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Abstract

■ Prior knowledge about the visual world can change how a
visual stimulus is processed. Two forms of prior knowledge
are often distinguished: stimulus familiarity (i.e., whether a
stimulus has been seen before) and stimulus expectation (i.e.,
whether a stimulus is expected to occur, based on the context).
Neurophysiological studies in monkeys have shown suppres-
sion of spiking activity both for expected and for familiar items
in object-selective inferotemporal cortex. It is an open question,
however, if and how these types of knowledge interact in their
modulatory effects on the sensory response. To address this
issue and to examine whether previous findings generalize to

noninvasively measured neural activity in humans, we separately
manipulated stimulus familiarity and expectation while noninva-
sively recording human brain activity using magnetoencepha-
lography. We observed independent suppression of neural
activity by familiarity and expectation, specifically in the lateral
occipital complex, the putative human homologue of monkey
inferotemporal cortex. Familiarity also led to sharpened response
dynamics, which was predominantly observed in early visual cor-
tex. Together, these results show that distinct types of sensory
knowledge jointly determine the amount of neural resources
dedicated to object processing in the visual ventral stream. ■

INTRODUCTION

Our visual environment is complex and rapidly changing,
making visual perception a challenging task. To quickly
parse visual input and deliver a stable percept of the
world, the visual system is thought to employ principles
of operation that allow an efficient sensory representa-
tion of the most likely current state of the visual world
(Summerfield & de Lange, 2014; Meyer & Olson, 2011;
Friston, 2005; Lee & Mumford, 2003; Rao & Ballard,
1999). By consequence, the amount of experience the
visual system has had with a particular object can influ-
ence how much resources are allotted to processing that
object. For instance, viewing an object image repeatedly
(and thus becoming familiar with it) results in reduced
spiking activity in inferotemporal cortex (IT) in monkeys
(Miller, Li, & Desimone, 1991) and reduced hemodynamic
activity in the human homologue (Grill-Spector, Henson, &
Martin, 2006), lateral occipital cortex (LOC), as measured
with fMRI. These findings suggest that familiar items
require fewer neural resources than unfamiliar items.

Structure in visual information can also affect visual
processing. If images are regularly presented in a specific
temporal sequence, it becomes possible to predict which
image will be presented next. Studies find that expected
object images elicit reduced spiking activity compared

with unexpected items in monkey IT (Kaposvari, Kumar,
& Vogels, 2016; Meyer & Olson, 2011), whereas evidence
is more mixed in human studies (Davis & Hasson, 2018;
Egner, Monti, & Summerfield, 2010; Turk-Browne, Scholl,
Johnson, & Chun, 2010; Puri, Wojciulik, & Ranganath, 2009),
possibly due to differences in task demands (St. John-
Saaltink, Utzerath, Kok, Lau, & de Lange, 2015).
Recently, Meyer, Walker, Cho, and Olson (2014) ob-

served that image familiarization does not only lead to
an activity reduction but also results in sharpening of
the dynamics of neuronal visual responses in monkey
IT. Because the sensory response to familiar images
was truncated, this put IT neurons in a state of readiness
for ensuing images and thereby enhanced their ability to
track rapidly changing displays. This was demonstrated
by a higher dynamic range (i.e., peak-to-trough differ-
ence) for familiar images compared with novel ones. A
similar temporal truncation has been seen for expected,
compared with unexpected, images (Meyer & Olson,
2011). Temporal sharpening and increased dynamic range
may complement neural activity suppression in repre-
senting the visual world in a maximally efficient manner.
Although the effects of familiarity and expectation on

the sensory response in monkey IT are relatively well
described separately, it is uncertain whether and how
these modulatory factors interact. Familiarity and expec-
tation have, to date, been examined in distinct experi-
mental paradigms, but because the two tend to go
together (when we see a familiar image repeatedly, we
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come to expect it), their effects are difficult to disentangle.
Moreover, these processes have not been investigated
extensively in humans using electrophysiological mea-
sures, and evidence from noninvasive recordings in hu-
mans is mixed. It is important to note that there is a
nested relationship between familiarity and expectation,
such that we must be familiar with an object before we
can expect to see it. Because of this, expected and un-
expected items are by necessity familiar, but crucially
expected and unexpected items can be equally familiar.
In the current study, we set out to study how image

familiarity and expectation modulate the sensory re-
sponse to object stimuli in humans. We did this by com-
paring the neural response to familiar versus novel
images and within the class of familiar items by compar-
ing the neural response to expected versus unexpected
items. We measured neural activity using magneto-
encephalography (MEG) while participants viewed images
that were familiar or novel, and expected or unexpected.
To preview, we found a reduction of activity for familiar
compared with novel images in LOC. Within the class of
familiar items, there was a further reduction of activity for
expected compared with unexpected images in LOC.
Moreover, we found a larger dynamic range for familiar
compared with novel images that was most prominent in
early visual areas, suggesting that the signal was temporally
sharper for familiar than for novel input. These results
show how familiarity and expectation jointly modulate
activity in object-selective visual cortex, possibly allowing
for an efficient coding of visual input.

