The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/194075

Please be advised that this information was generated on 2019-10-20 and may be subject to change.
Classification of cubic homogeneous polynomial maps with Jacobian matrices of rank two

Michiel de Bondt*

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University
Nijmegen, The Netherlands

Xiaosong Sun†

School of Mathematics, Jilin University, Changchun 130012, China

Abstract

Let K be any field with $\text{char}K \neq 2, 3$. We classify all cubic homogeneous polynomial maps H over K with $\text{rk} JH \leq 2$. In particular, we show that, for such an H, if $F = x + H$ is a Keller map then F is invertible, and furthermore F is tame if the dimension $n \neq 4$.

1 Introduction

Let K be an arbitrary field and $K[x] := K[x_1, x_2, \ldots, x_n]$ the polynomial ring in n variables. For a polynomial map $F = (F_1, F_2, \ldots, F_m) \in K[x]^m$, we denote by $JF := (\frac{\partial F_i}{\partial x_j})_{m \times n}$ the Jacobian matrix of F and $\deg F := \max_i \deg F_i$ the degree of F. A polynomial map $H \in K[x]^m$ is called homogeneous of degree d if each H_i is zero or homogeneous of degree d.

A polynomial map $F \in K[x]^n$ is called a Keller map if $\det JF \in K^*$. The Jacobian conjecture asserts that any Keller map is invertible if $\text{char}K = 0$; see [8] or [1]. It is still open for any dimension $n \geq 2$.

Following [14], we call a polynomial automorphism elementary if it is of the form $(x_1, \ldots, x_{i-1}, cx_i + a, x_{i+1}, \ldots, x_n)$, where $c \in K^*$ and $a \in K[x]$ contains no x_i. Furthermore, we call a polynomial automorphism tame if it is a finite composition of elementary ones. The definitions of elementary and tame may be different in other sources, but (as long as K is a generalized Euclidean ring) the definitions of tame are equivalent. The Tame Generators Problem asks if every polynomial automorphism is tame. It has an affirmative answer in dimension 2.

*M.deBondt@math.ru.nl

†Corresponding author, E-mail: sunxs@jlu.edu.cn
for arbitrary characteristic (see [10, 11]) and a negative answer in dimension 3 for the case of char$K = 0$ (see [14]), and is still open for any $n \geq 4$.

A polynomial map $F = x + H \in K[x]^n$ is called triangular if $H \in K$ and $H_i \in K[x_{i+1}, \ldots, x_n]$, $1 \leq i \leq n - 1$. A polynomial map F is called linearly triangularizable if it is linearly conjugate to a triangular map, i.e., there exists an invertible linear map $T \in \text{GL}_n(K)$ such that $T^{-1}F(Tx)$ is triangular. A linearly triangularizable map is tame.

Some special polynomial maps have been investigated in the literature. For example, when char$K = 0$, a Keller map $F = x + H \in K[x]^n$ is shown to be linearly triangularizable in the cases: (1) $n = 3$ and H is homogeneous of arbitrary degree d (de Bondt and van den Essen [6]); (2) $n = 4$ and H is quadratic homogeneous (Meisters and Olech [12]); (3) $n = 9$ and F is a quadratic homogeneous quasi-translation (Sun [16]); (4) arbitrary and H is quadratic with rk$JH \leq 2$ (De Bondt and Yan [7]), and to be tame in the case (5) $n = 5$ and H is quadratic homogeneous (de Bondt [2] and Sun [17] independently), and to be invertible in the case (6) $n = 4$ and H is cubic homogeneous (Hubbers [9]). For the case of arbitrary characteristic, de Bondt [5] described the Jacobian matrix JH of rank two for any quadratic polynomial map H and showed that if JH is nilpotent then JH is similar to a triangular one.

In this paper, we investigate cubic homogeneous polynomial maps H with rk$JH \leq 2$ for any dimension n when char$K \neq 2, 3$. In Section 2, we classify all such maps (Theorem 2.7). And in Section 3, we show that for such an H, if $F = x + H$ is a Keller map, then it is invertible and furthermore it is tame if the dimension $n \neq 4$ (Theorem 3.4).

2 Cubic homogeneous maps H with rk$JH \leq 2$

For a polynomial map $H \in K[x]^m$, we write trdeg$K K(H)$ for the transcendence degree of $K(H)$ over K. It is well-known that rk$JH =$ trdeg$K K(H)$ if $K(H) \subseteq K(x)$ is separable, in particular if char$K = 0$; see [8, Proposition 1.2.9]. And for arbitrary characteristic, one has rk$JH \leq$ trdeg$K K(H)$; see [4 or 13].

It was shown in [5] that when char$K \neq 2$, for any quadratic polynomial map H with rk$JH \leq 2$, one has rk$JH =$ trdeg$K K(H)$. We will show that when char$K \neq 2, 3$, for any cubic homogeneous polynomial map H with rk$JH \leq 2$, one has rk$JH =$ trdeg$K K(H)$. The notation $a|_{x = c}$ below means to substitute x by c in a.

Theorem 2.1. Let $s \leq n$. Take

$$\tilde{x} := (x_1, x_2, \ldots, x_s) \quad \text{and} \quad L := K(x_{s+1}, x_{s+2}, \ldots, x_n).$$

To prove that for (homogeneous) polynomial maps $H \in K[x]^m$ of degree d,

$$\text{rk} JH = r \implies \text{trdeg} K K(H) = r, \quad \text{for every} \ r < s,$$

(2.1)
Lemma 2.2. Let $H \in K[x]^m$ be a polynomial map of degree d and $r := \text{rk} JH$. Denote by $|K|$ the cardinality of K.

