The following full text is a postprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/193642

Please be advised that this information was generated on 2019-10-26 and may be subject to change.
Sialic acid blockade suppresses tumor growth by enhancing T cell-mediated tumor immunity

Christian Büll¹, Thomas J. Boltje², #, Natasja Balneger¹, #, Sarah M. Weisscher¹,³, Melissa Wassink¹, Jasper J. van Gemst⁴, Victor R. Bloemendal², Louis Boon⁵, Johan van der Vlag⁴, Torben Heise², Martijn H. den Brok¹,⁶ & Gosse J. Adema¹, *

¹Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
²Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
³Current address: Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
⁴Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
⁵Bioceros, BV Yaleyalaan 46, 3584 CM Utrecht, the Netherlands.
⁶Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
*These authors contributed equally

Running Title: Sialic Acid Blockade Boosts Anti-Tumor Immunity

Keywords: Glycosylation, sialic acid, glycomimetic, CD8⁺ T cell, immunotherapy

Financial Support: This work was supported by a Radboudumc grant awarded to C. Büll a VENI grant from the Netherlands Organization for Scientific Research (NWO) awarded to T.J. Boltje a Marie Skłodowska-Curie Innovative Training Network (ITN-ETN 641549) awarded to G.J. Adema and KWF grants awarded to G.J. Adema and M.H. den Brok (KWF20136-6111), G.J. Adema (KWF11266) and G.J. Adema, T.J. Boltje and C. Büll (KUN2015-7604).

*Corresponding Author: Gosse J. Adema, Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands. Tel: +31 (0) 24 36 14023.
E-mail: Gosse.Adema@radboudumc.nl

Conflict of Interest: The authors declare no potential conflicts of interest.

Word Count: 5490

Number of Figures: 7
Abstract

Sialic acid sugars on the surface of cancer cells have emerged as potent immune modulators that contribute to the immunosuppressive microenvironment and tumor immune evasion. However, the mechanisms by which these sugars modulate anti-tumor immunity as well as therapeutic strategies directed against them are limited. Here we report that intratumoral injections with a sialic acid mimetic \(\text{Ac}_5\text{F}_{\alpha\text{x}}\text{Neu5Ac} \) blocks tumor sialic acid expression \textit{in vivo} and suppresses tumor growth in multiple tumor models. Sialic acid blockade had a major impact on the immune cell composition of the tumor, enhancing tumor-infiltrating natural killer cell and CD8\(^{+}\) T cell numbers while reducing regulatory T cell and myeloid regulatory cell numbers. Sialic acid blockade enhanced cytotoxic CD8\(^{+}\) T cell-mediated killing of tumor cells in part by facilitating antigen specific T cell-tumor cell clustering. Sialic acid blockade also synergized with adoptive transfer of tumor-specific CD8\(^{+}\) T cells \textit{in vivo} and enhanced CpG immune adjuvant therapy by increasing dendritic cell activation and subsequent CD8\(^{+}\) T cell responses. Collectively, these data emphasize the crucial role of sialic acids in tumor immune evasion and provide proof of concept that sialic acid blockade creates an immune-permissive tumor microenvironment for CD8\(^{+}\) T cell-mediated tumor immunity, either as single treatment or in combination with other immune-based intervention strategies.

Introduction

Altered glycosylation is a hallmark of virtually all cancer cells from different origins, and several aspects of tumor growth and progression are mediated by tumor-associated glycans (1,2). One of the most remarkable change in cancer glycosylation is the aberrant expression of sialic acid-carrying glycans (sialoglycans) (3). Sialic acids are a family of negatively charged, nine-carbon sugar molecules that often terminate the glycans of cell surface glycoproteins and glycolipids. Human cancer cells cover their membrane with a dense layer of sialoglycans and also express unique sialoglycans on their surface (e.g. SLe\({}^{\alpha}\), STn, GM2/3, GD2/3 or SSEA-4) (4-6). Tumor sialoglycans facilitate cancer cell migration and metastasis formation and moreover tumor sialoglycans emerge as potent immune modulators that promote tumor immune evasion (3,7-10). Already in the 1960s, it has been proposed that the dense layer of sialic acids surrounding tumor cells protects them from recognition and eradication by the immune system, and even clinical trials were performed using irradiated cancer cells treated with bacterial sialidase as vaccine in patients with cancer. At that time, however, contradicting data and the lack of effective glycotools to provide further mechanistic insight dampened the enthusiasm of the scientific community (11-13). Recent developments in glycoengineering have revitalized research on the potential role of sialic acids in the anti-tumor immune response. These studies in human and animal models have shown that tumor sialic acids negatively influence immune cell function by interacting with the immune inhibitory sialic acid-binding
immunoglobulin-like lectin (Siglec) family (14-19). Tumor sialic acid-Siglec interactions, therefore are believed to modulate immune cell function and hinder anti-tumor immunity (7,8,10,20-22).

Approaches to interfere with sialoglycan expression in cancer in vivo are, however, still limited and barely tested in preclinical tumor models. So far, mainly bacterial sialidases or tumor cells with genetically silenced sialic acid expression were used to study the effects of tumor sialic acids (9,18,23). While these approaches are useful to study some aspects of tumor sialylation, they are difficult to apply in a therapeutic setting to interfere with sialic acid expression in established tumors. Pharmacological inhibition of sialic acid expression in tumors in vivo, however, has not been feasible so far. Our group has reported that a fluorinated sialic acid mimetic, Ac₅₃F₅₆axNeu5Ac, originally reported by Rillahan et al., potently blocked sialic acid expression in various human and mouse cancer cell lines (24-26). Ac₅₃F₅₆axNeu5Ac blocks sialic expression directly by the inhibition of sialyltransferases, the enzymes that incorporate sialic acids into glycans and indirectly by stopping the production of natural sialic acids in the cell (24,27). Previously, we found that blocking sialylation with Ac₅₃F₅₆axNeu5Ac impaired cancer cell adhesion and migration in vitro and prevented metastasis formation in vivo (26,28). Here we explored the potential of Ac₅₃F₅₆axNeu5Ac to block sialic acid expression in the tumor mass and investigated the consequences thereof on the tumor microenvironment and anti-tumor immunity.

Our data demonstrate that intratumoral injections of Ac₅₃F₅₆axNeu5Ac blocked sialylation in tumors in vivo and suppressed tumor growth in different murine tumor models. Mechanistic studies revealed dominant effects on the tumor microenvironment and dependence on CD8⁺ T cells. Sialic acid blockade potentiated cellular immunotherapy as well as CpG immunotherapy through enhanced maturation of dendritic cells in the tumor microenvironment favoring the induction of CD8⁺ T cells. These data emphasize the important role of sialic acids in tumor immune evasion and identify Ac₅₃F₅₆axNeu5Ac as potential prototype therapeutic molecule for the use in cancer immunotherapy.

Materials and Methods

Mice

Female C57BL/6JRccHsd WT mice (Harlan Laboratories) 8 to 10 weeks old at the beginning of the experiments were housed in the local Central Animal Laboratory. OT-I mice that produce CD8⁺ T cells with a transgenic T cell receptor specific for the chicken ovalbumin (OVA) epitope SIINFEKL (OVA257-264) presented on MHC I H-2k and the congeneric marker CD45.1⁺ were bred in the Central Animal Laboratory. Animals were housed under specific pathogen-free conditions and ad libitum access to food and water. All animal experiments were authorized by the local animal ethics committee and carried out in accordance with their guidelines.