METHODS

Participants

Twenty-nine healthy human volunteers (15 women, 14men,
mean age = 24.17 years, SD = 3.80 years) with normal or
corrected-to-normal vision, recruited from the university’s
participant pool, completed the experiment and received
either monetary compensation or study credits. The
sample size, which was defined a priori, ensured at least
80% power to detect within-subject experimental effects
with an effect size of Cohen’s d > 0.60. The study was
approved by the local ethics committee (CMO Arnhem-
Nijmegen, Radboud University Medical Center) under the
general ethics approval (“ImagingHumanCognition,”CMO
2014/288), and the experiment was conducted in com-
pliance with these guidelines. Written informed consent
was obtained from each individual.

Stimuli

Stimuli were chosen from the image set provided at cvcl.
mit.edu/MM/uniqueObjects.html. A different object was
represented in each image, and all objects were shown
against a gray background. A total of 2054 images were
presented for each participant. Familiar images were

randomly selected for each pair of participants. Each pair
of participants saw different familiar images, and the
images with and without a set sequence were counter-
balanced within a pair of participants. Specifically, if for Par-
ticipant 1, Set A comprised the images with a set sequence
and Set B comprised the images without a set sequence,
the opposite was true for Participant 2: Set B comprised
the images with a set sequence, and Set A comprised the
images without a set sequence. In both the behavioral and
MEG sessions, the images subtended 4° of visual angle.

Apparatus

MATLAB (The Mathworks, Inc.) and the Psychophysics
Toolbox extensions (Brainard, 1997) were used to show
the stimuli on a monitor with a resolution of 1920 × 1080
pixels and a refresh rate of 100 Hz. For the MEG session,
a PROpixx projector (VPixx Technologies) was used to
project the images on the screen, with a resolution of
1920 × 1080 and a refresh rate of 100 Hz.

Experimental Design

On each trial of this experiment, participants saw a
stream of images, and their task was to detect a target
image. First, participants completed a behavioral training
session in which they were familiarized with two sets of
six images, one set with predictable structure and one
set with no predictable structure. More specifically, they
observed the images with a set sequence always in the
same order, whereas the images with no set sequence
were shown in a randomly shuffled order on each trial
(Figure 1B). Importantly, the order for the images with
a set sequence was circular, that is, each of the six images
could be presented first. Images with a set sequence
comprised 50% of trials, later referred to as “Familiar
Sequence,” and images with no sequence comprised the
other 50%, later referred to as “Familiar No Sequence.”

Participants performed a target detection task by press-
ing the spacebar when they saw an image of a rubber
duck. Images of duckies were presented on 10% of trials
as one of the six images in the sequence. The duckies
were of eight different colors, and there were two view-
points per color for a total of 16 images of duckies.
Multiple images of duckies were used to reduce the pos-
sibility that participants may attend selectively to a partic-
ular color (e.g., yellow) or shape. The target task was
chosen such that participants were required to maintain
their attention on the visual stream.

During the behavioral training session, participants
completed 10 blocks of 80 trials each for a total of 800 trials.
Each block lasted 4.9 min, leading to a total training ses-
sion duration of approximately 1 hr. At the end of the
behavioral training session, participants’ knowledge of the
order of images with a set sequence was assessed with a
sequence identification task. Participants were shown
one of the six images from the sequenced set, and they
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had to indicate which of the other five was most likely to
follow it. This was done for each of the six images.
The assessment took about 3 min.

One or two days later, participants completed the MEG
testing session in which they saw familiar (i.e., those pre-
sented during the behavioral session) and novel (never
seen before) images (see Figure 1B, C, and D for a depic-
tion of the conditions). In contrast to the training ses-
sion, the familiar images (sequence present) were now
sometimes presented in the learned order (Expected,
50% of Familiar Sequence trials) and sometimes in a
shuffled order (Unexpected, 50% of Familiar Sequence
trials). The shuffled sequences for Unexpected trials were
chosen in such a way that each image in the sequence
was followed by an unpredicted image; in other words,
none of the images were followed by the image they
predicted (see Figure 1C). The Familiar No Sequence im-
ages were shown in shuffled orders, as during the train-
ing session. Familiar No Sequence images comprised one
third of trials, and Familiar Sequence images also com-
prised one third of trials. The remaining third of trials
was composed of novel images that the participants
had not seen before (see Figure 1D). Unique novel im-

ages were used for every trial, so each novel image was
only shown once during the experiment. To summarize,
there were four conditions in the MEG session: Novel,
Familiar No Sequence, Familiar Expected Sequence, and
Familiar Unexpected Sequence (because the Familiar
Sequence condition from the behavioral training session
was divided into the Familiar Expected Sequence and
Familiar Unexpected Sequence conditions).
Participants performed the same task as during the

training session: They had to respond when they saw a
ducky, and duckies were presented on 10% of trials. During
the MEG testing session, participants completed eight
blocks of 120 trials each for a total of 960 trials. There
were 320 Familiar Sequence Present trials (160 Expected
and 160 Unexpected), 320 Familiar No Sequence trials,
and 320 Novel trials. Each block lasted 7.4 min, leading
to a total experimental duration of approximately 1 hr. At
the end of the MEG testing session, participants’ knowl-
edge of the familiar images was assessed. Participants saw
60 images, the 12 familiar ones and 48 selected at random
from the novel images participants had been shown. Partic-
ipants had to indicate whether the image was familiar or
novel, where “familiar” referred to images seen repeatedly

