \text{rk} JH$ and suppose that $r \leq 2$. Then there exist $S \in \text{GL}_m(K)$ and $T \in \text{GL}_n(K)$, such that for $\tilde{H} := SH(Tx)$, one of the following statements holds:

1. $\tilde{H}_{r+1} = \tilde{H}_{r+2} = \cdots = \tilde{H}_m = 0$;
2. $r = 2$ and $\tilde{H} \in K[x_1, x_2]^m$;
3. $r = 2$ and $K\tilde{H}_1 + K\tilde{H}_2 + \cdots + K\tilde{H}_m = Kx_3x_1^2 \oplus Kx_3x_1x_2 \oplus Kx_3x_2^2$.

Furthermore, we may take $S = T^{-1}$ if $m = n$.

Proof. By Theorem 2.3, $\text{trdeg}_K K[H] = \text{rk} JH = r \leq 2$. Since H is homogeneous, we have $\text{trdeg}_K K(tH) = r$ as well, where t is a new variable.

Suppose first that $r \leq 1$. It follows by [4] Theorem 2.7 that we may take \tilde{H} as in (1).

Suppose next that $r = 2$. By [4] Theorem 2.7, H is of the form $g \cdot h(p, q)$, such that g, h and (p, q) are homogeneous and $\deg g + \deg h \cdot \deg(p, q) = 3$.

If $\deg h \leq 1$, then every triple of components of h is linearly dependent over K, and thus we may take \tilde{H} as in (1). If $\deg h = 3$, then $\deg(p, q) = 1$ and $\deg g = 0$, whence we may take \tilde{H} as in (2).

So assume that $\deg h = 2$. Then $\deg(p, q) = 1$ and $\deg g = 1$. If g is a linear combination of p and q, then we may take \tilde{H} as in (2). If g is not a linear combination of p and q, then we may take \tilde{H} as in (3) or (1).

Finally, if $m = n$ and $\tilde{H} = SH(Tx)$ is as in (1), then $SH(S^{-1}x) = \tilde{H}(T^{-1}S^{-1}x)$ is still as in (1). So we may take $S = T^{-1}$. If $m = n$ and $\tilde{H} = SH(Tx)$ is as in (2) or (3), then $T^{-1}H(Tx) = T^{-1}S^{-1}H$ is still as in (2) or (3), whence we may also take $S = T^{-1}$. \qed

3 Cubic homogeneous Keller maps $x + H$ with $\text{rk} JH \leq 2$

For two matrices $M, N \in \text{Mat}_n(K[x])$, we say that M is similar over K to N, if there exists $T \in \text{GL}_n(K)$ such that $N = T^{-1}MT$.

8
Theorem 3.1. Let $F = x + H \in K[x]^n$ be a Keller map with $\text{trdeg}_K K(H) = 1$. Then JH is similar over K to a triangular matrix, and the following statements are equivalent:

1. $\det JF = 1$;
2. JH is nilpotent;
3. $(JH) \cdot (JH)|_{x=y} = 0$, where $y = (y_1, y_2, \ldots, y_n)$ are n new variables.

Proof. Since $\text{trdeg}_K K(H) = 1$, by [4, Corollary 3.2] there exists a polynomial $p \in K[x]$ such that $H_i \in K[p]$ for each i. Say that $H_i = h_i(p)$, where $h_i \in K[t]$ for each i. Write $h'_i = \frac{\partial h_i}{\partial t}$, then

$$JH = h'_i(p) \cdot Jp. \quad (3.1)$$

Assume without loss of generality that $h'_1 = h'_2 = \cdots = h'_s = 0$, and that

$$0 \leq \deg h'_{s+1} < \deg h'_{s+2} < \cdots < \deg h'_n.$$

For $s < i < n$,

$$\deg h'_i(p) = \deg h'_i \cdot \deg p \leq (\deg h'_{i+1} - 1) \cdot \deg p = \deg h'_{i+1}(p) - \deg p.$$

Since the degrees of the entries of Jp are less than $\deg p$, we deduce from (3.1) that the nonzero entries on the diagonal of JH have different degrees in increasing order. Furthermore, the nonzero entries beyond the $(s+1)$th entry on the diagonal of JH have positive degrees.

By (3.1), $\text{rk}(-JH) \leq 1$, and thus $n-1$ eigenvalues of $-JH$ are zero. It follows that the trailing degree of the characteristic polynomial of $-JH$ is at least $n-1$. More precisely,

$$\det(tI_n + JH) = t^n - \text{tr}(-JH) \cdot t^{n-1},$$

and thus

$$\det JF = (t^n - \text{tr}(-JH) \cdot t^{n-1})|_{t=1} = 1 + \text{tr} JH.$$

Observe that the diagonal of JH is totally zero, except maybe the $(s+1)$th entry, which is a constant.