Reagents and Antibodies
Ac\textsubscript{5}F\textsubscript{ar}Neu5Ac and Ac\textsubscript{5}Neu5Ac were synthesized as described before (24-26). Carbo-free blocking solution, biotinylated lectins MALII, SNA-I and PNA were purchased from Vector Laboratories Inc., streptavidin-PE from BD Pharmingen and eFluor 780 viability dye and anti-CD11b-biotin (M1/70) from eBioscience, Inc. CD8 (2.43), CD4 (GK1.5), NK1.1 (PK136) and Gr-1 (RB6.8C5) depleting mAbs were produced by culturing hybridomas in IMDM with 1% FBS. Clodronate liposomes were purchased from Liposoma B.V., OVA257-264 (SIINFEKL) was purchased from AnaSpec Inc. and CpG ODN 1826 from InvivoGen. *Clostridium perfringens* sialidase, β-galactosidase and DAPI were purchased from Sigma-Aldrich. CFSE, PBSE and AF488-conjugated streptavidin were obtained from Thermo Fisher and anti-CD16/CD32 (2.4G), anti-CD45.2-biotin (104) and anti-CD161/NK1.1-PE (PK136) from BD Pharmingen. Anti-CD8α-AF700 (53-6.7) was purchased from EXBIO and anti-CD4-PerCP (RM4-5), anti-CD11c-APC (N418), anti-CD11b-AF700 (M1/70), anti-CD45R/B220-PerCp (RA3-6B2), anti-H-2Kb/H-2Db-PE (28-8-6), and anti-CD8α-biotin (53-6.7) from BioLegend. Anti-CD25-APC (PC61.5), anti-FoxP3-PE-Cy7 (FJK-16s), anti-Mult-1-PE (5D10) and anti-CD274/PD-L1-PE (MIH5) were obtained from eBioscience and anti-Rae-1-APC (FAB17582A) from R&D Systems. Anti-biotin-Cy3 was obtained from Jackson ImmunoResearch.

Cell culture and titration of Ac\textsubscript{5}F\textsubscript{ar}Neu5Ac

B16-F10WT melanoma cells were obtained from and authenticated by ATCC (CRL-6475) and cultured in MEM (Gibco) containing 5 % FBS (Greiner Bio-one), 1 % MEM non-essential amino acids (Gibco), 0.15 % sodium bicarbonate (Gibco), 1 mM sodium pyruvate (Gibco), 1.5 % MEM vitamins (Gibco), 1 % antibiotic-antimycotic solution (PAA). B16-F10OVA cells (clone MO5) were kindly provided by Dr. Kenneth Rock and cultured in B16-F10WT medium supplemented with 200 µg/ml geneticin (Gibco) and Hygromycin B (Merck) (29). No full authentication of the B16-F10OVA cells was carried out by the authors, but the expression of OVA, TRP-2, TRP-2, MHC I and other molecules was validated. The 9464D neuroblastoma cell line (kindly provided by R. Orentas, Department of Pediatrics, Medical College of Wisconsin, WI, USA) was authenticated last by the authors in 2013 by qPCR analysis of neuroblastoma-specific genes. 9464D cells were cultured in DMEM Glutamax (Gibco) with 10 % FBS, 1 % non-essential amino acids, 20 µM 2-mercaptoethanol (Sigma-Aldrich) and 1 % antibiotic-antimycotic solution (30,31). All cell lines were initially grown and multiple aliquots were cryopreserved. The cells were used within 3 months after resuscitation and regularly tested for mycoplasma using a mycoplasma detection kit (Lonza). To compare the effect of Ac\textsubscript{5}F\textsubscript{ar}Neu5Ac on sialic acid expression between B16-F10WT and B16-F10OVA cells, both cell lines were incubated for 3 days with 100 µM Ac\textsubscript{5}F\textsubscript{ar}Neu5Ac. To determine the effective dose of Ac\textsubscript{5}F\textsubscript{ar}Neu5Ac in 9464D cells, they were incubated for 3 days with 0-500
µM sialic acid mimetic. Sialylation was quantified by flow cytometry using lectins as described below. All cells were incubated in a humidified CO₂ incubator at 37 °C.

In vivo tumor experiments

Following reconstitution from liquid nitrogen, tumor cell lines were cultured in T75 flasks (Corning), passaged twice and grown to 60-70% confluency. Cells were collected in 1x PBS at a concentration of 0.5 x 10⁶ cells/ml (B16-F10WT), 1 x 10⁶ cells/ml (B16-F10OVA) or 10 x 10⁶ cells/ml (9464D) and 100 µl of the cell suspension was injected subcutaneously into the right flank of the mice under isoflurane anesthesia. Tumor size was examined every 2-3 days and tumor volumes were calculated with the formula \((A \times B^2 \times 0.4)\), in which A is the largest and B is the shortest tumor dimension. Mice were sacrificed when the tumor volume exceeded 1800 mm³. Ac₃F₆₃Neu5Ac and Ac₅Neu5Ac were dissolved in 1x PBS, and on day 10 when a palpable tumor mass was formed 50 µl of 1x PBS containing 10, 20 or 30 mg/kg sialic acid mimetic were injected into the tumor mass thrice per week. Optional, CpG was injected into the tumor mass on day 14 and 21 post-inoculation. Naïve mice were injected subcutaneously three times per week with sialic acid mimetic for two weeks. PBS only injections were used as control. For rechallenge experiments in the B16-F10OVA model, 30,000 B16-F10OVA cells were injected subcutaneously into the left femur of mice with remission after the initial tumor challenge or naïve, age-matched control mice and tumor growth was monitored in time. For the depletion of CD4⁺, CD8⁺, NK1.1⁺ or Gr-1⁺ cells *in vivo* 300 µg depleting mAbs or isotype control antibodies were injected intraperitoneally either two days before tumor inoculation or on day 6, 8 and day 20 after tumor inoculation, respectively. 1 mg/mouse clodronate liposomes was injected intraperitoneally on day 8 post inoculation and from day 10 onwards, mice received 0.25 mg injections twice per week until the end of the experiment to maintain depletion.

Preparation of single cell suspensions

Mice were sacrificed by cervical dislocation and the tumor, spleen, draining and non-draining lymph nodes (superficial inguinal) were isolated. Tumors and spleens were mashed through a 100 µm nylon cell strainer and collected in 1x PBS and red blood cells were lysed by incubating the suspension for 1 minute in ice-cold ACK lysis buffer (150 mM NH₄Cl, 10 mM KHCO₃ and 0.1 mM Na₂-EDTA, pH 7.2). Lymph nodes were comminuted between glass slides and single cells were harvested in 1x PBS.

Intra-/extracellular cell staining and flow cytometry analysis

For extracellular staining with biotinylated lectins, the cells were washed with 1x carbo-free blocking solution and incubated for 45 minutes at 4 °C with MALII (5 µg/ml), SNA-I (1 µg/ml) or PNA (5 µg/ml) in 1x carbo-free blocking solution containing 1 mM CaCl₂²⁺ and 1 mM MgCl₂²⁺. Next, cells were washed
with 1x carbo-free blocking solution, incubated for 20 minutes at 4 °C with streptavidin-PE conjugate, washed again and resuspended in PBA (1x PBS, 1% BSA, and 0.02% sodium azide) for flow cytometry analysis. For extracellular antibody staining, cells were first incubated 10 minutes at 4 °C with PBA containing Fc receptor blocking antibody (2.4G), then washed with PBA and incubated for 20 minutes at 4 °C with fluorescent antibodies. After extensive washing, the cells were resuspended in PBA for flow cytometry analysis or further used for intracellular staining. For intracellular stainings, a cell fixation and permeabilization kit (BD) was used following the manufacturer’s instructions. Briefly, cells were incubated for 20 minutes with 1x fix/perm solution at 4 °C and washed with perm/wash buffer. Next, cells were incubated overnight with antibody in perm/wash buffer at 4 °C, washed with perm/wash buffer and resuspended in PBA for flow cytometry analysis. Cells were measured using a CyAn ADP flow cytometer (Beckman Coulter) and data were analyzed using FlowJo software (Tree Star Inc.).