Figure 1. (A) Trial structure.
First, participants saw a bull’s
eye fixation point for a jittered
period between 500 and
750 msec. Then, each of the
six images was presented for
180 msec with no gap between
images. Finally, a fixation dot
was presented at the end of the
trial. (B, C, D) Experimental
design. (B) Participants were
familiarized with two sets of
images. One set of images were
always presented in a specific
circular sequence (left), leading
to Familiar Sequence Present
trials. Another set of images
were presented in a random
sequence (right), resulting in
Familiar No Sequence trials.
(C) For the set of images with
a set order, images were
sometimes presented in the
expected order (left), whereas
on other occasions images were
presented in an unexpected
order (right). (D) New images
were presented during Novel
trials, and each unique image
was only shown once during
the whole experiment.
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during the behavioral training session as well as during the
MEG testing session, whereas “novel” referred to images
seen only once during the MEG testing session.

Trial Structure

In the behavioral training session as well as in the MEG test-
ing session, each trial began with a fixation dot (see
Figure 1A for the trial structure). The fixation dot was pre-
sented for a randomly selected period between 500 and
750 msec. Then, six images were shown, each lasting for
180 msec and presented back-to-back. At the end of a trial,
if a target was presented during the trial and a response was
given, the fixation dot turned green for 500 msec. If the
response was incorrect, the fixation dot turned red for
500 msec. A response was considered incorrect on three
occasions: if the participant pressed the button during a
trial with a target stimulus but before the target was pre-
sented, if the participant pressed the button on a trial where
no target was presented, or if the participant did not press
the button on a trial where a target was presented. If no tar-
get was presented and no response was given, the fixation
dot did not change color, and the white-and-black fixation
dot remained on the screen for 750 msec. At the end of
each trial, a blank screen was presented for 1250 msec, and
participants were encouraged to blink during this period.

Data Acquisition

MEG Recordings

Brain activity was recorded using a 275-channel MEG sys-
tem with axial gradiometers (VSM/CTF Systems) in a mag-
netically shielded room. During the experiment, head
position was monitored online and corrected if necessary
(Stolk, Todorovic, Schoffelen, & Oostenveld, 2013). This
method uses three coils: one placed on the nasion, one
in an earplug in the left ear, and one in an earplug in the
right ear. To aid in the removal of eye- and heart-related
artifacts, horizontal and vertical EOGs as well as an ECG
were recorded. A reference electrode was placed on the
left mastoid. The sampling rate for all signals was 1200 Hz.
A projector outside the magnetically shielded room pro-
jected the visual stimuli onto a screen in front of the par-
ticipant via mirrors. Participants gave their behavioral
responses via an MEG-compatible button box. Participants’
eye movements and blinks were also monitored using an
eye-tracker system (EyeLink, SR Research Ltd.).

MRI Recordings

To allow for source reconstruction, anatomical MRI scans
were acquired using a 3T MRI system (Siemens) and a T1-
weighted MPRAGE sequence with a GRAPPA acceleration
factor of 2 (repetition time = 2300 msec, echo time =
3.03msec, voxel size= 1× 1× 1mm, 192 transversal slices,
8° flip angle).

Data Analysis

Preprocessing of MEG Data

The MEG data were preprocessed offline using FieldTrip
software (Oostenveld, Fries, Maris, & Schoffelen, 2011).
Trials where target stimuli were presented and/or a re-
sponse was given were removed from analysis. This was
done because targets and responses elicited neural activ-
ity unrelated to the research question. Then, trials with
high variance were manually inspected and removed if
they contained excessive and irregular artifacts. This
resulted in retaining, on average, 92% of trials per par-
ticipant (range = 72–99%). Afterwards, independent
component analysis was applied to identify regular arti-
facts such as heartbeat and eye blinks. The independent
components for each participant were then correlated to
the horizontal and vertical EOG signals and to the ECG
signal. In this way, it was possible to identify which com-
ponents most likely corresponded to the heartbeat and
eye blinks. The data were filtered using a sixth-order
Butterworth low-pass filter with a cutoff frequency of 30 Hz.

Event-related Fields

Before calculating event-related fields (ERFs), the data
were baseline-corrected on the interval starting at 200msec
before stimulus onset until stimulus onset (0 msec). Sub-
sequently, the data were transformed to simulate planar
gradiometers to facilitate interpretation as well as averag-
ing over participants. We applied a planar transformation
and then a planar combination to the data. We took an
equal number of trials per condition for each comparison
to avoid any possible confounding influence of noise due
to unequal number of trials. We did this by choosing a
random selection of trials from the condition with more
trials to match the number of trials in the condition with
fewer trials. For the comparison between the Familiar No
Sequence and Novel conditions, there were 320 trials per
condition. For the comparison between the Familiar
Expected Sequence and Familiar Unexpected Sequence
conditions, there were 160 trials per condition.

