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A B S T R A C T

Mechanically induced signaling pathways are important drivers of tumor progression. However, if and how
mechanical signals affect metastasis or therapy response remains poorly understood. We previously found that
the channel-kinase TRPM7, a regulator of cellular tension implicated in mechano-sensory processes, is required
for breast cancer metastasis in vitro and in vivo. Here, we show that TRPM7 contributes to maintaining a me-
senchymal phenotype in breast cancer cells by tensional regulation of the EMT transcription factor SOX4. The
functional consequences of SOX4 knockdown closely mirror those produced by TRPM7 knockdown. By traction
force measurements, we demonstrate that TRPM7 reduces cytoskeletal tension through inhibition of myosin II
activity. Moreover, we show that SOX4 expression and downstream mesenchymal markers are inversely regu-
lated by cytoskeletal tension and matrix rigidity. Overall, our results identify SOX4 as a transcription factor that
is uniquely sensitive to cellular tension and indicate that TRPM7 may contribute to breast cancer progression by
tensional regulation of SOX4.

1. Introduction

The perception of mechanical cues from the microenvironment by
cell adhesion sites is essential for morphogenesis during embryonic
development, and for maintenance of tissue integrity and function in
the adult [1–9]. Typically, mechanical stress triggers an immediate
internal feedback loop that evokes cytoskeletal contraction and en-
forcement of adhesions sites to restore tensional homeostasis [10–13].
As a more sustained effect, mechano-signaling regulates gene expres-
sion programs that steer proliferation and differentiation [14–16].
Consequently, perturbed mechano-signaling contributes to a variety of
pathologies, including tissue fibrosis and cancer [17,18].

In order to metastasize or escape therapy, tumor cells can re-acquire
progenitor-like features. Soluble factors present in the tumor micro-
environment such as TGF-β and Wnt proteins, as well as mechanical

crosstalk between tumor cells and the surrounding tissue, can bring
about this progenitor-like state [19]. For instance, mechanically-regu-
lated signaling pathways such as those mediated by YAP/TAZ or
myocardin-related transcription factor/serum response factor (MRTF/
SRF) are essential in the control of stem cell development but, when
spuriously activated by increased cellular tension, contribute to tumor
progression [17,20,21]. More recently, changes in cellular tension were
shown to affect epithelial-mesenchymal transition (EMT), a develop-
mental transcription program co-opted by tumor cells to acquire mi-
gratory properties, survive outside of their niche, and resist therapy
[22–25]. However, many aspects of these mechanically-regulated sig-
naling pathways remain poorly understood.

Transient receptor potential (TRP) cation channels are considered
important transducers of mechanical signals during embryonic devel-
opment and in the maintenance of tissue homeostasis [26]. Localized
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within mechano-sensory structures such as cell adhesions, channel
opening is induced by membrane stretch and/or cytoskeletal tension
[27]. The resulting changes in local ion concentrations not only trigger
immediate cytoskeletal responses, but also bring about more sustained
effects by regulating gene expression [26–29].

TRPM7, a calcium-permeable TRP channel with a functional C-
terminal kinase domain that localizes to cell adhesion sites, is required
during embryogenesis and maintains stem cell-like features of pro-
genitor cells [30–34]. We previously demonstrated that expression of
TRPM7 is required for breast tumor cell migration in vitro and metas-
tasis formation in mouse xenografts [35]. In addition, high TRPM7
mRNA expression at time of diagnosis predicts metastasis formation
and poor outcome in breast cancer patients [35]. The association be-
tween high TRPM7 expression and cancer progression has been con-
firmed in other tumor types, including neuroblastoma, pancreatic, na-
sopharyngeal and prostate cancer [36–39]. In previous studies, we and
others demonstrated that TRPM7 activity affects cell adhesion and
migration by reducing myosin II-based cellular tension [27,40–42]. As
TRPM7 was shown to affect cellular differentiation [31,32,39], we
postulate that TRPM7-induced changes in cytoskeletal tension have
long-term effects on the progenitor features of tumor cells by (re)acti-
vating developmental gene expression programs.

Here, we report that TRPM7 contributes to the mesenchymal fea-
tures of breast cancer cell lines by regulating expression of the tran-
scription factor SOX4, an important driver of EMT in breast cancer cells
that is implicated in breast cancer progression [43,44]. We further
demonstrate that expression of SOX4 is inversely regulated by acto-
myosin-based contraction and matrix rigidity. Consequently, our ob-
servations suggest a model in which limiting the contractile response to
tissue stiffness activates a SOX4-mediated gene expression program. As
SOX4 activation has been linked to metastatic progression [43,44],
TRPM7-mediated mechanical regulation of this transcription factor
may contribute to the cellular plasticity observed during breast cancer
progression.

2. Materials and methods

2.1. Antibodies and reagents

Reagents: Waixenicin A was a kind gift from David Horgen (Hawaii
Pacific University, Kaneohe, U.S.A.). From Sigma-Aldrich: LPA
(#L7260), Y-27632 (#Y0503), blebbistatin (#B0560), 4-OHT
(#H6278).