Urine and blood collection and determination of albuminuria and serum urea
Naïve mice were subcutaneously injected three times a week for two weeks with PBS, 10, 20 or 30 mg/kg Ac₅F₃axNeu5Ac. At several time points, urine of the mice was collected and pooled per time point and treatment group and blood was collected via the tail vein into MiniCollect tubes (Greiner Bio-one). To obtain serum, the tubes were centrifuged for 10 minutes, 12,000 rpm, at room temperature. Albumin concentrations were measured by radial immunodiffusion (Mancini). Urinary creatinine and serum urea levels were determined as described earlier (32).

Immunohistochemistry
To assess the effect of sialic acid blockade on the tumor microenvironment, B16-F10WT tumors injected for two weeks with PBS or 10 mg/kg Ac₅F₃axNeu5Ac were isolated on day 24 post inoculation and snap frozen in liquid nitrogen. To investigate the effects of Ac₅F₃axNeu5Ac injections on the kidneys, naïve mice received subcutaneous injections with PBS, 10, 20 or 30 mg/kg Ac₅F₃axNeu5Ac three times per week for two weeks. Two or four weeks after starting the treatment, kidneys were collected and snap frozen in liquid nitrogen. Immunohistochemical analysis of the tumors and kidneys was performed as described previously (33). Briefly, frozen tumor sections (5 µm) and renal sections (2 µm) were fixed in ice-cold acetone for 10 minutes and incubated with the biotinylated lectins MALII, SNA-I or PNA diluted in PBA for 45-60 minutes. For antibody stainings, the sections were blocked for 30 minutes with 2% donkey serum and incubated for 60 minutes with anti-CD8α-biotin or anti-CD11b-biotin antibodies followed by 10 minutes staining with DAPI in PBS. Biotinylated lectins and antibodies were detected with AF488-streptavidin or anti-biotin-Cy3 antibodies. Images were acquired with a Zeiss Axio Imager M1.
fluorescence microscope. Fluorescence intensity was evaluated semi-quantitatively from 0 (no staining) to 10 (100% maximum intensity) on blinded sections.

In vitro CD8\(^+\) OT-I activation

To obtain activated CD8\(^+\) OT-I cells, single cell suspensions prepared from OT-I spleens were cultured for 4 days in the presence of 0.75 µg/ml OVA\(_{257-264}\) peptide in RPMI-1640 medium (Life Technologies) supplemented with 10% FBS (Greiner Bio-one), 2 mM glutamine (Lonza) and 1x antibiotic-antimycotic solution (100 units/mL of penicillin, 100 µg/mL of streptomycin, and 0.25 µg/mL Fungizone) (Life Technologies). On day 3, 5 ng/ml recombinant mouse IL-2 (ImmunoTools) was added to the culture. Following activation, CD8\(^+\) OT-I cells were purified using a CD8a\(^+\) T Cell isolation kit according to the manufacturer’s protocol (Miltenyi Biotec).

OT-I killing and clustering assay

For in vitro killing assays, B16-F10\(^{WT}\), B16-F10\(^{OVA}\), 9464D\(^{WT}\), or 9464D\(^{OVA}\) cells were cultured for three days with PBS, 100 µM Ac\(_5\)Neu5Ac, 100 µM (B16-F10) or 250 µM Ac\(_5\)3F\(_x\)Neu5Ac. Alternatively, B16-F10 cells were treated for 60 minutes at 37 °C with 250 mU/ml sialidase, 1 U/ml β-galactosidase or PNA lectin was added to the culture. The cells were extensively washed with 1x PBS and 30,000 cells were seeded into 96-wells flat bottom wells (Costar). Cells were allowed to adhere for two hours before purified, activated OT-I CD8\(^+\) T cells were added in different effector-to-target ratios (0.1:1, 0.25:1, 0.5:1, 1:1, 2:1). After 16 hours of co-culture, images were taken and numbers of live tumor cells and CD8\(^+\) CD90.1\(^+\) OT-I T cells were quantified using flow cytometry. Percentage killing was calculated by normalizing the number of viable tumor cells in the co-cultures to control cultures without effector T cells. To determine cluster formation between tumor cells and T cells, B16-F10\(^{WT}\) or B16-F10\(^{OVA}\) cells treated with control or 100 µM Ac\(_5\)3F\(_x\)Neu5Ac for 3 days were labeled with 3 µM PBSE and activated CD8\(^+\) OT-I cells were labeled with 0.5 µM CFSE following the manufacturer’s instructions. B16-F10 cells and OT-I cells were incubated together in a 1 : 2 ratio in medium for 2 hours at 37 °C rotating, fixed with PFA and the number of PBSE\(^+\)/CFSE\(^+\) clusters was determined by flow cytometry.

Adoptive OT-I cell transfer

For adoptive transfer experiments, 10 x 10\(^6\) purified OT-I cells were injected intraperitoneally on day 15 following inoculation. Tumor growth was monitored or tumors were isolated two days after adoptive transfer to assess OT-I CD8\(^+\) T cell infiltration and activation marker expression by flow cytometry. For the latter experiment, OT-I CD8\(^+\) T cells were labeled with 3 µM CFSE prior to adoptive transfer following the manufacturer’s instructions.
qPCR
Expression of Siglec family members on activated OT-I CD8⁺ T cells and total splenocytes was determined by qPCR. RNA was isolated from OT-I CD8⁺ T cells or splenocytes using a RNA isolation kit (Zymo Research) following the manufacturer’s instructions. RNA samples were treated in-column with DNase I and analyzed by spectrophotometry. Next, cDNA was synthesized using random hexamers and Moloney murine leukemia virus reverse transcriptase (Invitrogen). Siglec expression was determined with a CFX96 system (Bio-Rad) using SYBR Green reaction mix (Sigma-Aldrich). Data were calculated as relative expression to the housekeeping gene Gapdh. Primer sequences were derived from the Harvard Primer Bank.

Statistical analysis
Significance between two groups was calculated using a student’s t-test. Comparisons between multiple groups were made using one-way analysis of variance (ANOVA) followed by Bonferroni’s correction. Kaplan-Meier survival curves were analyzed with a log-rank test using Prism 5 software (GraphPad Inc.) and p-values <0.05 were considered significant (p<0.05 *, p<0.01 **, p<0.001 ***).