So $\frac{\partial}{\partial x} p = 0$ for all $i > s + 1$, and JH is lower triangular. If the $(s+1)$th entry on the diagonal of JH is nonzero, then (1), (2) and (3) do not hold. If the $(s+1)$th entry on the diagonal of JH is zero, then $\frac{\partial}{\partial x} p = 0$ for all $i > s$, whence (1), (2) and (3) hold. \qed

Let $H \in K[x]^n$ be homogeneous of degree $d \geq 2$. Then $x + H$ is a Keller map if and only if JH is nilpotent; see for example [3 Lemma 6.2.11]. So we first investigate nilpotent matrices over $K[x]$. 9
Lemma 3.2. Let $N \in \text{Mat}_2(K[x])$ such that N is nilpotent. Then there exist $a, b, c \in K[x]$ such that

$$N = c \begin{pmatrix} ab & -b^2 \\ a^2 & -ab \end{pmatrix}.$$

Furthermore, N is similar over K to a triangular matrix if and only if a and b are linearly dependent over K.

Proof. Since $\det N = 0$, we may write

$$N = c \cdot \begin{pmatrix} b \\ a \end{pmatrix} \cdot \begin{pmatrix} a & -\tilde{b} \end{pmatrix},$$

where $a, b \in K[x]$ and $\tilde{b}, c \in K(x)$. Since $\text{tr} N = 0$, we have $\tilde{b} = b$. If we choose a and b to be relatively prime, then $c \in K[x]$ as well.

Furthermore, a and b are linearly dependent over K if and only if the rows of N are linearly dependent over K, if and only if N is similar over K to a triangular matrix. \qed

Lemma 3.3. Let $H \in K[x]^2$ be cubic homogeneous, such that $J_{x_1,x_2}H$ is nilpotent. Then there exists $T \in \text{GL}_2(K)$ such that for $\tilde{H} := T^{-1}H(T(x_1,x_2), x_3, x_4, \ldots, x_n)$, one of the following statements holds:

1. $J_{x_1,x_2}\tilde{H}$ is a triangular matrix;
2. there are independent linear forms $a, b \in K[x]$, such that

$$J_{x_1,x_2}\tilde{H} = \begin{pmatrix} ab & -b^2 \\ a^2 & -ab \end{pmatrix} \quad \text{and} \quad J_{x_1,x_2} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix};$$

3. $\text{char} K = 3$ and there are independent linear forms $a, b \in K[x]$, such that

$$J_{x_1,x_2}\tilde{H} = \begin{pmatrix} ab & -b^2 \\ a^2 & -ab \end{pmatrix} \quad \text{and} \quad J_{x_1,x_2} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Proof. Suppose that (1) does not hold. By Lemma 3.2 there are $a, b, c \in K[x]$, such that

$$J_{x_1,x_2}H = c \begin{pmatrix} ab & -b^2 \\ a^2 & -ab \end{pmatrix}$$

where a and b are linearly independent over K. As H is cubic homogeneous, the entries of $J_{x_1,x_2}H$ are quadratic homogeneous, so $c \in K$ and a and b are independent linear forms.

If we take

$$T = \begin{pmatrix} c & 0 \\ 0 & 1 \end{pmatrix}, \quad \text{then} \quad J_{x_1,x_2}\tilde{H} = \begin{pmatrix} \tilde{a}b & -\tilde{b}^2 \\ \tilde{a}^2 & -\tilde{a}b \end{pmatrix},$$

where $\tilde{a} = c \cdot a|_{x_1= cx_1}$ and $\tilde{b} = c^{-1} \cdot b|_{x_1= cx_1}$.\]
We claim that the coefficient k_2 of x_2 in \tilde{b} is 0. Suppose conversely that $k_2 \neq 0$. Then the coefficient of x_2^2 in

$$3\tilde{H}_1 = \mathcal{J}_{x_1,x_2}\tilde{H}_1 \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \tilde{b}(x_1\tilde{a} - x_2\tilde{b})$$

is nonzero. In particular, char $K \neq 3$. One may verify that

$$\mathcal{J}_{x_1,x_2}(H_1 + \frac{1}{2}k_2^{-1}\tilde{b}^3) = (\tilde{b}, 0),$$