Antibodies: From Cell Signaling Technology: Claudin-1 (#4933, WB
1:1000), E-cadherin (#3195, WB 1:2000), ZO-1 (#8193, WB 1:2000; IF
1:200). From BD Biosciences: fibronectin (#610077, WB 1:5000, IF
1:500), vimentin (#550513, WB 1:5000). From Sigma-Aldrich: γ-tu-
bulin (#T6557, WB 1:10000), vinculin (#V9131, IF 1:400). From
Diagenode: SOX4 (#C15310129, WB 1:4000). From Life Technologies –
Molecular Probes: phalloidin-Alexa-568 (#A12380, IF 1:200).

2.2. Cell culture

MDA-MB-231 and Hs 578T (American Type Culture Collection)
were cultured in Dulbecco's Modified Eagle Medium+Glutamax (Life
Technologies, Gibco, #31966), supplemented with 10% heat-in-
activated fetal bovine serum and 1% pen/strep (Life Technologies,
Invitrogen, #15140). Cells were cultured in a humidified incubator at
37 °C and 5% CO2.

2.3. Generation of cell lines

To generate knockdown cell lines control, TRPM7 [35] or SOX4
shRNAs (obtained from Dr. R. Beijersbergen at The Netherlands Cancer
Institute - Screening and Robotics Facility) (see Supplementary Table 2
for sequences) were transduced into MDA-MB-231 or Hs 578T cells

using the pLKO lentiviral expression vector according to manufacturer's
protocol (Sigma-Aldrich). Cells were selected using 1 μg/ml puromycin.
To generate a stable constitutively active RhoA overexpressing cell line,
MDA-231 shControl cells were transduced with pLZRS-mycV14RhoA or
an empty vector control. Cells were selected with 2mg/ml G418. Stable
overexpression of SOX4 in shControl and shTRPM7 cells was obtained
by expression of the pBABE-blast ER and pBABE-blast ER:SOX4 con-
structs generated in the lab of Prof. P. J. Coffer (UMC Utrecht, Utrecht,
The Netherlands) [51]. These constructs encode the hormone-binding
domain of the human estrogen receptor (ER) or a fusion protein of
mouse Sox4 with the hormone-binding domain of the human estrogen
receptor, respectively. Cells were selected with 20 μg/ml blasticidin.
For each experiment, cells were stimulated with 100 nM 4-hydroxy
tamoxifen (4-OHT) for 24 h.

2.4. Immunofluorescence

For staining of cell-cell contacts and fibronectin, cells were cultured
o/n on glass coverslips. For quantification of cell-matrix adhesion size,
cells were cultured on collagen-coated polyacrylamide gels. Cells were
subsequently fixed in 4% paraformaldehyde and permeabilized in 0.1%
Triton-X 100. Non-specific binding was blocked with 3% BSA. Cells
were incubated with ZO-1, fibronectin-1 or vinculin antibodies diluted
in 3% BSA. Cells were then incubated with phalloidin-Alexa 568 and
anti-rabbit Alexa 647 conjugated antibodies diluted in 3% BSA. Images
(2048× 2048 resolution, with 6× line averaging) were taken on a
Leica TCS SP5 (Leica Microsystems) equipped with a 63× water-im-
mersion objective and LAS-AF acquisition software (Leica
Microsystems). Images were processed for publication using ImageJ
1.48.

2.5. Quantitative real-time PCR

mRNA was isolated using an RNeasy minikit (Qiagen, #74106) and
DNAse-treated on column (Qiagen, #79254). cDNA was synthesized
using an iScript cDNA synthesis kit according to manufacturer's pro-
tocol (Bio-Rad, #170-8891). q-PCRs were performed using Power SYBR
green mix (Life Technologies, Applied Biosystems, #4368708) on a
CFX96 Touch™ Real-Time System (Bio-Rad) using PCR conditions as
supplied by Applied Biosystems. Gene expression levels were normal-
ized against the GAPDH housekeeping gene and calculated according to
the 2−ΔΔCt method. For q-PCR primer sequences, see Supplementary
Table 2.

2.6. Western blotting

Cells were lysed in RIPA lysis buffer (150mM NaCl, 1% NP40, 5mM
EDTA, 50mM Tris pH 8.0, 0.5% deoxycholate, 0.1% SDS) supple-
mented with complete protease inhibitor cocktail (Roche). After clar-
ification, lysates were diluted in Laemmli's buffer (0.25M Tris pH 6.8,
10% glycerol, 2% SDS and 0.02% bromophenol blue), supplemented
with 10% β-mercaptoethanol and incubated at 95 °C for 5min. Proteins
were separated by SDS-PAGE and subsequently blotted onto PVDF
membranes. Non-specific binding was blocked with 5% BSA or 4% skim
milk (for SOX4 blots) diluted in TBS+0.1% Tween-20 (TBST). Blots
were then incubated with primary antibodies, followed by HRP-con-
jugated secondary antibodies, diluted in TBST+5% BSA or 0.8% skim
milk (for SOX4 blots). Proteins were detected using ECL detection agent
(Amersham GE Healthcare #RPN2232) and imaged on a Fluorchem E
Digital Darkroom (Proteinsimple).