Results
Intratumoral Ac₅₃F₆Neu5Ac injections suppress tumor growth.
The sialic acid mimic Ac₅₃F₆Neu5Ac specifically blocks sialic acid expression in human and mouse cell lines in vitro without affecting cell viability or proliferation (25,26). In vitro pre-treatment of mouse B16-F10WT melanoma cells with this sialic acid mimic delayed their outgrowth in vivo following subcutaneous injection, and moreover prevented metastatic spread (26,28). These data prompted us to investigate the effect of intratumoral administration of Ac₅₃F₆Neu5Ac on tumor growth in different mouse tumor models. Mice bearing palpable B16-F10WT tumors were injected with 10 or 30 mg/kg Ac₅₃F₆Neu5Ac into the tumor mass three times a week for four weeks (Fig. 1A). This treatment schedule was based on our previous observation that the blocking effect of Ac₅₃F₆Neu5Ac lasted for 2 (α₂,6-linked sialic acids) to 4 days (α₂,3-linked sialic acids) in B16-F10WT cells after inhibitor removal (26). Injections with PBS and 10 or 30 mg/kg peracetylated non-blocking sialic acid (Ac₅₃Neu5Ac) were used as controls. B16-F10WT tumors injected with PBS grew rapidly, resulting in a median survival time of 24 days (Fig. 1B, C). While control injections with Ac₅₃Neu5Ac sialic acid had no effect on tumor growth, Ac₅₃F₆Neu5Ac injections significantly suppressed tumor growth in this stringent tumor model. In a dose-dependent manner, treatment with the sialic acid-blocking mimetic increased median survival times from 24 days to 36 (10 mg/kg) and 47 days (30 mg/kg), respectively (Fig. 1B, C and Fig. S1).
Next, sialic acid blockade therapy with Ac$_5$F$_{as}$Neu5Ac was tested in the related, more immunogenic ovalbumin-expressing B16-F10OVA model and an unrelated 9464D neuroblastoma model. *In vitro*, B16-F10OVA cells had a comparable sensitivity to Ac$_5$F$_{as}$Neu5Ac (100 µM) as B16-F10WT cells, whereas a higher dose (> 250 µM) was required for 9464D cells (Fig. S2). In the 9464D model, injections of 10 mg/kg had little effect on tumor growth, whereas 20 mg/kg injections significantly increased the median survival from 40 days to 58 days (Fig. 1D). In the B16-F10OVA model, 10 mg/kg Ac$_5$F$_{as}$Neu5Ac injections strongly reduced tumor growth and resulted in complete remission in about half of the mice (Fig. 1E, F). These mice remained tumor-free for over 120 days post-inoculation. Upon rechallenge of the surviving mice with B16-F10OVA cells, about 60 % of the mice were protected from tumor outgrowth (Fig. 1G). The protection upon re-challenge is suggestive for a curative immune response induced by the Ac$_5$F$_{as}$Neu5Ac injections. Furthermore, these data show that sialic acid blockade suppresses tumor growth in poorly immunogenic melanoma as well as neuroblastoma models and results in tumor regression in the more immunogenic B16-F10OVA model.

In the tumor growth experiments described above, no adverse effects or weight changes were observed upon repeated intratumoral injections with the 10 mg/kg dose. In mice receiving repeated injections with 20 and 30 mg/kg Ac$_5$F$_{as}$Neu5Ac, we detected abdominal fluid accumulation, an increase in weight and reduced kidney function around two weeks after treatment start (Fig. S3). No effect on kidney function was, however, observed in mice injected with 10 mg/kg Ac$_5$F$_{as}$Neu5Ac, therefore this dose was used for all subsequent experiments.

Ac$_5$F$_{as}$Neu5Ac blocks sialic acid expression in the tumor mass.

Next, we assessed the effect of intratumoral injections with 10 mg/kg Ac$_5$F$_{as}$Neu5Ac or control Ac$_5$Neu5Ac on the sialylation of tumor cells as well as tumor-infiltrating lymphocytes. After two weeks of injections, B16-F10WT tumors were isolated and analyzed by flow cytometry (Fig. S4). Tumor cells were defined as leukocyte marker CD45.2-negative cells and immune cells as CD45.2-positive cells. Ac$_5$F$_{as}$Neu5Ac injections reduced α2,3-sialic acid expression on tumor cells by 60 % and α2,6-sialic acid expression by 50 % compared to control (Fig. 2A-C). Accordingly, exposure of galactose residues was detected with PNA lectin (Fig. 2A, D). A clear reduction in sialic acid expression and exposure of galactose residues was also observed on tumor sections (Fig. 2E-G). Interestingly, in tumors injected with PBS or Ac$_5$Neu5Ac, more tumor cells than immune cells were present (CD45$^+$/CD45$^-$ ratio 0.32-0.43), but Ac$_5$F$_{as}$Neu5Ac injections significantly increased the immune cell to tumor cell ratio (3.1) (Fig. 2H, Fig. S4). While Ac$_5$F$_{as}$Neu5Ac treatment strongly reduced sialylation of tumor cells, also CD45.2$^+$ tumor-infiltrating lymphocytes showed reduced sialylation (20 %) (Fig. 2I-K). Noteworthy, no significant changes in the sialylation of cells in the tumor-draining lymph node, non-draining lymph nodes or spleen.
were detected (Fig. S5). Altogether these data show that intratumoral injections with Ac₅F₅₆₅Ac block sialic acid expression locally in the tumor mass, but not systemically. Moreover, these data indicate that tumor cells have a higher sensitivity to the sialic acid mimetics compared to infiltrating immune cells.

Sialic acid blockade alters the tumor immune cell composition.

Sialic acid blockade suppressed tumor growth and even resulted in complete remission and protection from a subsequent rechallenge in the B16-F10^{OVA} model. These findings, together with the observed high tumor-infiltrating lymphocyte-to-tumor cell ratio after Ac₅F₅₆₅Ac treatment indicate that the loss of sialic acids affects tumor immunity. Therefore, we assessed the immune cell composition of B16-F10^{WT} tumors treated for two weeks with the sialic acid-blocking mimetic. Compared to PBS and Ac₅Neu5Ac-treated tumors, Ac₅F₅₆₅Ac treatment increased the percentage of NK cells, CD₈⁺ T cells and CD₄⁺ T cells within the viable, tumor-infiltrating lymphocyte population (Fig. 3A-D, Fig. 3E-G, Fig. S6). In addition, the number of regulatory T cells was significantly reduced compared to control-injected tumors (Fig. 3D, H). Noteworthy, while the percentages of tumor-infiltrating B cells and dendritic cells remained unaltered between the treatment groups, Ac₅F₅₆₅Ac injections strongly reduced the percentage of myeloid regulatory cells in the tumor (Fig. 3I-K, Fig. S6). Similar results were obtained when performing the same experiment in the 9464D model. The immune cell composition in the (non-)draining lymph nodes and spleen remained unaltered (Fig. S6, Fig. S7). These results demonstrate that Ac₅F₅₆₅Ac injections alter the tumor microenvironment composition, resulting in increased numbers of effector immune cells while lowering regulatory T cell and myeloid cell numbers. Furthermore, these results indicate that sialic acid blockade converts the immune suppressive tumor microenvironment into a more immune permissive one.

Tumor growth suppression upon sialic acid blockade is mediated by CD₈⁺ T cells.

The findings so far suggest that sialic acid blockade counteracts the immune suppressive tumor microenvironment and influences anti-tumor immunity. Therefore, we investigated if the growth inhibitory effect of Ac₅F₅₆₅Ac on established tumors was mediated by effector immune cells. B16-F10^{WT} tumor-bearing mice were depleted from NK cells, CD₄⁺ T cells or CD₈⁺ T cells using monoclonal antibodies and treated as described in Fig. 4A. Successful depletion of NK cells and T cells from the mice was confirmed (Fig. 4B-D). In line with the previous experiments, intratumoral Ac₅F₅₆₅Ac injections hampered tumor growth in mice receiving isotype antibodies and increased median survival from 18.5 days to 39.5 days (Fig. 4E). Depletion of neither NK cells nor CD₄⁺ T cells had a significant effect on Ac₅F₅₆₅Ac-mediated tumor growth suppression (Fig. 4E). Remarkably, depletion of CD₈⁺ T cells from mice largely abolished the anti-tumor effect of Ac₅F₅₆₅Ac resulting in a median survival time
of only 25 days (Fig. 4F). Of note, depletion of NK cells and CD8+ T cells prior to tumor cell inoculation both facilitated tumor take and abrogated the anti-tumor effect of Ac5,3F3Neu5Ac (Fig. S8). As expected, depletion of macrophages and myeloid cells with clodronate liposomes or anti-Gr-1 antibodies in the B16-F10WT tumor model already significantly inhibited tumor growth by itself (34,35). The finding that addition of the fluorinated sialic acid mimetic to this treatment further delayed tumor growth and significantly prolonged survival supports a role of the inhibitor beyond myeloid cells. (Fig. S9). Altogether, these data suggest that the growth suppressive effects of Ac5,3F3Neu5Ac on established tumors is largely mediated by CD8+ T cells.