(i) If $|K| > (d - 1)r$ and $JH : x = 0$, then there exist $S \in \text{GL}_m(K)$ and $T \in \text{GL}_n(K)$, such that for $\tilde{H} := SH(Tx)$,

$$
\tilde{H}|_{x = e_{r+1}} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}.
$$
Lemma 5.1 (ii). If \(|K| > (d-1)r + 1\) and \(\mathcal{J}H \cdot x \neq 0\), then there exist \(S \in \text{GL}_m(K)\) and \(T \in \text{GL}_n(K)\), such that for \(\tilde{H} := ST\),

\[
\tilde{H}|_{x=e_1} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}.
\]

Moreover, \(|K|\) may be one less (i.e. at least \((d-1)r\) and \((d-1)r+1\) respectively) if every nonzero component of \(H\) is homogeneous.

Proof. (i) Assume without loss of generality that \(a_0 := \det \mathcal{J}x_1, x_2, \ldots, x_r (H_1, H_2, \ldots, H_r) \neq 0\).

Suppose that \(|K| > (d-1)r\). It follows by [3] Lemma 5.1 (i)] that there exists a vector \(w \in K^n\) such that \(a_0(w) \neq 0\). So \(\text{rk} (\mathcal{J}H)|_{x=w} = r\). There exist \(n-r\) independent vectors \(v_{r+1}, v_{r+2}, \ldots, v_n \in K^n\), such that \(\mathcal{J}H|_{x=w} \cdot v_i = 0\) for \(i = r+1, r+2, \ldots, n\). And we may take \(v_{r+1} = w\) since

\[
(\mathcal{J}H)|_{x=w} \cdot w = (\mathcal{J}H \cdot x)|_{x=w} = 0.
\]

Take \(T = (v_1, v_2, \ldots, v_n) \in \text{GL}_n(K)\). From the chain rule, we deduce that

\[
(\mathcal{J}(H(Tx))|_{x=e_{r+1}} e_i = (\mathcal{J}H)|_{x=T e_{r+1}} T e_i = (\mathcal{J}H)|_{x=w} \cdot v_i \quad (1 \leq i \leq n).
\]

In particular, \(\text{rk} \mathcal{J}(H(Tx))|_{x=e_{r+1}} = r\) and the last \(n-r\) columns of \((\mathcal{J}(H(Tx))|_{x=e_{r+1}}\) are zero. There exists \(S \in \text{GL}_m(K)\) such that

\[
(\mathcal{J}(SH(Tx))|_{x=e_{r+1}} = S \cdot (\mathcal{J}(H(Tx))|_{x=e_{r+1}} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}.
\]

(2) Suppose that \(|K| > (d-1)r + 1\). Since \(\mathcal{J}H \cdot x \neq 0\), we may assume that

\[
\text{rk} \left(\mathcal{J}H \cdot x, \mathcal{J}x_2, x_3, \ldots, x_r H \right) = r,
\]

and that

\[
a_1 := \det \left(\mathcal{J}H_1, H_2, \ldots, H_r, x, \mathcal{J}x_2, x_3, \ldots, x_r (H_1, H_2, \ldots, H_r) \right) \neq 0.
\]

It follows by [3] Lemma 5.1 (i)] that there exists \(w \in K^n\) such that \(a_1(w) \neq 0\). One may observe that \(\text{rk} (\mathcal{J}H)|_{x=w} = r\) and thus there exist independent vectors \(v_{r+1}, v_{r+2}, \ldots, v_n \in K^n\), such that \(\mathcal{J}H|_{x=w} \cdot v_i = 0\) for \(i = r+1, r+2, \ldots, n\). Since \((\mathcal{J}H \cdot x)|_{x=w}\) is the first column of a full column rank matrix, we have

\[
(\mathcal{J}H)|_{x=w} \cdot w = (\mathcal{J}H \cdot x)|_{x=w} \neq 0.
\]

So \(v_1 := w\) is independent of \(v_{r+1}, v_{r+2}, \ldots, v_n\).

Take \(T = (v_1, v_2, \ldots, v_n) \in \text{GL}_n(K)\). Then

\[
(\mathcal{J}(H(Tx))|_{x=e_i} e_i = (\mathcal{J}H)|_{x=T e_1} T e_i = (\mathcal{J}H)|_{x=w} \cdot v_i \quad (1 \leq i \leq n).
\]

The rest of the proof of (ii) is similar to that of (i).

The last claim follows from [3] Lemma 5.1 (ii), as an improvement to [3] Lemma 5.1 (i)].
Proposition 2.3. Assume that char\(K \notin \{1, 2, \ldots, d\}\). Then for any cubic homogeneous polynomial map \(H \in K[x]^m\) of degree \(d\) with \(\text{rk } \mathcal{J}H \leq 1\), the components of \(H\) are linearly dependent over \(K\) in pairs, and one has \(\text{rk } \mathcal{J}H = \text{trdeg}_K K(H)\).