where $\tilde{c} := \tilde{a} + k_2^{-1} \tilde{b}(\frac{\partial}{\partial x_1}\tilde{b})$. As a consequence, $\frac{\partial}{\partial x_1}(\tilde{b}) = \frac{\partial}{\partial x_1}0 = 0$. Furthermore, \tilde{c} and \tilde{b} are independent, just like \tilde{a} and \tilde{b}. By $\frac{\partial}{\partial x_2}(\tilde{b}) = 0$, we have $\tilde{c} \tilde{b} \in K[x_1, x_3, x_4, \ldots, x_n]$ if char $K \neq 2$. Since \tilde{c} and \tilde{b} are independent, we deduce that if char $K = 2$ then $\tilde{c} \tilde{b} \in K[x_1, x_3, x_4, \ldots, x_n]$ as well. Since the coefficient λ of x_3 in \tilde{b} is nonzero, we have $\tilde{c} = 0$, a contradiction.

So the coefficient of x_2 in \tilde{b} is 0. Similarly, the coefficient of x_1 in \tilde{a} is 0. Consequently,

$$\mathcal{J}_{x_1,x_2} \begin{pmatrix} \tilde{a} \\ \tilde{b} \end{pmatrix} = \begin{pmatrix} 0 & \lambda \\ \mu & 0 \end{pmatrix},$$

where $\lambda, \mu \in K$. Therefore

$$\mathcal{J}_{x_1,x_2}\tilde{H} = \begin{pmatrix} (\lambda x_2 + \cdots)(\mu x_1 + \cdots) & -(\lambda x_2 + \cdots)(\mu x_1 + \cdots) \\ (\lambda x_2 + \cdots)^2 & -(\mu x_1 + \cdots)^2 \end{pmatrix}.$$

So the coefficient of $x_1^2 x_2$ in $2\tilde{H}_1$ is equal to both $\lambda \mu$ and $-2\mu^2$. Similarly, the coefficient of $x_1 x_2^2$ in $2\tilde{H}_2$ is equal to both $\lambda \mu$ and $-2\lambda^2$. It follows that either $\lambda = \mu = 0$ or $0 \neq \lambda = -2\mu = 4\lambda$. In the former case, \tilde{H} satisfies (2). In the latter case, char $K = 3$ and $\lambda = \mu$. Replacing \tilde{H} by $\lambda \tilde{H}(\lambda^{-1}(x_1, x_2), x_3, x_4, \ldots, x_n)$, we have that \tilde{H} satisfies (3).

\begin{theorem}
Suppose that char $K \neq 2, 3$. Let $H \in K[x]^n$ be cubic homogeneous such that $x + H$ is a Keller map, i.e., $\mathcal{J}H$ is nilpotent.

(i) If $\text{rk } \mathcal{J}H = 1$, then there exists $T \in \text{GL}_n(K)$ such that for $\tilde{H} := T^{-1}H(Tx)$,

$$\tilde{H}_1 \in K[x_2, x_3, x_4, \ldots, x_n],$$

$$\tilde{H}_2 = \tilde{H}_3 = \tilde{H}_4 = \cdots = \tilde{H}_n = 0.$$

(ii) If $\text{rk } \mathcal{J}H = 2$, then either H is linearly triangularizable or there exists $T \in \text{GL}_n(K)$ such that for $\tilde{H} := T^{-1}H(Tx)$,

$$\tilde{H}_1 - (x_1 x_3 x_4 - x_2 x_4^2) \in K[x_3, x_4, \ldots, x_n],$$

$$\tilde{H}_2 - (x_1 x_3^2 - x_2 x_3 x_4) \in K[x_3, x_4, \ldots, x_n],$$

$$\tilde{H}_3 = \tilde{H}_4 = \cdots = \tilde{H}_n = 0.$$

\end{theorem}
Furthermore, $x + tH$ is invertible over $K[t]$ if $\text{rk} JH \leq 2$, where t is a new variable. Moreover, $x + tH$ is even tame over $K[t]$ if either $\text{rk} JH = 1$ or $\text{rk} JH = 2$ and $n \neq 4$. In particular, $x + \lambda H$ is invertible and tame under the above condition respectively for every $\lambda \in K$.

Proof. We may take \tilde{H} as in (1), (2) or (3) of Theorem 2.7. If $\text{rk} JH = 1$, then \tilde{H} is as in (1) of Theorem 2.7 i.e., $\tilde{H}_i = 0, 2 \leq i \leq n$, whence (i) holds because $\text{tr} J\tilde{H} = 0$. So assume that $\text{rk} J\tilde{H} = 2$. Notice that $J\tilde{H}$ is nilpotent.