Sialic acid blockade promotes tumor eradication by CD8+ T cells.

To further elucidate how CD8+ T cells mediate the anti-tumor effects of Ac5,3F3Neu5Ac, we assessed the cytotoxic effects of OVA-specific OT-I CD8+ T cells on sialic acid competent or deficient B16-F10OVA cells in vitro. Sialic acid blockade strongly enhanced the eradication of B16-F10OVA cells by activated OT-I CD8+ T cells already at low effector to target ratios (Fig. 5A, B). This effect was also observed with sialidase-treated B16-F10OVA cells and killing assays using 9464D OVA cells as targets (Fig. 5B, Fig. S10). B16-F10WT and 9464DWT cells were not sensitive to OT-I CD8+ T cell cytotoxicity, irrespective of their sialylation status. Next, we investigated if the exposure of galactose residues upon sialic acid blockade mediated the enhanced T cell killing. Galactose residues on B16-F10 cells were either blocked with PNA lectin or enzymatically removed. Galactosidase treatment did not alter the enhanced killing of desialylated B16-F10OVA compared to control cells and incubation with PNA only slightly reduced the difference in killing (Fig. S10). Furthermore, activated OT-I CD8+ T cells expressed no immunomodulatory Siglec receptors that potentially could recognize tumor sialic acids (Fig. S10) and treatment of B16-F10OVA cells with Ac5,3F3Neu5Ac had no effect on MHC I expression or other molecules involved in effector immune cell interactions (PD-L1, Rae1, Mult-1) (Fig. S11). Moreover, the concentration of Ac5,3F3Neu5Ac used in B16-F10 cells had no effect on OT-I CD8+ T cell sialylation (Fig. S11). Hence, the increase in OT-I CD8+ T cell killing was most likely not mediated by Siglec receptors on these cells and only to a minor extent by exposure of penultimate galactose.

Next we investigated if sialic acid blockade influenced the interaction of B16-F10OVA cells with OT-I CD8+ T cells. In tumor cell-T cell clustering assays, B16-F10OVA cells treated with Ac5,3F3Neu5Ac formed significantly more clusters (6 %) compared to control cells (3.9 %) (Fig. 5C, D). This effect was antigen-specific as no clear increase in cluster formation was observed in B16-F10WT cells. These data indicate that sialic acid blockade increases killing of B16-F10 cells by CD8+ T cells in an antigen-specific manner, possibly by facilitating cancer cell-T cell interactions.
Based on these results we tested if sialic acid blockade enhanced OT-I CD8+ T cell-mediated tumor killing in vivo. Purified, activated OT-I CD8+ T cells were adoptively transferred into mice bearing subcutaneous B16-F10^OVA tumors that were treated with PBS or Ac_5F_3Neu5Ac (Fig. 6A, Fig. S11). Sialic acid blockade significantly increased OT-I CD8+ T cell infiltration in the tumor mass (two fold) (Fig. 6B). OT-I CD8+ T cells isolated from tumors treated with Ac_5F_3Neu5Ac compared to control displayed a more cytotoxic phenotype with higher expression of the activation markers CD44 and CD69 and the degranulation marker CD107a (Fig. 6C-E). These results suggest that sialic acid blockade renders tumor cells vulnerable to cytotoxic CD8+ T cell killing. Accordingly, Ac_5F_3Neu5Ac injections enhanced rejection of established B16-F10^OVA tumors by adoptively transferred OT-I CD8+ T cells. Without sialic acid blockade therapy, adoptive OT-I CD8+ T cell transfer enhanced median survival time from 20 days to 28 days compared to mice without T cell transfer (Fig. 6F, G). In combination with sialic acid blockade, OT-I CD8+ T cell transfer strongly increased the median survival time of the mice and resulted in complete remission in the majority of the mice (> 60%) (Fig. 6F, G). Altogether, these data imply that sialic acids protect tumor cells from killing by CD8+ effector T cells and that sialic acid blockade therefore facilitates T cell-mediated tumor immunity.

Sialic acid blockade synergizes with CpG immunotherapy.

Based on our findings that sialic acid blockade facilitates CD8+ T cell-mediated tumor immunity we hypothesized that adjuvants able to induce CD8+ T cell responses could potentially strengthen the antitumor effect of sialic acid blockade. The Toll-like receptor 9 (TLR9) ligand CpG induces functional maturation of dendritic cells, the key antigen-presenting cells of the immune system capable of activating tumor-specific CD8+ T cells (36). Therefore, Ac_5F_3Neu5Ac treatment was combined with CpG adjuvant injections in the stringent B16-F10^WT model (Fig. 7A). CpG injections alone had no significant effect on tumor growth, but the combination of CpG with Ac_5F_3Neu5Ac significantly delayed tumor growth and increased the median survival time from 24 days (Ac_5F_3Neu5Ac alone) to 35 days (Fig. 7B, C). CpG has been shown to induce dendritic cell maturation in the tumor (36,37). Accordingly, we found that CpG injections enhanced maturation of CD11c+ dendritic cells in the tumor as shown by the upregulation of the costimulatory molecules CD80 and CD86 (Fig. 7D-F). Interestingly, Ac_5F_3Neu5Ac injections alone also increased CD80 and CD86 upregulation, although to lesser extent than CpG. Strikingly, combining both compounds strongly induced dendritic cell maturation in the tumor. This strong upregulation of CD80 and CD86 after combination treatment was also observed in dendritic cells in the tumor-draining lymph node, but not in the non-draining lymph nodes or the spleen (Fig. S12). In line with the enhanced dendritic cell maturation in the tumor and tumor-draining lymph node, high numbers of activated CD8+ CD107a+ cytotoxic T cells were detected in tumors after CpG and Ac_5F_3Neu5Ac combination treatment (Fig. 7G-
J. Fig. S13). These data indicate that sialic acid blockade together with the CD8+ T cell promoting activity of CpG induces highly potent anti-tumor immune responses and shows the potential potency of combinatorial strategies with sialic acid blockade.

Discussion
Aberrant sialic acid expression has been associated with multiple aspects of tumor growth and progression. Yet, pharmacological inhibition of sialic acid expression in tumors in vivo has not been feasible so far. The therapeutic potential of sialic acid inhibition in cancer therefore remains unexplored. In this study, we investigated the use of the fluorinated sialic acid mimetic Ac53F3axNeu5Ac to block sialic acid expression in established tumors and studied its effects on tumor growth, the tumor microenvironment and tumor immunity. First, we found that repeated intratumoral injections with the sialic acid mimetic were well tolerated and blocked sialic acid expression locally in tumor cells. Sialic acid blockade suppressed B16-F10WT melanoma and 9464D neuroblastoma growth and even had a curative effect in the immunogenic B16-F10OVA tumor model. Second, sialic acid blockade changed the immune suppressive tumor microenvironment into a more permissive one with higher numbers of activated effector immune cells and significantly less regulatory T cells and myeloid regulatory cells. Third, we found that anti-tumor effects of Ac53F3axNeu5Ac injections were largely mediated by CD8+ effector T cells. Sialic acid blockade rendered tumor cells highly vulnerable to killing by cytotoxic T cells in vitro and in vivo following adoptive transfer. These data demonstrate that sialic acid blockade enhances the efficacy of cellular immunotherapy. In addition, Ac53F3axNeu5Ac injections also potentiated the activation of dendritic cells with CpG in vivo. This combination therapy induced a robust CD8+ T cell response in mice resulting in strong growth suppression of poorly immunogenic B16-F10WT tumors.