Source Reconstruction on Time Domain Data

We performed source reconstruction to facilitate inter-
pretation of the ERFs. Source reconstruction was done
for 27 of the participants for whom we were able to
acquire a structural MRI scan. We created volume con-
duction models based on a single-shell model of the
inner surface of the skull and subject-specific dipole
grids, which were based on a regularly spaced 6-mm grid
in normalized MNI (Montreal Neurological Institute) space.
For each grid point, the lead fields were rank reduced by
removing the sensitivity to the direction perpendicular to
the surface of the volume conduction model. Source activ-
ity was then obtained by estimating linearly constrained
minimum variance spatial filters (van Veen, van Drongelen,
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Yuchtman, & Suzuki, 1997), for which the data covariance
was calculated over the interval of 200–1200 msec post-
stimulus and regularized using shrinkage (as described in
Blankertz, Lemm, Treder, Haufe, & Müller, 2011) with a
regularization parameter of 0.01. The filters were applied
to the axial gradiometer data and resulted in an estimated
2-D dipole moment per grid point, per time point.

For visualization as well as interpretation, we reduced
these 2-D moments to a scalar value by taking the norm
of the vector. This value reflects the degree to which a
particular source location contributes to (differences in)
activity measured at the sensor level. Critically, this value
was obtained from the difference ERF between two con-
ditions, rather than from each condition individually and
subtracted afterward. In this way, differences in dipole
orientation are also captured, instead of only magnitude,
which would presumably correspond to different neural
populations within the same source location.

One problem with taking the norm of the vector is that
this is always a positive value and will therefore, due to
noise, suffer from a positive bias. To counter this bias,
we employed a permutation procedure, in which the
condition labels were shuffled across trials. A total of
1000 permutations were performed, the average of
which was taken as an estimate of the noise. Specifically,
the average was calculated over the square of the dipole’s
norm (i.e., after squaring and summing in the Pythagorean
theorem but before taking the square root). Next, this
noise estimate was subtracted from the (square of ) the
true data, after which the data were divided by the noise
estimate to counter the depth bias. The resulting values
were then averaged over participants, and negative values
were set to zero. Finally, the square root was taken, result-
ing in a group-level estimate of the contributions of each
source location.

Spectral Analysis

To assess the dynamic range (i.e., the peak-to-trough dif-
ference) of the signal, we conducted a spectral analysis
for all frequencies between 1 and 30 Hz. We applied
the fast Fourier transform to the planar-transformed time
domain data, after tapering with a Hanning window. The
time period of interest was from 180 until 1080 msec, and
data were baseline-corrected on the interval starting
at 200 msec before stimulus onset until stimulus onset
(0 msec). The spectral analysis was carried out separately
per condition, and the resulting power per frequency was
averaged over participants.

Source Reconstruction on Frequency Domain Data

We also applied source reconstruction analysis to facili-
tate interpretation of the power spectra. The source
models and lead fields were obtained as described before
and for the same 27 participants. Source activity was ob-
tained by applying spatial filters based on partial canon-

ical correlations (Schoffelen, Oostenveld, & Fries, 2008)
from the power data described above. The partial canonical
correlation method allows for the efficient extraction
of the source-level power for single trials. The regulari-
zation parameter was 0.01, and the frequency of interest
was 5.6 Hz. This procedure resulted in an estimated 3-D
dipole moment per grid point. For each grid point, we
calculated the mean across each of the three spatial
dimensions, computed its absolute value, and squared it.
Then, we summed the resulting values for the three di-
mensions, which produced a single value per grid point.
This analysis was carried out separately for each condition,
and afterward we averaged the resulting values across
participants.

Statistical Analysis

For the behavioral results, mean RT and accuracy were
first calculated within participant per condition. Then,
two-tailed paired-samples t tests were calculated for the
two relevant conditions for a comparison. Behavioral data
were analyzed for 28 of the 29 participants, as a technical
issue in data acquisition prevented the analysis of behav-
ioral data of the first participant.
To statistically assess the MEG activity difference be-

tween conditions in the time domain and control for mul-
tiple comparisons, we applied cluster-based permutation
tests (Maris & Oostenveld, 2007), as implemented by
FieldTrip (Oostenveld et al., 2011). The tests were carried
out on the time period between 0 and 1200 msec, 0 msec
being the onset of the first stimulus, over all sensors, and
10,000 permutations were used per contrast. For each
sensor and time point, the MEG signal was compared
univariately between two conditions, using a paired t test.
Positive and negative clusters were then formed sepa-
rately by grouping spatially and temporally adjacent data
points whose corresponding p values were lower than .05
(two-tailed). Cluster-level statistics were calculated by
summing the t values within a cluster, and a permutation
distribution of this cluster-level test statistic was com-
puted. The null hypothesis was rejected if the largest
cluster in the considered data was found to be significant,
which was the case if the cluster’s p value was smaller
than .05 as referenced to the permutation distribution.
The SEM was computed using a correction that makes
it suitable for within-subject comparisons (Morey, 2008;
Cousineau, 2005).
We also applied cluster-based permutation tests to

statistically assess MEG activity differences between con-
ditions in the frequency domain (see Data Analysis). The
tests were carried out on the log10-transformed data for
the frequency of interest (stimulus presentation frequency:
5.6 Hz), over all sensors, and with 10,000 permutations per
contrast. Adjacent sensors with nominal p values lower
than .05 (two-tailed) were grouped into clusters. The
t values within a cluster were summed, yielding a cluster-
level statistic. If the largest cluster’s p value was smaller
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than .05, the difference across the compared conditions
was considered statistically significant.
After having established a difference in neural activity