If \tilde{H} is as in (1) or (2) of Theorem 2.7 i.e., $\tilde{H}_i = 0, 3 \leq i \leq n$ or $\tilde{H} \in K[x_1, x_2]^n$, then $J_{x_1, x_2}(\tilde{H}_1, \tilde{H}_2)$ is nilpotent.

If \tilde{H} is as in (3) of Theorem 2.7 i.e., $K\tilde{H}_1 + K\tilde{H}_2 + \cdots + K\tilde{H}_n = Kx_3x_1^2 \oplus Kx_3x_1x_2 \oplus Kx_3^2x_2$, then $\tilde{H}_3 = 0$, because $x_3^1\tilde{H}_3$ is the constant part with respect to x_3 of $\text{tr} J\tilde{H} = 0$. So $J_{x_1, x_2}(\tilde{H}_1, \tilde{H}_2)$ is nilpotent in any case.

One may observe that, in all the cases (1), (2) and (3) of Theorem 2.7 if $J_{x_1, x_2}(\tilde{H}_1, \tilde{H}_2)$ is similar over K to a triangular matrix, then $J\tilde{H}$ is similar over K to a triangular matrix, and so is JH, and thus H is linearly triangularizable.

Now suppose $J_{x_1, x_2}(\tilde{H}_1, \tilde{H}_2)$ is not similar over K to a triangular matrix. Noticing that $\text{char} K \neq 2, 3$, $J_{x_1, x_2}(\tilde{H}_1, \tilde{H}_2)$ must be as in (2) of Lemma 3.5 i.e.,

$$J_{x_1, x_2}(\tilde{H}_1, \tilde{H}_2) = \begin{pmatrix} ab & -b^2 & -ab \\ a^2 & -b^2 & -ab \end{pmatrix} \quad \text{and} \quad J_{x_1, x_2} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

where a, b are linearly independent linear forms.

If $\tilde{H}_1 \in K[x_1, x_2, x_3], \text{then } a, b \in k[x_3], \text{a contradiction. So } \tilde{H} \text{ is not as in (2) or (3) of Theorem 2.7 and thus is as in (1) of Theorem 2.7 i.e., } \tilde{H}_3 = \tilde{H}_4 = \cdots = \tilde{H}_n = 0. \text{ Consequently, by linear coordinate transformation, we may take } \tilde{H} \text{ such that } a = x_3 \text{ and } b = x_4. \text{ So (ii) holds.}$

For the last claim, when $\text{rk} JH = 1$, \tilde{H} is of the form in (i), whence $x + t\tilde{H}$ is elementary and thus tame. When $\text{rk} JH = 2$, \tilde{H} is of the form in (ii), and it suffices to show the following automorphism

$$F = (x_1 + tx_4(x_3x_1 - x_4x_2), x_2 + tx_3(x_3x_1 - x_4x_2), x_3, x_4, x_5)$$

is tame over $K[t]$.

For that purpose, let $w = t(x_3x_1 - x_4x_2)$ and let $D := x_4\partial_{x_1} + x_3\partial_{x_2}$ be a derivation of $K[t][x_1, x_2, x_3, x_4]$. Observe that D is triangular and $w \in \ker D$, and that $F = (\exp(wD), x_5)$. Therefore F is tame over $K[t]$ due to the following Lemma 3.5.

Recall that a derivation D of $K[x]$ is called locally nilpotent if for every $f \in K[x]$ there exists an m such that $D^m(f) = 0$. For such a derivation, $\exp D := \sum_{i=0}^{\infty} \frac{1}{i!} D^i$ is a polynomial automorphism of $K[x]$. A derivation D of $K[x]$ is called triangular if $D(x_i) \in K[x_i+1, \ldots, x_n]$ for $i = 1, 2, \ldots, n-1$ and $D(x_n) \in K$. A triangular derivation is locally nilpotent.

Lemma 3.5. Let D be a triangular derivation of $K[t][x]$ and $w \in \ker D$ i.e. $D(w) = 0$. Then $(\exp(wD), x_{n+1})$ is tame over $K[t]$.
Proof. From [15, Corollary], it follows that there exists a k such that $(\exp(wD), x_{n+1}, x_{n+2}, \ldots, x_{n+k})$ is tame over $K(t)$. Inspecting the proof of [15, Corollary] yields that $(\exp(wD), x_{n+1})$ is tame over $K[t]$.

Acknowledgments. The first author has been supported by the Netherlands Organisation of Scientific research (NWO). The second author has been partially supported by the NSF of China (grant no. 11771176 and 11601146).

References