Due to recent advances in carbohydrate chemistry, glycomimetics like Ac53F3axNeu5Ac that can be synthesized in large amounts and with high purity now become available for testing in preclinical models. In vitro, Ac53F3axNeu5Ac potently blocks sialic acid expression without affecting other glycosylation pathways and even high concentrations and long-term exposure of cancer cells and primary cells with Ac53F3axNeu5Ac showed no effect on cell viability or proliferation (24,26,38). Accordingly, repeated intratumoral injections with 10 mg/kg sialic acid mimetic were generally well-tolerated, although prolonged exposure to a higher dose resulted in nephrotoxicity. The intratumoral injections blocked sialic acid expression efficiently in tumor cells, but also a significant reduction in sialic acid expression was found on immune cells. No effect on systemic sialylation was observed after injections with 10 mg/kg Ac53F3axNeu5Ac. Probably, due to the intratumoral administration, a large part of the mimetic is retained in the tumor mass, thereby limiting systemic exposure. Furthermore, our data indicate that B16-F10 cells are more sensitive to sialic acid blockade with Ac53F3axNeu5Ac compared to the tumor-infiltrating immune
Sialic Acid Blockade Boosts Anti-Tumor Immunity

cells. Therefore, blocked sialic acid expression in tumor cells is most likely responsible for the observed effects in the tumor microenvironment, although diminished sialic acid expression on the local immune cells may contribute as well. In line with these findings, Wu and colleagues showed that tumor cells have a higher preference to take up sialic acids compared to other tissues (39,40). We found, however, also a difference in the sensitivity of B16-F10 cells and 9464D cells for Ac\textsubscript{5}3F\textsubscript{ax}Neu5Ac \textit{in vitro} and \textit{in vivo}. While 10 mg/kg sialic acid mimetics injections were sufficient to block sialic acid expression in the B16-F10 model, 20 mg/kg were needed to reduce sialic acid expression and tumor growth in the 9464D model. This difference in sensitivity between the two cell types can most likely be explained by differences in uptake of the inhibitor, levels of competing endogenous sialic acid concentrations or sialyltransferase expression levels.

Repeated injections with 10 mg/kg Ac\textsubscript{5}3F\textsubscript{ax}Neu5Ac had no effect on systemic sialylation and showed no adverse effects, but injections with a higher dose for several weeks caused a reduction in sialic acid expression in the kidney and resulted in kidney failure and edema formation. Most likely, Ac\textsubscript{5}3F\textsubscript{ax}Neu5Ac that is not retained in the tumor can accumulate in the kidney resulting in reduced sialic acid expression in the glomeruli and disturbed glomerular filtration. These results confirm recent findings by Macauley and colleagues who showed that intravenous administration of 300 mg/kg Ac\textsubscript{5}3F\textsubscript{ax}Neu5Ac leads to kidney failure and a study by Galeano and colleagues who showed that a genetic defect in sialic acid synthesis results in defective glomeruli and proteinuria (41,42). Except for the kidney phenotype we could not observe any other adverse effects following Ac\textsubscript{5}3F\textsubscript{ax}Neu5Ac or Ac\textsubscript{5}Neu5Ac injections. Even mice undergoing remission after treatment of the B16-F10OVA tumors with the sialic acid mimetic that were monitored for several months showed no pathological features. These data strongly suggest that the observed adverse effect on the kidneys is the result of blocked sialic acid expression in the glomeruli, but not related to direct toxic effects of Ac\textsubscript{5}3F\textsubscript{ax}Neu5Ac. Yet, for the safe use in humans this prototype drug needs to be improved for intratumoral injections or specifically targeted to the tumor cells. Our group has recently encapsulated Ac\textsubscript{5}3F\textsubscript{ax}Neu5Ac into tumor-targeting, biodegradable nanoparticles that allowed for the specific delivery of the sialic acid mimetic to melanoma cells in the blood stream (28).

The potent and specific action of Ac\textsubscript{5}3F\textsubscript{ax}Neu5Ac enabled us to block sialic acid expression in established tumors. We found that sialic acid blockade had a profound effect on the tumor microenvironment with a strong increase in NK cells, CD4+ and CD8+ T cells and reduced percentages of regulatory T cells as well as myeloid cells. As tumor sialic acids are involved in many processes, it is likely that the impact of sialic acid blockade on the tumor microenvironment is multifactorial (7,43). Our first mechanistic studies indicate that sialic acid blockade; i) induces pro-immune effects including enhanced dendritic cell maturation, and increased numbers and activation state of effector immune cells, especially CD8+ T cells; ii) decreases immune suppressive regulatory T cells and myeloid cells in the tumor; iii) facilitates tumor
cell killing by cytotoxic T cells and iv) potentiates other cancer immunotherapies. How sialic acid blockade results in these changes in the tumor microenvironment at the molecular level remains to be investigated. Possibly, injections with Ac$_5$F$_3$Neu5Ac lead to the loss of tumor sialic acids that can otherwise interact with immune modulatory Siglecs on immune cells. Recently, Beatson and colleagues showed that tumor-derived and heavily sialylated Mucin 1 (MUC1) reprograms myeloid cells in their favor via the interaction with Siglec-9 (16). They showed that MUC1-Siglec-9 interactions stimulated the secretion of tumor-promoting factors (IL-6, M-CSF) from myeloid cells. Moreover, MUC1 binding to Siglec-9 induced the differentiation of monocytes to tumor-associated macrophages (TAMs). These data strongly support the concept that sialic acid interactions with Siglecs contribute to the formation of the immunosuppressive tumor microenvironment (7,8,10,20-22). In line with these findings, we have observed reduced numbers of myeloid cells in the tumors treated with the glycomimetics. Whether this effect is related to the inhibition of sialic acid-Siglec interactions remains to be investigated. The finding that sialic acid blockade still resulted in a survival benefit in tumor-bearing mice depleted of myeloid cells, emphasizes however a role of the inhibitor beyond modulation of myeloid cells. Next to altered Siglec ligand expression, also galectin binding to now uncapped glycans could influence tumor cell growth and progression (44).

While sialic acid blockade can have a broad impact on cancer cells, our data strongly indicate that the increased cell death and growth inhibition, and even complete remission after Ac$_5$F$_3$Neu5Ac treatment results from enhanced killing of tumor cells by cytotoxic T cells. This hypothesis is supported by several observations. First, depletion of CD$^8^+$ T cells from mice before and after tumor inoculation largely abrogated the anti-tumor effect of Ac$_5$F$_3$Neu5Ac injections. Interestingly, also the depletion of NK cells prior to tumor inoculation abrogated the growth suppression mediated by the glycomimetic, whereas depletion of NK cells after tumor inoculation had no significant effect on Ac$_5$F$_3$Neu5Ac-mediated growth suppression. These data indicate that NK cells limit B16-F10 take at an early stage after inoculation, but are less relevant for tumor control at a later stage. Second, we detected an increased number of CD$^8^+$ T cells present in tumors with sialic acid blockade. These T cells also showed higher expression of the degranulation marker CD107a on their membrane. Third, desialylated B16-F10OVA cells showed an increased susceptibility to killing by OVA-specific CD$^8^+$ T cells compared to control cells. Moreover, adoptive transfer of activated CD$^8^+$ OT-I T cells further increased tumor rejection in mice treated with Ac$_5$F$_3$Neu5Ac. It has been suggested that hypersialylation of the Fas receptor protects tumor cells from Fas-mediated killing by cytotoxic T cells and that tumor sialic acids inhibit the release of cytotoxic granules from CD$^8^+$ T cells (45,46). Removal of negatively charged sialic acids could also influence the biophysical interaction between tumor cells and T cells for instance by affecting MHC I-T cell receptor interactions and subsequent signaling events (43,47). Accordingly, we observed increased
clustering between desialylated B16-F10 and CD8⁺ OT-I T cells compared to control tumor cells. These findings support the concept that sialic acid blockade advances tumor cell-T cell interactions. Further research is needed to unravel the mechanisms underlying the enhanced susceptibility of sialic acid-depleted tumor cells to killing by cytotoxic T cells. Enhanced killing by CD8⁺ T cells, however, is likely to account for the strong tumor rejection observed when combining sialic acid blockade with adoptive T cell transfer. These findings suggest that the outcome of cellular immunotherapy (e.g. CAR T cell therapy) could be improved with sialic acid blockade in the tumor cells. It will also be interesting to investigate whether sialic acid blockade is able to potentiate cancer immunotherapy with immune checkpoint-blocking antibodies like PD-1 and CTLA-4.