Proof. The case \(\text{rk } \mathcal{J}H = 0\) is obvious, so let \(\text{rk } \mathcal{J}H = 1\). On account of Lemma 2.2 we may assume that \(\mathcal{J}H|_{x = e_1} = E_{11}\). Let \(j \geq 2\). Since \(\text{deg}_{x_1} H_j < d\), we infer that either \(H_j = 0\), or \(\text{deg} \frac{\partial}{\partial x_j} H_j < \text{deg} \frac{\partial}{\partial x_1} H_j\) for some \(i \geq 2\), where \(\text{deg}_{x_1} 0 = -\infty\). The latter is impossible due to \(\text{rk } \mathcal{J}H = 1\), so \(H_j = 0\). This holds for all \(j \geq 2\), which yields the desired results.

Lemma 2.4. Let \(H = (h, x^2_1x_2, x^2_2x_3)\) or \((h, x^2_1x_2, x^2_2x_3) \in K[x_1, x_2, x_3]^3\), where \(h\) is cubic homogeneous, and assume that \(\text{char } K \neq 2, 3\). Then \(\text{rk } \mathcal{J}H = \text{trdeg}_K K(H)\).

Proof. It suffices to consider the case of \(\text{rk } \mathcal{J}H = 2\). Define a derivation \(D\) on \(A = K[x_1, x_2, x_3]\) as follows: for any \(f \in A\),

\[
D(f) = \frac{x_1x_2x_3}{H_2H_3} \det \mathcal{J}H.
\]

In the case \(H = (h, x^2_1x_2, x^2_2x_3)\), an easy calculation shows that \(D = x_1 \partial_{x_1} - 2x_2 \partial_{x_2} + 4x_3 \partial_{x_3}\). Then for any term \(u = x_1^{d_1}x_2^{d_2}x_3^{d_3} \in A\), \(D(u) = (d_1 - 2d_2 + 4d_3)u\). And thus \(\ker D := \{g \in A \mid D(g) = 0\}\), the kernel of \(D\), is linearly spanned by all terms \(u\) with \(d_1 - 2d_2 + 4d_3 = 0\). So the only cubic terms in \(\ker D\) are \(x_1^2x_2\) and \(x_2^2x_3\). Since \(\text{rk } \mathcal{J}H = 2\), we have \(\det \mathcal{J}H = 0\) and thus \(h \in \ker D\), which implies that \(h\) is a linear combinations of \(x_1^2x_2\) and \(x_2^2x_3\). Thus \(\text{trdeg}_K K(H) = 2\).

In the case \(H = (h, x^2_1x_2, x^2_2x_3)\), one may verify that \(x_1^2x_2, x_1x_2x_3\) and \(x_2^2x_3\) are the only cubic terms in \(\ker D\). The conclusion follows similarly.

Theorem 2.5. Assume that \(\text{char } K \neq 2, 3\). Then for any cubic homogeneous polynomial map \(H \in K[x]^m\) with \(\text{rk } \mathcal{J}H \leq 2\), one has \(\text{rk } \mathcal{J}H = \text{trdeg}_K K(H)\).

Proof. Due to Theorem 2.1 and replacing \(L\) there by \(K\), we may assume that \(H \in K[x_1, x_2, x_3]^3\), and it suffices to show that

\[
\text{trdeg}_K K(H) = 3 \implies \text{rk } \mathcal{J}H = 3,
\]

or equivalently,

\[
\det \mathcal{J}H = 0 \implies \text{trdeg}_K K(H) < 3. \quad (2.3)
\]

So assume that \(\det \mathcal{J}H = 0\). Since we may replace \(K\) by an extension field to make it large enough, it follows by Lemma 2.2 that we may assume that \((\mathcal{J}H)|_{x = e_1} = E_{11} + E_{22}\). Then \(\mathcal{J}H\) is of the form

\[
\begin{pmatrix}
 x^2_1 + \ast & \ast & \ast \\
 \ast & x^2_2 + \ast & \ast \\
 \ast & \ast & \frac{\partial H_j}{\partial x_3}
\end{pmatrix},
\]

5
Moreover, if \(c \) we see that we can combine with \(c \)\(x \) where the \(x_1 \)-degree of each element \(* \) is less than 2. Observing the terms with \(x_1 \)-degree \(\geq 5 \) in \(\det JH \), we have that \(\frac{\partial H_1}{\partial x_3} \in K[x_2, x_3] \). Notice that \(H_2 \) and \(H_3 \) are of the form:

\[
H_2 = x_1^2 x_2 + b_{10} x_1 x_3^2 + b_{11} x_1 x_2 x_3 + b_{12} x_1 x_2^2 + b_0(x_2, x_3);
\]

\[
H_3 = c_{12} x_1 x_2^2 + c_{00} x_3^3 + c_{01} x_2 x_3^2 + c_{02} x_2^2 x_3 + c_{03} x_3^3.
\]

We shall show that \(x_2^2 \mid H_3 \), i.e., \(c_{00} = c_{01} = 0 \).

Noticing that the part of \(x_1 \)-degree 4 of \(\det JH \) is \(\left(\frac{\partial H_2}{\partial x_3} - \frac{\partial H_3}{\partial x_1} \right) x_1^4 \), we see that \(\frac{\partial H_2}{\partial x_3} - \frac{\partial H_3}{\partial x_1} = 0 \). Consequently,

\[
(3c_{00} x_3^2 + 2c_{01} x_2 x_3 + c_{02} x_2^2) = (2b_{10} x_3 + b_{11} x_2)(2c_{12} x_2)
\]

so

\[
c_{00} = 0 \quad c_{01} = 2b_{10} c_{12} \quad c_{02} = 2b_{11} c_{12}
\]

One may observe that the coefficient of \(x_1^2 x_3^2 \) in \(\det JH \) is \(2c_{01} b_{10} = 0 \), which we can combine with \(c_{01} = 2b_{10} c_{12} \) to obtain \(c_{01} = 0 \). Therefore,

\[
H_3 = (c_{12} x_1 + c_{03} x_2 + c_{02} x_3) x_2^2.
\]

Moreover, if \(c_{12} = 0 \) then \(c_{02} = 2b_{11} c_{12} = 0 \) and thus \(H_3 = c_{03} x_2^3 \).