between expected and unexpected stimuli, we wished
to determine whether our data offered evidence for
surprise enhancement or expectation suppression (or
both). To this end, we compared Familiar Unexpected
Sequence trials with Familiar No Sequence trials, as well
as Familiar Expected Sequence with Familiar No Sequence
trials. To match the number of trials per condition, we ran-
domly selected 160 trials from the Familiar No Sequence
condition to match the number of trials (160) in the
Familiar Expected Sequence and Unexpected conditions.
For these comparisons, the time domain data were
averaged per condition over a time period from 500 until
900 msec after the onset of the visual sequence because
this was identified as the time period of significant dif-
ference between expected and unexpected stimulus
streams (see Results). Next, two paired-samples t tests
were carried out to statistically compare the amplitude of
Familiar Unexpected Sequence and Familiar No Sequence
trials, as well as the amplitude of Familiar Expected
Sequence and Familiar No Sequence trials.
To determine whether the expectation effect changed

over the course of the experiment, we divided the data
into two: the first half and the second half of the ex-
periment. Then, we averaged over Familiar Expected
Sequence trials and over Familiar Unexpected Sequence
trials for each half. We computed the ERFs and applied
the planar transformation and combination for each of
the four conditions (Expected first half, Expected second
half, Unexpected first half, and Unexpected second half ).
After that, we computed the difference for each half:
Unexpected − Expected first half and Unexpected −
Expected second half. We compared the two differences
(Unexpected− Expected) for the first half and for the sec-
ond half by calculating a paired samples t statistic and con-
ducting a cluster-based permutation test. The test was run
on the time period from 0.5 until 0.9 sec, as this was the
time period identified by a previous analysis (see Results).
Finally, to assess whether explicit knowledge of the

sequence immediately after training influenced the ac-
tivity modulation by expectation, we divided participants
based on whether their performance was above or below
chance level (20%) on the sequence identification task.
This division resulted in two groups of 14 participants
each. We averaged each participant’s data per condition
from 500 to 900 msec and over the sensors that con-
tributed to the significant difference for Expected versus
Unexpected sequences. We examined whether there were
differences between the groups using an independent-
samples t test. In addition, we conducted a Spearman’s
rank correlation to determine whether there was a relation-
ship between participants’ performance on the sequence
learning task and their expectation effects, where the
expectation effect was quantified in the same way as for
the independent-samples t test.

RESULTS

Behavioral Results

The participants’ task was to press a button whenever
they saw a target stimulus, in this case an image of a
ducky. Participants were at near ceiling level in their per-
formance on the task (mean accuracy= 94.9%, SD=2.9%).
Participants’ accuracy was not significantly affected by
whether duckies appeared in Familiar No Sequence versus
Novel trials (t27 = −0.75, p = .46) or in Familiar Expected
Sequence versus Familiar Unexpected Sequence trials
(t27 = 0.40, p= .69). Furthermore, participants’ RTs to target
trials were not significantly different between duckies em-
bedded in Familiar No Sequence versus Novel trials (t27 =
−1.74, p = .09) or Familiar Expected Sequence versus
Familiar Unexpected Sequence trials (t27=−0.04, p= .97).

At the end of the behavioral training session, partici-
pants’ knowledge of the order of the predictable images
was assessed. On average, when participants were shown
an image and had to report which image followed it, they
selected the correct image 25% of the time (SD= 19.7%),
with chance level performance at 20%. This suggests that
subjects were largely unaware of the sequence, in agree-
ment with their verbal reports.

At the end of the MEG session, participants’ knowledge
of image familiarity was assessed. On average, when par-
ticipants had to report whether an image was familiar or
novel, they correctly identified the familiar images in
91.9% of trials (SD= 5.8%), showing that they were clearly
aware of the image familiarity manipulation.

MEG Results

Familiar Items Lead to Reduced Activity in LOC

To investigate the difference in amplitude between fam-
iliar and novel items without any influence of the ex-
pectation manipulation, we compared the Familiar No
Sequence and Novel conditions because participants
did not learn a sequence for the images in the Familiar
No Sequence condition. A significant difference ( p <
1e−6) across conditions was observed, which was driven
by the cluster of sensors shown in Figure 2A from ap-
proximately 200 msec until 1200 msec. The black asterisks
in the figure denote sensors that contribute to this cluster
for at least half of the time period from 200 to 1200 msec.
The average time course for the sensors contributing to
the cluster is plotted in Figure 2C; the black line at the
bottom shows that at least one of the selected sensors
at that time point contributes to the significant difference.
Clearly, novel items lead to significantly more activity than
familiar ones. Source reconstruction revealed that the
difference between familiar and novel items stemmed pri-
marily from sources along the visual stream. This included
early visual areas as well as downstream visual areas such as
right and left inferior occipital gyrus (Figure 2B; Table 1) in
the vicinity of lateral occipital complex (LOC; Grill-Spector,
Kushnir, Hendler, & Malach, 2000).
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Unexpected Items Lead to Enhanced Activity in LOC