Next to promoting adoptive T cell transfer therapy, we found that sialic acid blockade combined with CpG injections strongly reduced the growth of poorly immunogenic B16-F10⁰WT cells. CpG injected at the tumor site has been shown to functionally mature dendritic cells and to induce robust anti-tumor CD8⁺ T cell responses (36,37,48). Indeed, we observed CpG-induced maturation of dendritic cells in the tumor microenvironment and interestingly, sialic acid blockade alone also resulted in increased maturation of dendritic cells. Combined CpG and Ac₅₃F₅Neu5Ac co-injections even further enhanced dendritic cell maturation and activated CD8⁺ T cells numbers in the tumor. Likewise, tumor sialic acids inhibit dendritic cell activation by interacting with immune inhibitory Siglecs, and therefore suppress the initiation of anti-tumor immune responses (7,49,50). Another explanation could be that Ac₅₃F₅Neu5Ac has a direct effect on dendritic cells. We recently showed that blocking sialic acid expression in human monocyte-derived dendritic cells with Ac₅₃F₅Neu5Ac lowered the threshold for activation by TLR ligands, most likely by preventing interactions with immune suppressive Siglecs (38). These findings thus imply that sialic acid blockade promotes anti-tumor immunity by facilitating dendritic cell maturation.

We conclude that sialic acid blockade in established tumors is feasible by intratumoral injections of the fluorinated glycomimetic Ac₅₃F₅Neu5Ac. Such injections significantly reduced melanoma as well as neuroblastoma growth and resulted even in remission in the immunogenic B16-F10⁰OVA model. Sialic acid blockade created an immune permissive tumor microenvironment and rendered tumor cells vulnerable to killing by CD8⁺ T cells. Sialic acid blockade therefore potentiated the outcome of cellular immunotherapy with CD8⁺ T cells and strongly favored the induction of anti-tumor immunity after dendritic cell activation with CpG. These data support the current concept that tumor sialic acids have an immune modulatory role and participate in tumor immune evasion. Sialic acid blocking glycomimetics such as Ac₅₃F₅Neu5Ac could therefore help to overcome the immune suppressive tumor microenvironment to permit strong tumor immune responses, alone or in combination with existing immunotherapies.
Acknowledgements

This work was supported by a Radboudumc grant awarded to C. Büll a VENI grant from the Netherlands Organization for Scientific Research (NWO) awarded to T.J. Boltje a Marie Skłodowska-Curie Innovative Training Network (ITN-ETN 641549) awarded to G.J. Adema and KWF grants awarded to G.J. Adema and M.H. den Brok (KWF20136-6111), G.J. Adema (KWF11266) and G.J. Adema, T.J. Boltje and C. Büll (KUN2015-7604).

References

Sialic Acid Blockade Boosts Anti-Tumor Immunity

27. Burkart MD, Vincent SP, Wong CH. An efficient synthesis of CMP-3-fluoroneuraminic acid. Chem Commun (Camb) 1999;1525-6

44. Zhuo Y, Bellis SL. Emerging role of alpha2,6-sialic acid as a negative regulator of galectin binding and function. J Biol Chem 2011;286:5935-41
47. Daniels MA, Levine L, Miller JD, Moser JM, Lukacher AE, Altman JD, et al. CD8 binding to MHC class I molecules is influenced by maturation and T cell glycosylation. Immunity 2001;15:1051-61
Figure Legends

Figure 1 Intratumoral Ac₅3F₉xNeu5Ac injections suppress tumor growth.
A) Schematic representation of the experiment. B, C) Effect of intratumoral (i.t.) injections with sialic acid mimetics on B16-F10WT tumor growth. B16-F10WT tumor cells were inoculated subcutaneously (s.c.) and treated with PBS, 10 mg/kg or 30 mg/kg Ac₅Neu5Ac or Ac₅3F₉xNeu5Ac. Average B16-F10WT tumor growth ± SEM in time (B) and corresponding Kaplan-Meier curves are shown (C) (n = 9-12). D) Kaplan-Meier curves showing survival of mice with 9464D neuroblastoma treated with 10 mg/kg or 20 mg/kg sialic acid mimetics (n = 12). E, F) B16-F10OVA bearing mice were injected i.t. with PBS or 10 mg/kg sialic acid mimetics (n = 9-12). Average tumor volumes ± SEM of the treatment groups in time are shown (E) as well as corresponding Kaplan-Meier curves (F). G) Rechallenge of mice with B16-F10OVA cells after Ac₅3F₉xNeu5Ac-induced remission of the initial primary tumor. Kaplan-Meier curves show tumor take in naïve age-matched control mice (n = 7) or rechallenged mice after Ac₅3F₉xNeu5Ac therapy (n = 9).

Figure 2 Ac₅3F₉xNeu5Ac blocks sialic acid expression and increases immune cell numbers in the tumor.
A-K) B16-F10WT tumors treated for two weeks with PBS, 10 mg/kg Ac₅Neu5Ac or Ac₅3F₉xNeu5Ac were isolated to determine sialylation and immune cell infiltration (n = 6). A-D) Sialylation of tumor cells (CD45.2⁻). Representative histograms show binding of the lectins MALII, SNA-I and PNA that recognize α2,3-linked sialic acids, α2,6-linked sialic acids or terminal β-galactose, respectively (A). Bar diagrams show average binding percentages ± SEM of MALII (B), SNA (C) and PNA (D) to CD45.2⁻ cells. E-G) Representative images show stainings of tumor sections with MALII (E), SNA-I (F) or PNA (G). H) Mean percentage ± SEM viable, tumor-infiltrating CD45.2⁺ immune cells. I-K) Sialylation of immune cells (CD45.2⁺) in the tumor. Bar diagrams show average binding percentage ± SEM of the lectins MALII (I), SNA-I (J) and PNA (K) to tumor-infiltrating immune cells.

Figure 3 Sialic acid blockade alters the immune cell composition of the tumor.
A-K) Flow cytometry analysis of B16-F10WT tumors isolated from mice treated with PBS or 10 mg/kg sialic acid mimetics for two weeks. A-D) Analysis of viable, CD45.2⁺ NK cells (CD3⁻ CD161⁺) (A), CD3⁺CD4⁺ T cells (B), CD3⁺CD8⁺ T cells (C), and CD4⁺CD25⁺FoxP3⁺ regulatory T cells (D). E-K) Dot plots showing mean percentages ± SEM of NK cells (E), CD4⁺ T cells (F), CD8⁺ T cells (G) regulatory T cells (H), CD45R⁻ B cells (I) CD11c⁺ dendritic cells (J) and CD11b⁺ myeloid cells (K) in the tumors of the different treatment groups (n = 6).
Figure 4 Depletion of CD8\(^+\) T cells abrogates the tumor suppressive effects of Ac\(_5\)F\(_{as}\)Neu5Ac.