We distinguish two cases.

- **Case 1**: \(c_{12} \neq 0 \) and \(c_{12} x_1 + c_{03} x_2 + c_{02} x_3 \nmid H_i \) for some \(i \).

Then \(H_3 \) is the product of two linear forms, of which two are distinct. Hence we can compose \(H \) with invertible linear maps on both sides, to obtain a map \(H' \) for which \(H'_2 = x_1^2 x_2 \) and \(x_2 \nmid H'_1 \).

Notice that \(H'_1(1, 0, t) \neq 0 \). As \(K \) has at least 5 elements, it follows from [3, Lemma 5.1 (i)] that there exists a \(\lambda \in K \), such that \(H'_1(1, 0, \lambda) \neq 0 \).

Hence the coefficient of \(x_1^3 \) in \(H'_1(x_1, x_2, x_3 + \lambda x_1) \) is nonzero. Furthermore, \(H'_2(x_1, x_2, x_3 + \lambda x_1) = x_1^2 x_2 \).

Replacing \(H' \) by \(H'(x_1, x_2, x_3 + \lambda x_1) \), we may assume that \(H'_2 = x_1^2 x_2 \) and that \(H'_1 \) contains \(x_1^3 \) as a term. We may even assume that the coefficient of \(x_1^3 \) in \(H'_1 \) equals 1. Then \(JH'|_{x=x_1} \) is of the form

\[
\begin{pmatrix}
1 & * & a \\
0 & 1 & 0 \\
* & * & *
\end{pmatrix},
\]

and has rank 2. Furthermore, \(v_3 = (-a, 0, 1)^t \) belongs to its null space.

We may apply the proof of Lemma 2.2 on \(H' \) by taking \(T = (e_1, e_2, v_3) \) and taking an appropriate \(S \in GL_3(K) \) such that \(\tilde{H} := SH'(Tx) \) satisfies \(\tilde{JH}|_{x=x_1} = S JH'|_{x=x_1} T = E_{11} + E_{22} \). Notice that \(Tx \) is of the form \((L_1, x_2, L_3) \), and observing the form of \(JH'|_{x=x_1} \) one may also choose \(Sx \) to be of the form \((*, x_2, *)\). Then \(\tilde{H}_2 = L_1^2 x_2 \).
So we can compose \(\tilde{H} \) with an invertible linear map on the right, to obtain a map \(\tilde{H}' \) for which \(\tilde{H}'_2 = x_1^2 x_2 \) and \(\tilde{H}'_3 = x_2^2 L' \) for some linear form \(L' \).

Suppose first that \(L' \) is a linear combination of \(x_1 \) and \(x_2 \). If \(\tilde{H}'_1 \in K[x_1, x_2] \), then we are done. Otherwise, we have \(\det \mathcal{J}_{x_1, x_2}(H'_2, H'_3) = 0 \), and then by Proposition 2.3 \(\text{trdeg}_K K(H'_2, H'_3) < 2 \).

Suppose next that \(L' \) is not a linear combination of \(x_1 \) and \(x_2 \). Then we may assume that \(\tilde{H}'_3 = x_2^2 x_3 \). By Lemma 2.4 (i), \(\text{trdeg}_K K(\tilde{H}') < 3 \).

- **Case 2:** \(c_{12} = 0 \) or \(c_{12} x_1 + c_{03} x_2 + c_{02} x_3 \mid H_i \) for all \(i \).

Since \(x_2^2 \mid H_3 \), we can compose \(H \) with invertible linear maps on both sides, to obtain a map \(H' \) for which \(H'_1 \in \{x_1^3, x_1^2 x_2\} \). After a possible interchange of \(H'_2 \) and \(H'_3 \), the first two rows of \(\mathcal{J} H' \) are independent. Now we may apply the proof of Lemma 2.2 to \(H' \), more precisely, there exist \(S, T \in \text{GL}_3(K) \) such that \(\tilde{H} := SH'(Tx) \) satisfies \(\mathcal{J} \tilde{H}|_{x=1} = E_{11} + E_{22} \).

If we choose \(w \) such that first two rows of \((\mathcal{J} H')_{x=w} \) are independent, then we can take \(S \) such that \(Sx = (f_1 x_1 + f_2 x_2, g_1 x_1 + g_2 x_2, \ast) \). By repeating the discussion for \(H \) as for \(H' \) above, we may assume that \(\tilde{H}'_3 = L x_2^2 \) for some linear form \(L \).

Let \(Tx = (L_1, L_2, L_3) \). Notice that \(H'_1(Tx) \in \{L_1^3, L_1^2 L_2\} \) and that \(H'_1(Tx) \) is a linear combination of \(\tilde{H}_1 \) and \(\tilde{H}_2 \). Hence we can compose \(H \) with a linear map on the left, to obtain a map \(\tilde{H}' \) for which \(H'_2 \in \{L_1^3, L_1^2 L_2\} \) and \(H'_3 = L x_2^2 \).