To examine the difference in amplitude between expected
and unexpected items when familiarity was held constant,
we compared the Familiar Expected Sequence and Familiar
Unexpected Sequence conditions, both of which consisted
of familiar images. A significant difference ( p = .008)
across conditions was observed, which was driven by the
cluster of sensors shown in Figure 3A from approximately
500 msec until 900 msec. The black asterisks in the figure
denote sensors that contribute to this cluster for at least
half of the time period from 500 to 900 msec. The time
course for the sensors contributing to the cluster is plotted
in Figure 3C; the black line at the bottom shows that at
least one of the selected sensors contributes to a significant
difference at that time point. Evidently, unexpected items
lead to significantly more activity than expected ones.
Source analysis demonstrated that the difference between
the Familiar Expected Sequence and Familiar Unexpected
Sequence could be localized to the right inferior occipital
gyrus and to a lesser degree to the left inferior occipital
gyrus (Figure 3B; Table 1), corresponding to right and
left LOC.
Moreover, we asked whether our data provided support

for surprise enhancement or expectation suppression. To
thisend,wecomparedFamiliarNoSequence items (i.e.,where
no sequence was learned) to both Familiar Unexpected

Figure 2. Effect of familiarity on evoked response. (A) Topography of the difference in amplitude between the Familiar No Sequence and Novel
conditions (Novel − Familiar). Black asterisks mark sensors that contribute to the significant cluster for at least half of the time period from 200
to 1200 msec. (B) Source reconstruction of Familiar versus Novel. Activity was averaged over the time period of 200–1200 msec and interpolated
onto a cortical surface. Plotted activity was thresholded at 80% of peak value for illustration purposes. (C) Activity over time for the Familiar No
Sequence (blue) and Novel (red) conditions. Activity was averaged over sensors highlighted in A. Shaded areas are error bars illustrating within-subject
SEM for the Familiar (light blue) and Novel (light red) conditions. Horizontal black bar at the bottom shows that at least one of the selected sensors
contributes to the significant cluster at this time point. Dotted vertical lines denote the onset of each image.

Table 1. MNI Coordinates of Peak Source Locations for the
Respective Comparisons

Amplitude Modulation

x y z

Novel vs. Familiar No Sequence Comparison

Medial peak 3 −90 −26

Right occipital gyrus peak 46 −81 −18

Left occipital gyrus peak −30 −87 −19

Unexpected vs. Expected Comparison

Right occipital gyrus peak 39 −72 −14

Left occipital gyrus peak −36 −77 −14

Dynamic Range Modulation

x y z

Novel vs. Familiar No Sequence Comparison

Medial occipital peak −8 −108 −8

Unexpected vs. Expected Comparison

Right occipital peak 44 −84 −10

Reported values are mean values across participants in mm.
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Sequence and Familiar Expected Sequence items, respec-
tively, because the former contrast illustrates the effect of a
violated expectation and the latter demonstrates the effect
of a confirmed expectation (see Figure 4 for the time courses
for all conditions). Familiar Unexpected Sequence trials

showed stronger activity than Familiar No Sequence trials
(t28 = −3.01, p = .006), demonstrating an activity increase
for violated expectations. Familiar Expected Sequence
trials, on the other hand, did not show a robust difference
to Familiar No Sequence trials (t28 = −1.53, p = .14).

Figure 3. Expectation effect on amplitude. (A) Topography of the difference in amplitude between the Familiar Expected Sequence and Familiar
Unexpected Sequence conditions (Unexpected − Expected). Black asterisks mark sensors that contribute to the significant cluster for at least
half of the time period from 500 to 900 msec. (B) Source reconstruction of Expected versus Unexpected. Activity was averaged over the time period
of 500–900 msec and interpolated onto a cortical surface. Plotted activity was thresholded at 80% of peak value for illustration purposes. (C) Activity
over time for the Expected (green) and Unexpected (purple) conditions. Activity was averaged over sensors highlighted in A. Shaded areas are
error bars illustrating within-subject SEM for the Expected (light green) and Unexpected (light purple) conditions. Horizontal black bar at the bottom
shows that at least one of the selected sensors contributes to the significant cluster at this time point. Dotted vertical lines denote the onset of
each image.

Figure 4. Surprise
enhancement and expectation
suppression. Activity over
time for Familiar Unexpected
Sequence (purple) where
the expectation was violated,
Familiar Expected Sequence
(green) where the expectation
was confirmed, Familiar No
Sequence (orange) where no
sequence was learned, and
Novel (blue). Shaded areas
are error bars illustrating
within-subject SEM. Dotted
vertical lines denote the
onset of each image. Activity
was averaged over sensors
highlighted in Figure 3A.
A number of trials equal to
the number of trials in the
(Un)Expected condition is
randomly selected from the
Novel and Familiar No Sequence conditions. The data provide evidence for surprise enhancement (Familiar Unexpected Sequence vs. Familiar
No Sequence) but offer no statistical support for expectation suppression (Familiar Expected Sequence vs. Familiar No Sequence).
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We also assessed whether the expectation effect changes
over the course of the experiment. For this purpose, we
divided the data into the first half and the second half of
the experiment, calculated the expectation effect for each
half, and compared them. There was no significant dif-
ference ( p = .39) between the magnitudes of the expec-
tation effects in the first half of the experiment compared
with the second half.