A) Schematic representation of the experiment. B-D) Representative dot plots showing depletion of effector immune cell subsets. NK cells (B), CD4\(^+\) T cells (C), and CD8\(^+\) T cells (D) in blood three days following isotype (left) or depleting antibody (right) injection are shown. E) Kaplan-Meier curves show percentage survival of B16-F10\(^{WT}\) tumor-bearing mice treated with PBS or 10 mg/kg Ac\(_5\)F\(_{as}\)Neu5Ac in combination with isotype, CD4\(^+\) T cell or NK cell-depleting antibodies (n = 6). F) Kaplan-Meier curves showing percent survival of B16-F10\(^{WT}\) tumor-bearing mice depleted from CD8\(^+\) T cells and treated with sialic acid mimetic or PBS (n = 12).

Figure 5 Sialic acid blockade enhances tumor cell killing by cytotoxic T cells.

A, B) *In vitro* killing of B16-F10\(^{WT}\) and B16-10\(^{OVA}\) target cells with blocked sialic acid expression by OVA-specific effector OT-I CD8\(^+\) T cells. A) Representative images show lysis of B16-F10\(^{OVA}\) cells treated with PBS (upper row) or Ac\(_5\)F\(_{as}\)Neu5Ac (lower row). B) Graph shows average killing percentage ± SEM of sialic acid mimetic or sialidase-treated B16-F10\(^{WT}\) and B16-F10\(^{OVA}\) cells (n = 6). C, D) Effect of sialic acid blockade on B16-F10-OT-I CD8\(^+\) T cell clustering. PBSE-labeled B16-F10\(^{WT}\) or B16-F10\(^{OVA}\) cells pre-treated with control or Ac\(_5\)F\(_{as}\)Neu5Ac were incubated with CFSE-labeled OT-I CD8\(^+\) T cells. Representative plots (C) and dot plot (D) showing average number of clusters ± SEM from three independent experiments.

Figure 6 Intratumoral Ac\(_5\)F\(_{as}\)Neu5Ac injections promote adoptive OT-I CD8\(^+\) T cell transfer therapy.

A-G) Combined effect of Ac\(_5\)F\(_{as}\)Neu5Ac treatment and adoptive OT-I CD8\(^+\) T cell transfer on B16-F10\(^{OVA}\) tumor growth. Schematic representation of the experiment (A). Bar diagrams show average percentage ± SEM of tumor-infiltrating CD45.1\(^+\) OT-I CD8\(^+\) T cells two days after adoptive transfer (B) and their expression of activation markers CD44 (C), CD69 (D) and CD107a (E) as average mean fluorescence intensity ± SEM (n = 3). Graph showing average tumor volume ± SEM (F) and Kaplan-Meier curves showing percentage survival (G) of the different treatment groups (n = 12). The arrow indicates OT-I CD8\(^+\) T cell transfer.

Figure 7 CpG immune adjuvant increases Ac\(_5\)F\(_{as}\)Neu5Ac -mediated tumor growth suppression.

A) Schematic representation of the experiment. B, C) B16-F10\(^{WT}\) tumors were injected with PBS or Ac\(_5\)F\(_{as}\)Neu5Ac three times a week and on day 14 and 21 post-inoculation CpG was co-injected. Graphs show average tumor volume ± SEM (B) and survival (C) of the different treatment groups. D-F) Infiltration and maturation status of CD11c\(^+\) dendritic cells. Bar diagrams show mean percentage tumor-infiltrating dendritic cells ± SEM (D) and their expression of CD80 (E) and CD86 (F) as mean
fluorescence intensity ± SEM (n = 6). G-J) Number and activation status of CD8⁺ effector T cells in the tumor after treatment. Mean percentage ± SEM of CD8⁺ T cells is shown (G) as well as their expression of CD44 (H), CD69 (I) and CD107a (J) (n = 6).
Figure 3
Figure 4

A

Day 0 Day 8 Day 10 Day 20 Day 40 Day 50
S.c. injection B16-F10^{WT} cells I.p. injection mAbs Start i.t. injections 3x/week I.p. injection mAbs Stop i.t. injections End of experiment

B

NK1.1 CD3

Isotype αNK1.1 mAb

0.06 0.002

C

CD4 CD3

Isotype αCD4 mAb

0.22 0.003

D

CD8 CD3

Isotype αCD8 mAb

0.7 0.009

E

NK Cell and CD4⁺ T Cell Depletion

Survival [%]

Days Post Inoculation

F

CD8⁺ T Cell Depletion

Survival [%]

Days Post Inoculation

- Isotype + PBS
- Iso + Ac₅F_{ax}Neu5Ac
- αNK1.1 + PBS
- αNK1.1 + Ac₅F_{ax}Neu5Ac
- αCD4 + PBS
- αCD4 + Ac₅F_{ax}Neu5Ac
- αCD8 + PBS
- αCD8 + Ac₅F_{ax}Neu5Ac

Figure 5

A

Effector : Target

0 : 1 0.1 : 1 0.25 : 1 0.5 : 1 1 : 1

PBS

Ac3Fax, Neu5Ac

B

Killing [% of Control]

0.1 : 1 0.25 : 1 0.5 : 1 1 : 1

ControlWT

Ac5Neu5AcWT

Ac5Frax, Neu5AcWT

SialidaseWT

ControlOVA

Ac5Neu5AcOVA

Ac5Frax, Neu5AcOVA

SialidaseOVA

C

B16-F10WT

Control

Ac5Frax, Neu5Ac

B16-F10OVA

Control

Ac5Frax, Neu5Ac

D

Clustering

Percentage of Clusters

B16-F10WT

B16-F10OVA

Control

Ac5Frax, Neu5Ac

ns

*
Figure 6

A

Day 0
S.c. injection B16-F10OVA cells

Day 10
Start i.t. injections 3x/week

Day 15
L.p. injection 10x10^6 OT-I cells

Day 17
Assessment OT-I infiltration

Day 40
Stop i.t. injections

Day 70
End of experiment

B

OT-I CD8^+

% CD45.1^+ CD8^+ cells of Viable Cells

PBS
Ac5F_a x Neu5Ac

C

CD44

MF [AU]

PBS
Ac5F_a x Neu5Ac

D

CD69

MF [AU]

PBS
Ac5F_a x Neu5Ac

E

CD107a

MF [AU]

PBS
Ac5F_a x Neu5Ac

F

Growth

Tumor Volume [mm^3]

Days Post Inoculation

0 10 20 30

Days Post Inoculation

0 10 20 30

Days After Tumor Cell Injection

0 20 40 60 80

Survival [%]

Days After Tumor Cell Injection

0 20 40 60 80

Survival [%]

PBS
PBS + OT-I
Ac5F_a x Neu5Ac
Ac5F_a x Neu5Ac + OT-I

**

*
Figure 7

A

Day 0 Day 10 Day 14 Day 21 Day 40 Day 60
S.c. injection B16-F10WT cells Start i.t. injections 3x/week I.t. injection CpG I.t. injection CpG Stop i.t. injections End of experiment

B

Growth

Tumor Volume [mm³]

Days Post Inoculation

C

Survival

Survival [%]

Days Post Inoculation

D

CD11c⁺

% CD11c⁺ of CD45.2 Cells

E

CD80

MFI [AU]

F

CD86

MFI [AU]

G

CD8⁺

% CD8⁺ of CD45.2 Cells

H

CD44

MFI [AU]

I

CD69

MFI [AU]

J

CD107a

MFI [AU]
Sialic acid blockade suppresses tumor growth by enhancing T cell-mediated tumor immunity

Christian Büll, Thomas J Boltje, Natasja Balneger, et al.

Cancer Res Published OnlineFirst April 27, 2018.

Updated version Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-17-3376

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/early/2018/04/27/0008-5472.CAN-17-3376. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.