Suppose first that \(\tilde{H}'_2 = L_1^2 L_2 \). Then \(c_{12} \neq 0 \), so \(c_{12} x_1 + c_{03} x_2 + c_{02} x_3 \mid H_i \) for all \(i \). From this, we infer that \(L_2 \mid \tilde{H}_i \) and \(L_2 \mid \tilde{H}'_i \) for all \(i \). As \(x_2 \nmid \tilde{H}_1 \), we deduce that \(L \) and \(L_2 \) are dependent linear forms, which are independent of \(x_2 \). If \(L \) and \(L_2 \) are linear combinations of \(L_1 \) and \(x_2 \), then we can reduce to Proposition 2.3, and otherwise we can reduce to Lemma 2.4 (ii).

Suppose next that \(\tilde{H}'_2 = L_1^3 \). If \(L \), \(L_1 \) and \(x_2 \) are linearly dependent over \(K \), then we can reduce to Proposition 2.3. Otherwise, \(H \) is as \(H \) in the previous case.\(\square \)

Remark 2.6. Inspired by Lemma 2.4 we investigated maps \(H \) of which the components are terms, and searched for \(H \) with algebraically independent components for which \(\det \mathcal{J} H = 0 \). One can infer that \(H \) is as such, if and only if the matrix with entries \(\text{deg}_{x_i} H_j \) has determinant zero over \(K \), but not over \(\mathbb{Z} \).

We found the following non-homogeneous \(H \) as above over fields of characteristic 5:

\[
(x_1^3 x_2, x_1 x_2^3, x_2), \quad (x_1^2 x_2, x_1 x_3^3, x_2 x_3)
\]

with the following homogenizations respectively:

\[
(x_1^3 x_2, x_1 x_2^2 x_3, x_3^4), \quad (x_1^2 x_2, x_1 x_3^2, x_2 x_3^4, x_4^3)
\]
Besides these homogenizations, we found the following homogeneous H over fields of characteristic 5:

$$(x_1^2 x_3^2, x_1 x_2^2, x_2 x_3^2), \quad (x_4 x_1^2, x_1 x_2^2, x_2 x_3^2, x_3 x_4^2)$$

We conclude with a homogeneous H over fields of characteristic 7, and a homogeneous H over any characteristic $p \in \{1, 2, \ldots, d\}$ respectively:

$$(x_3 x_1^3, x_1 x_2^3, x_2 x_3^3), \quad (x_1^d, x_1^{d-r} x_2^p)$$

These examples show that the conditions in Proposition 2.3 and Theorem 2.5 cannot be relaxed.

Theorem 2.7. Suppose that $\text{char} K \neq 2, 3$ and let $H \in K[x]^m$ be cubic homogeneous. Let $r := \text{rk} JH$ and suppose that $r \leq 2$. Then there exist $S \in \text{GL}_m(K)$ and $T \in \text{GL}_n(K)$, such that for $\tilde{H} := SH(Tx)$, one of the following statements holds:

1. $\tilde{H}_{r+1} = \tilde{H}_{r+2} = \cdots = \tilde{H}_m = 0$;
2. $r = 2$ and $\tilde{H} \in K[x_1, x_2]^m$;
3. $r = 2$ and $K \tilde{H}_1 + K \tilde{H}_2 + \cdots + K \tilde{H}_m = K x_3 x_1^2 \oplus K x_3 x_1 x_2 \oplus K x_3 x_2^2$.

Furthermore, we may take $S = T^{-1}$ if $m = n$.

Proof. By Theorem 2.5, $\text{trdeg}_K K(\tilde{H}) = \text{rk} JH = r \leq 2$. Since H is homogeneous, we have $\text{trdeg}_K K(tH) = r$ as well, where t is a new variable.

Suppose first that $r \leq 1$. It follows by Theorem 2.7 that we may take \tilde{H} as in (1).

Suppose next that $r = 2$. By Theorem 2.7, H is of the form $g \cdot h(p, q)$, such that g, h and (p, q) are homogeneous and $\deg g + \deg h \cdot \deg(p, q) = 3$.

If $\deg h \leq 1$, then every triple of components of h is linearly dependent over K, and thus we may take \tilde{H} as in (1). If $\deg h = 3$, then $\deg(p, q) = 1$ and $\deg g = 0$, whence we may take \tilde{H} as in (2).

So assume that $\deg h = 2$. Then $\deg(p, q) = 1$ and $\deg g = 1$. If g is a linear combination of p and q, then we may take \tilde{H} as in (2). If g is not a linear combination of p and q, then we may take \tilde{H} as in (3) or (1).

Finally, if $m = n$ and $\tilde{H} = SH(Tx)$ is as in (1), then $SH(S^{-1}x) = \tilde{H}(T^{-1}S^{-1}x)$ is still as in (1). So we may take $S = T^{-1}$. If $m = n$ and $\tilde{H} = SH(Tx)$ is as in (2) or (3), then $T^{-1}H(Tx) = T^{-1}S^{-1} \tilde{H}$ is still as in (2) or (3), whence we may also take $S = T^{-1}$.

3 Cubic homogeneous Keller maps $x + H$ with $\text{rk} JH \leq 2$

For two matrices $M, N \in \text{Mat}_n(K[x])$, we say that M is similar over K to N, if there exists $T \in \text{GL}_n(K)$ such that $N = T^{-1}MT$.