Familiarity Leads to Higher Dynamic Range of the
Sensory Response

Sharper response dynamics include a truncated sensory
response, which leads to higher dynamic range (peak-to-
trough excursion) of the response (Meyer et al., 2014).
The dynamic range of the signal can be approximated by
the power at the driving frequency. To investigate the dif-
ference in power at the stimulus frequency, we compared
the Novel and Familiar No Sequence conditions. A sig-
nificant difference ( p = .016) emerged for the driving
frequency of 5.6 Hz in the cluster of sensors shown in
Figure 5A. The black asterisks in the figure denote sensors
that contribute to the significant cluster, and the power
spectrum for these sensors is plotted in Figure 5C. Familiar
items led to significantly more power at the stimulus fre-
quency of 5.6 Hz than novel items. Source reconstruction
revealed that the largest difference in power between the
familiar and novel conditions was in a medial posterior

location belonging to early occipital cortex (Figure 5B;
Table 1).

Expectation Does Not Lead to Significantly Higher
Dynamic Range of the Sensory Response

To examine whether expectation likewise led to a larger
dynamic range of the neural response, we compared the
difference in power at the stimulus frequency between
the Familiar Unexpected Sequence and Familiar Expected
Sequence conditions. There was no significant difference
( p = .700) for the driving frequency of 5.6 Hz, as shown
in Figure 6A. The power spectrum for all sensors is plot-
ted in Figure 6C. It suggests that expected items may lead
to more power at the stimulus frequency of 5.6 Hz than
unexpected items, but this difference was not significant.
Source analysis demonstrated that the largest difference
in power between the Familiar Expected Sequence and
Familiar Unexpected Sequence conditions was in early
visual areas (Figure 6B; Table 1), but it is difficult to inter-
pret this outcome because the effect is not statistically
significant.

Explicit Knowledge of Sequence Immediately after
Training Does Not Modulate the Expectation Effect

We wanted to determine whether the extent to which par-
ticipants could report the order of the stimuli influenced

Figure 5. Effect of familiarity on power at the driving frequency. (A) Topography of the difference in power between the Familiar No Sequence
and Novel conditions (Novel − Familiar). Black asterisks mark sensors that contribute to the cluster that showed a significant difference in power
between conditions at the stimulus presentation frequency (5.6 Hz). (B) Source reconstruction of Familiar versus Novel. Activity corresponding
to the frequency of 5.6 Hz was interpolated onto a cortical surface. Plotted activity was thresholded at 50% of peak value for illustration purposes.
(C) Power spectrum of Familiar No Sequence (blue) and Novel (red). Activity was averaged over sensors highlighted in A.
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the expectation effect. Thus, we compared the expecta-
tion effect in the group which performed above chance
on the sequence identification task to that in the group
performing below chance. Although expectation modu-
lated the amplitude of MEG activity in each group sepa-
rately (t13 = −3.28, p = .006, for the above-chance
group and t13 = −2.83, p = .01, for the below-chance
group), this modulation did not differ significantly be-
tween the two groups (t26 = −0.27, p = .79). In addition,
the Spearman’s rank correlation showed that there was
no significant correlation between participants’ perfor-
mance on the sequence learning task and the amplitude
of the expectation modulation (rho = −0.08, p = .68).
These results suggest that the effect of expectation on the
magnitude of the neural response is not related to par-
ticipants’ explicit knowledge of the stimulus structure.

DISCUSSION

The sensory response to a stimulus can be modulated by
whether a stimulus has been seen before (i.e., stimulus
familiarity), as well as by whether a stimulus is expected
or unexpected in the current context (i.e., stimulus expec-
tation). In this study, we manipulated stimulus familiarity
and expectation separately, which allowed us to examine
the effects of familiarity and expectation on brain activity
in the visual system within the same experimental para-
digm, using MEG. We found that familiar images elicited
markedly less neural activity than novel images in early

visual and object-selective LOC. Similarly, expected im-
ages were also associated with reduced neural activity
compared with unexpected images in LOC. The indepen-
dent manipulation of familiarity and expectation in our
study allows us to conclude that these distinct types of
sensory knowledge jointly modulate the amount of neural
resources dedicated to object processing in the visual
ventral stream.

Familiar items, when compared with novel items, were
also associated with a temporally truncated (i.e., tempo-
rally sharpened) sensory response. In the context of our
paradigm, in which stimuli rapidly followed each other,
this led to an increased dynamic range of the signal. This
was visible as increased power in the stimulus frequency,
which was most prominent in early visual cortex. A sim-
ilar trend, albeit nonsignificant, was present for expected
versus unexpected items. The sharper response dynam-
ics for familiar than novel stimuli we observed are in
accordance with earlier findings by Meyer et al. (2014),
although we observe the strongest contribution in early,
rather than later, visual regions. Although an increase in
attention can also lead to an increase of power in the
stimulus frequency for visually entrained stimuli (Ding,
Sperling, & Srinivasan, 2006), it is unlikely that this under-
lies the sharpened response for familiar items for two rea-
sons. First, given that participants’ task was to detect ducky
stimuli, both familiar and novel items were equally relevant
to the observer, precluding the need for stronger atten-
tional engagement by the familiar items. Second, if anything,

Figure 6. Effect of expectation on power at the driving frequency. (A) Topography of the difference in power between the Expected and Unexpected
conditions (Unexpected − Expected). There was no significant difference between conditions at the stimulus presentation frequency (5.6 Hz).
(B) Source reconstruction of Expected versus Unexpected. Activity corresponding to the frequency of 5.6 Hz was interpolated onto a cortical surface.
Plotted activity was thresholded at 50% of peak value for illustration purposes. (C) Power spectrum of Expected (green) and Unexpected (purple).
Activity was averaged over all sensors.
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familiarity would rather be associated with a reduction in
attention, given that novel items are more salient and
have stronger capacity to attract attention (Escera, Alho,
Winkler, & Näätänen, 1998). Temporal sharpening (in-
dexed by dynamic range) is a mechanism that has not
been investigated extensively in humans yet, and this study
suggests that it underlies familiarity and possibly expec-
tation in the human visual cortex.