8
Theorem 3.1. Let $F = x + H \in K[x]^n$ be a Keller map with $\text{trdeg}_K K(H) = 1$. Then $\mathcal{J}H$ is similar over K to a triangular matrix, and the following statements are equivalent:

1. $\det \mathcal{J}F = 1$;
2. $\mathcal{J}H$ is nilpotent;
3. $(\mathcal{J}H) \cdot (\mathcal{J}H)|_{x=y} = 0$, where $y = (y_1, y_2, \ldots, y_n)$ are n new variables.

Proof. Since $\text{trdeg}_K K(H) = 1$, by [4, Corollary 3.2] there exists a polynomial $p \in K[x]$ such that $H_i \in K[p]$ for each i. Say that $H_i = h_i(p)$, where $h_i \in K[t]$ for each i. Write $h_i' = \frac{\partial}{\partial t} h_i$, then

$$\mathcal{J}H = h'(p) \cdot \mathcal{J}p.$$ (3.1)

Assume without loss of generality that $h'_1 = h'_2 = \cdots = h'_s = 0$, and that

$$0 \leq \deg h'_{s+1} < \deg h'_{s+2} < \cdots < \deg h'_n.$$

For $s < i < n$,

$$\deg h'_i(p) = \deg h'_i \cdot \deg p \leq (\deg h'_{i+1} - 1) \cdot \deg p = \deg h'_{i+1}(p) - \deg p.$$

Since the degrees of the entries of $\mathcal{J}p$ are less than $\deg p$, we deduce from (3.1) that the nonzero entries on the diagonal of $\mathcal{J}H$ have different degrees in increasing order. Furthermore, the nonzero entries beyond the $(s+1)$th entry on the diagonal of $\mathcal{J}H$ have positive degrees.

By (3.1), $\text{rk}(-\mathcal{J}H) \leq 1$, and thus $n-1$ eigenvalues of $-\mathcal{J}H$ are zero. It follows that the trailing degree of the characteristic polynomial of $-\mathcal{J}H$ is at least $n-1$. More precisely,

$$\det(tI_n + \mathcal{J}H) = t^n - \text{tr}(-\mathcal{J}H) \cdot t^{n-1},$$

and thus

$$\det \mathcal{J}F = (t^n - \text{tr}(-\mathcal{J}H) \cdot t^{n-1})|_{t=1} = 1 + \text{tr} \mathcal{J}H.$$

Observe that the diagonal of $\mathcal{J}H$ is totally zero, except maybe the $(s+1)$th entry, which is a constant.

So $\frac{\partial}{\partial x_i} p = 0$ for all $i > s + 1$, and $\mathcal{J}H$ is lower triangular. If the $(s+1)$th entry on the diagonal of $\mathcal{J}H$ is nonzero, then (1), (2) and (3) do not hold. If the $(s+1)$th entry on the diagonal of $\mathcal{J}H$ is zero, then $\frac{\partial}{\partial x_i} p = 0$ for all $i > s$, whence (1), (2) and (3) hold.

Let $H \in K[x]^n$ be homogeneous of degree $d \geq 2$. Then $x + H$ is a Keller map if and only if $\mathcal{J}H$ is nilpotent; see for example [3, Lemma 6.2.11]. So we first investigate nilpotent matrices over $K[x]$.

9
Lemma 3.2. Let $N \in \text{Mat}_2(K[x])$ such that N is nilpotent. Then there exist $a, b, c \in K[x]$ such that
$$N = c \begin{pmatrix} ab & -b^2 \\ a^2 & -ab \end{pmatrix}.$$
Furthermore, N is similar over K to a triangular matrix if and only if a and b are linearly dependent over K.

Proof. Since $\det N = 0$, we may write N in the form
$$N = c \cdot \begin{pmatrix} b \\ a \end{pmatrix} \cdot (a - \tilde{b}),$$
where $a, b \in K[x]$ and $\tilde{b}, c \in K(x)$. Since $\text{tr} N = 0$, we have $\tilde{b} = b$. If we choose a and b to be relatively prime, then $c \in K[x]$ as well.

Furthermore, a and b are linearly dependent over K if and only if the rows of N are linearly dependent over K, if and only if N is similar over K to a triangular matrix. \(\square\)

Lemma 3.3. Let $H \in K[x]^2$ be cubic homogeneous, such that $J_{x_1,x_2}H$ is nilpotent. Then there exists $T \in \text{GL}_2(K)$ such that for $\tilde{H} := T^{-1}H(T(x_1,x_2), x_3, x_4, \ldots, x_n)$, one of the following statements holds:

1. $J_{x_1,x_2}\tilde{H}$ is a triangular matrix;
2. there are independent linear forms $a, b \in K[x]$, such that
$$J_{x_1,x_2}\tilde{H} = \begin{pmatrix} ab & -b^2 \\ a^2 & -ab \end{pmatrix} \quad \text{and} \quad J_{x_1,x_2} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix};$$
3. $\text{char}K = 3$ and there are independent linear forms $a, b \in K[x]$, such that
$$J_{x_1,x_2}\tilde{H} = \begin{pmatrix} ab & -b^2 \\ a^2 & -ab \end{pmatrix} \quad \text{and} \quad J_{x_1,x_2} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Proof. Suppose that (1) does not hold. By Lemma 3.2, there are $a, b, c \in K[x]$, such that
$$J_{x_1,x_2}H = c \begin{pmatrix} ab & -b^2 \\ a^2 & -ab \end{pmatrix}$$
where a and b are linearly independent over K. As H is cubic homogeneous, the entries of $J_{x_1,x_2}H$ are quadratic homogeneous, so $c \in K$ and a and b are independent linear forms.

If we take
$$T = \begin{pmatrix} c & 0 \\ 0 & 1 \end{pmatrix}, \quad \text{then} \quad J_{x_1,x_2}\tilde{H} = \begin{pmatrix} \tilde{a}b & -\tilde{b}^2 \\ \tilde{a}^2 & -\tilde{a}b \end{pmatrix},$$
where $\tilde{a} = c \cdot a|_{x_1 = cx_1}$ and $\tilde{b} = c^{-1} \cdot b|_{x_1 = cx_1}.$
We claim that the coefficient k_2 of x_2 in \tilde{b} is 0. Suppose conversely that $k_2 \neq 0$. Then the coefficient of x_2^2 in

$$3\tilde{H}_1 = J_{x_1,x_2}\tilde{H}_1 \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \tilde{b}(x_1\tilde{a} - x_2\tilde{b})$$

is nonzero. In particular, $\text{char } K \neq 3$. One may verify that

$$J_{x_1,x_2}(H_1 + \frac{k_2}{2} \tilde{b}^3) = (\tilde{c}b, 0),$$

where $\tilde{c} := \tilde{a} + k_2^{-1}\tilde{b}\left(\frac{\partial}{\partial x_1}\tilde{b}\right)$. As a consequence, $\frac{\partial}{\partial x_2}(\tilde{c}b) = \frac{\partial}{\partial x_1} 0 = 0$. Furthermore, \tilde{c} and \tilde{b} are independent, just like \tilde{a} and \tilde{b}. By $\frac{\partial}{\partial x_2}(\tilde{c}b) = 0$, we have $\tilde{c}b \in K[x_1, x_3, x_4, \ldots, x_n]$ if $\text{char } K \neq 2$. Since \tilde{c} and \tilde{b} are independent, we deduce that if $\text{char } K = 2$ then $\tilde{c}b \in K[x_1, x_3, x_4, \ldots, x_n]$ as well. Since the coefficient λ of x_2 in \tilde{b} is nonzero, we have $\tilde{c} = 0$, a contradiction.

So the coefficient of x_2 in \tilde{b} is 0. Similarly, the coefficient of x_1 in \tilde{a} is 0. Consequently,

$$J_{x_1,x_2} \begin{pmatrix} \tilde{a} \\ \tilde{b} \end{pmatrix} = \begin{pmatrix} 0 & \lambda \\ -\mu & 0 \end{pmatrix},$$

where $\lambda, \mu \in K$. Therefore

$$J_{x_1,x_2}\tilde{H} = \begin{pmatrix} (\lambda x_2 + \cdots)(\mu x_1 + \cdots) & -(\mu x_1 + \cdots)^2 \\ (\lambda x_2 + \cdots)^2 & -(\lambda x_2 + \cdots)(\mu x_1 + \cdots) \end{pmatrix}.$$

So the coefficient of $x_1^2 x_2$ in $2\tilde{H}_1$ is equal to both $\lambda \mu$ and $-2\mu^2$. Similarly, the coefficient of $x_1 x_2^2$ in $2\tilde{H}_2$ is equal to both $\lambda \mu$ and $-2\lambda^2$. It follows that either $\lambda = \mu = 0$ or $0 \neq \lambda = -2\mu = 4\lambda$. In the former case, \tilde{H} satisfies (2). In the latter case, $\text{char } K = 3$ and $\lambda = \mu$. Replacing \tilde{H} by $\lambda \tilde{H} \left(\lambda^{-1}(x_1, x_2, x_3, x_4, \ldots, x_n)\right)$, we have that \tilde{H} satisfies (3).

Theorem 3.4. Suppose that $\text{char } K \neq 2, 3$. Let $H \in K[x]^n$ be cubic homogeneous such that $x + H$ is a Keller map, i.e., JH is nilpotent.

(i) If $\text{rk } JH = 1$, then there exists $T \in \text{GL}_n(K)$ such that for $\tilde{H} := T^{-1}H(Tx)$,

$$\tilde{H}_1 \in K[x_2, x_3, x_4, \ldots, x_n],$$

$$\tilde{H}_2 = \tilde{H}_3 = \tilde{H}_4 = \cdots = \tilde{H}_n = 0.$$

(ii) If $\text{rk } JH = 2$, then either H is linearly triangularizable or there exists $T \in \text{GL}_n(K)$ such that for $\tilde{H} := T^{-1}H(Tx)$,

$$\tilde{H}_1 - (x_1 x_3 x_4 - x_2 x_4^2) \in K[x_3, x_4, \ldots, x_n],$$

$$\tilde{H}_2 - (x_1 x_3^2 - x_2 x_3 x_4) \in K[x_3, x_4, \ldots, x_n],$$

$$\tilde{H}_3 = \tilde{H}_4 = \cdots = \tilde{H}_n = 0.$$
Furthermore, $x + tH$ is invertible over $K[t]$ if $\text{rk} \mathcal{J}H \leq 2$, where t is a new variable. Moreover, $x + tH$ is even tame over $K[t]$ if either $\text{rk} \mathcal{J}H = 1$ or $\text{rk} \mathcal{J}H = 2$ and $n \neq 4$. In particular, $x + \lambda H$ is invertible and tame under the above condition respectively for every $\lambda \in K$.