The experimental effects of familiarity and expectation
had distinct time courses. The reduction in activity for
familiar (compared with novel) items was apparent already
200 msec after the onset of the visual sequence, whereas
the activity reduction for expected items only was visible
after 500 msec. This is likely due to the fact that familiarity
is already defined for the first image—which may have
been seen before (familiar) or not (novel). With respect
to expectation, the first image of a sequence could never
be predicted; only after observing the first image, a pre-
diction could be made about the subsequent images. This
may explain why expectation effects are visible only later
in the visual sequence. Apart from this, it is conceivable
that activity modulation due to familiarity is the conse-
quence of local changes in LOC (Vogels, 2016; Kaliukhovich
& Vogels, 2011), whereas expectation suppression is im-
plemented by feedback from regions higher up in the visual
hierarchy (Friston, 2005) and potentially the hippocam-
pus (Hindy, Ng, & Turk-Browne, 2016; Buckner, 2010),
which send predictions down to LOC and V1. This may
explain why the modulation by familiarity may be ob-
served earlier than the modulation by expectation.

Our data suggest that activity modulations by expec-
tation may mainly be caused by surprise enhancement
rather than expectation suppression because unexpected
images elicited significantly larger activity than items with
no learned sequence, whereas expected images were not
statistically different from images with no learned sequence
in terms of neural activity. In line with this, Kaposvari et al.
(2016) found that expectation suppression was of smaller
magnitude than surprise enhancement, which opens the
possibility that expectation suppression may be a weaker
signal, and therefore, we did not observe it in our data. A
recent study by Ramachandran, Meyer, and Olson (2017),
on the other hand, found strong evidence for expectation
suppression and only limited evidence for surprise en-
hancement. As argued by these authors, the apparent dis-
crepancy between these studies may relate to the rate of
presentation of the visual stimuli. Rate of presentation in
both our study and the study by Kaposvari et al. (2016)
was markedly faster than in the study by Ramachandran
et al. (2017), potentially resulting in a weaker phasic re-
sponse to the image and thereby less potential for expec-
tation suppression.

Interestingly, we observed an effect of expectation
although many participants could not explicitly report the
sequence for the predictable images. During debriefing,
participants reported that they did not notice any specific
order for the images. The behavioral assessment of

sequence knowledge also showed that participants’ per-
formance was, on average, near chance level when they
were shown an image and had to report which image
should follow. Nevertheless, the neural response showed
a distinct difference between expected and unexpected
conditions, suggesting that the neural effects of expec-
tation are likely due to implicit predictions that occur out-
side the awareness of the observer. This is in line with
previous studies showing that subjects can learn transi-
tions without becoming aware of them (Alamia et al., 2016;
Clark & Squire, 1998; Reber, 1967).
In our data, increased dynamic range was most prom-

inent in early visual cortex, whereas reduced amplitude
was present most strongly in LOC. This may be related
to the fact that these two brain areas have different tem-
poral dynamics. In early visual cortex, visual input changes
rapidly, in which case a sharpened response may be par-
ticularly useful for efficient coding. The temporal dynamics
of LOC are more stable over time, making it possible for
LOC to sustain an amplitude difference over time. Perhaps
the sharpened response from early visual cortex, once in-
tegrated by areas higher along the visual stream, results
in a reduced amplitude in LOC.
Although we isolated neural effects of familiarity and ex-

pectation by different manipulations, usually these con-
cepts are heavily intertwined. In our experiment, the first
image of a familiar streammay bemuch less surprising than
a novel one, given that there were 12 familiar images and
more than 2000 novel ones. In this sense, familiarity and
predictability are indeed partly inseparable constructs.
However, there is mounting evidence that, when keeping
familiarity constant, the sensory response is modulated by
whether a particular image is expected to occur at a partic-
ular moment in time (e.g., Meyer & Olson, 2011). Our par-
adigmallowed us to conclude that, whenwehold familiarity
constant and manipulate predictability (or expectation),
we observe a highly similar modulation of the sensory re-
sponse in terms of spatiotemporal profile. This leads us to
conclude that these conceptually somewhat different
forms of prior may be implemented similarly in the brain.
To conclude, this study demonstrates that familiarity

and expectation jointly influence how much neural re-
sources are dedicated to object processing in visual cor-
tex. Familiar and expected inputs have similar effects on
the brain signal because they reduce the amplitude of
the response and increase its dynamic range. Notably,
amplitude change was linked to LOC, whereas temporal
sharpening was most prominent in early visual cortex,
indicating that these two mechanisms may have different
neural sources and underpinnings. These findings extend
our understanding of how familiarity and expectation
affect sensory processing in the human brain.
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