Proof. We may take \tilde{H} as in (1), (2) or (3) of Theorem 2.7 if $\text{rk} \mathcal{J}H = 1$, then \tilde{H} is as in (1) of Theorem 2.7 i.e. $\tilde{H}_i = 0, 2 \leq i \leq n$, whence (i) holds because $\text{tr} \mathcal{J}H = 0$. So assume that $\text{rk} \mathcal{J}H = 2$. Notice that $\mathcal{J}H$ is nilpotent.

If \tilde{H} is as in (1) or (2) of Theorem 2.7 i.e., $\tilde{H}_i = 0, 3 \leq i \leq n$ or $\tilde{H} \in K[x_1, x_2]^n$, then $\mathcal{J}_{x_1, x_2}(\tilde{H}_1, \tilde{H}_2)$ is nilpotent.

If \tilde{H} is as in (3) of Theorem 2.7 i.e., $K\tilde{H}_1 + K\tilde{H}_2 + \cdots + K\tilde{H}_n = Kx_3x_1^2 \oplus Kx_3x_1x_2 \oplus Kx_3^2x_2$, then $H_3 = 0$, because $x_3^1\tilde{H}_3$ is the constant part with respect to x_3 of $\text{tr} \mathcal{J}H = 0$. So $\mathcal{J}_{x_1, x_2}(\tilde{H}_1, \tilde{H}_2)$ is nilpotent in any case.

One may observe that, in all the cases (1), (2) and (3) of Theorem 2.7 if $\mathcal{J}_{x_1, x_2}(\tilde{H}_1, \tilde{H}_2)$ is similar over K to a triangular matrix, then $\mathcal{J}H$ is similar over K to a triangular matrix, and so is $\mathcal{J}H$, and thus H is linearly triangularizable.

Now suppose $\mathcal{J}_{x_1, x_2}(\tilde{H}_1, \tilde{H}_2)$ is not similar over K to a triangular matrix. Noticing that $\text{char} \nmid 2, 3$, $\mathcal{J}_{x_1, x_2}(\tilde{H}_1, \tilde{H}_2)$ must be as in (2) of Lemma 3.3 i.e.,

$$
\mathcal{J}_{x_1, x_2} \tilde{H} = \begin{pmatrix}
ab & -b^2 \\
ab & -ab
\end{pmatrix} \quad \text{and} \quad \mathcal{J}_{x_1, x_2} \begin{pmatrix}
a \\
b
\end{pmatrix} = \begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix},
$$

where a, b are linearly independent linear forms.

If $\tilde{H}_1 \in K[x_1, x_2, x_3]$, then $a, b \in k[x_3]$, a contradiction. So \tilde{H} is not as in (2) or (3) of Theorem 2.7 and thus as in (1) of Theorem 2.7 i.e., $\tilde{H}_3 = \tilde{H}_4 = \cdots = \tilde{H}_n = 0$. Consequently, by linear coordinate transformation, we may take \tilde{H} such that $a = x_3$ and $b = x_4$. So (ii) holds.

For the last claim, when $\text{rk} \mathcal{J}H = 1$, \tilde{H} is of the form in (i), whence $x + t\tilde{H}$ is elementary and thus tame. When $\text{rk} \mathcal{J}H = 2$, \tilde{H} is of the form in (ii), and it suffices to show the following automorphism

$$
F = (x_1 + tx_4(x_3x_1 - x_4x_2), x_2 + tx_3(x_3x_1 - x_4x_2), x_3, x_4, x_5)
$$
is tame over $K[t]$.

For that purpose, let $w = t(x_3x_1 - x_4x_2)$ and let $D := x_4\partial_{x_4} + x_3\partial_{x_2}$ be a derivation of $K[t][x_1, x_2, x_3, x_4]$. Observe that D is triangular and $w \in \ker D$, and that $F = (\exp(wD), x_5)$. Therefore F is tame over $K[t]$ due to the following Lemma 3.5.

Recall that a derivation D of $K[x]$ is called locally nilpotent if for every $f \in K[x]$ there exists an m such that $D^m(f) = 0$. For such a derivation, $\exp D := \sum_{i=0}^{\infty} \frac{1}{i!} D^i$ is a polynomial automorphism of $K[x]$. A derivation D of $K[x]$ is called triangular if $D(x_i) \in K[x_{i+1}, \ldots, x_n]$ for $i = 1, 2, \ldots, n - 1$ and $D(x_n) \in K$. A triangular derivation is locally nilpotent.

Lemma 3.5. Let D be a triangular derivation of $K[t][x]$ and $w \in \ker D$ i.e. $D(w) = 0$. Then $(\exp(wD), x_{n+1})$ is tame over $K[t]$.

12
Proof. From [15, Corollary], it follows that there exists a k such that $(\exp(wD), x_{n+1}, x_{n+2}, \ldots, x_{n+k})$ is tame over $K(t)$. Inspecting the proof of [15, Corollary] yields that $(\exp(wD), x_{n+1})$ is tame over $K[t]$.

Acknowledgments The first author has been supported by the Netherlands Organisation of Scientific research (NWO). The second author has been partially supported by the NSF of China (grant no. 11771176 and 11601146).

References