2.7. Microarray analysis

MDA-231 shCntrl, shTRPM7 and shSOX4#1 were subjected to mi-
croarray analysis (GEO accession number: GSE63958), which was
performed at Genomescan B.V. (Leiden, The Netherlands). RNA
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concentrations were measured using the Nanodrop ND-1000 spectro-
photometer (Nanodrop Technologies). RNA quality and integrity were
determined using Lab-on-Chip analysis on the Agilent 2100 Bioanalyzer
(Agilent Technologies). Biotinylated cRNA was prepared using the
Illumina TotalPrep RNA Amplification Kit (Ambion Inc.) according to
manufacturer's specifications with an input of 200 ng total RNA. Per
sample, 750 ng of the obtained biotinylated cRNA samples was hy-
bridized onto the Illumina HumanHT-12 v4 (Illumina Inc.).
Hybridization and washing were performed according to the Illumina
Manual ‘Direct Hybridization Assay Guide’. Scanning was performed on
the Illumina iScan (Illumina Inc.). Image analysis and extraction of raw
expression data was performed with Illumina GenomeStudio v2011.1
Gene Expression software. Arrays were normalized in Arraystar (v.
4.03), using Robust-Multi-Array normalization. For visualization of
selected EMT/MET inducers in a heatmap (Multi Experiment Viewer v
4.8.1), normalized linear intensity values were log10 transformed.
Statistical significance of overlapping up- and downregulated in MDA-
231 shTRPM7 and shSOX4#1 was determined by means of a hy-
pergeometric distribution test. To this end, normalized linear intensity
values were log2 transformed. Log2 values< 2.5 were considered
background and a fold change of ≥|2| was used as cut-off. The amount
of background corrected gene products (n= 22,278) was used as total
gene set for the hypergeometric distribution test.

2.8. Preparation of polyacrylamide gels

Polyacrylamide gels were prepared as previously described [10].
Briefly, glass-bottom dishes (MatTek) were activated with a solution of
3-(trimethoxysilyl)propyl methacrylate (Sigma-Aldrich), acetic acid
and ethanol (1:1:14), washed with ethanol and air-dried for 10min. To
generate gels of different stiffness, different concentrations of acryla-
mide and bis-acrylamide were mixed in 10mM HEPES supplemented
with 0.5% ammonium persulfate, 0.05% tetramethylethylenediamine
(Sigma) and 0.4% fluorescent red carboxylated nanobeads (Invitrogen)
(see Supplementary Table 3). 10 μl of this solution was then placed on
the center of the glass-bottom dishes and covered with 12-mm-diameter
glass coverslips. After gel polymerization, top coverslips were removed
and gels were incubated with 100 μg/ml Collagen (Nalgene) overnight
at 4 °C. After washing gels with PBS, cells were then trypsinized and
plated on gels. For traction force measurements and immunostaining,
cells were cultured for 2–4 h. For mRNA expression analysis, cells were
cultured for 72 h.

2.9. Traction force microscopy

Traction force measurements were performed as described pre-
viously [10]. Cells seeded on gels were placed on an inverted micro-
scope (Nikon Eclipse Ti). Phase contrast images of single cells and
fluorescence images of the embedded nanobeads were obtained with a
40× objective (NA 0.6). At the end of the measurements, cells were
trypsinized and an image of bead positions in the relaxed state of the gel
was acquired. By comparing bead positions with and without cells, a
map of gel deformations caused by cells was first obtained using custom
particle imaging velocimetry software [78]. Then, after assuming that
gel displacements were caused by forces exerted by cells in the cell–gel
contact area, the corresponding map of cell forces was calculated using
a previously described Fourier transform algorithm [56,79]. The
average forces per unit area exerted by each cell were then calculated.
To calculate the minimum detectable force levels for each rigidity, we
followed the same procedure in cell-free gel areas, and calculated the
resulting forces. Phase contrast images were also used to calculate
average cell spreading areas as a function of substrate stiffness.

2.10. Statistical analysis

Statistics on q-PCR data were performed using a one-sample t-test,

comparing fold changes in expression to control levels that were set to 1
in each independent experiment. Statistics on the effect of substrate
stiffness on traction force generation, focal adhesion assembly and gene
expression were performed using a two-way ANOVA. Data are re-
presented as mean ± SEM. p-Values < 0.05 were considered statisti-
cally significant.

3. Results

3.1. TRPM7 maintains the mesenchymal phenotype of breast cancer cells

We previously showed that loss of TRPM7 expression impairs the
metastatic potential of highly invasive MDA-MB-231 (MDA-231) breast
cancer cells [35]. Knockdown of TRPM7 in MDA-231 cells using two
independent shRNAs targeting TRPM7 resulted in a loss of the typical
spindle-shaped morphology of these mesenchymal-type cells (Fig. 1A &
[35]). TRPM7 has been linked to the regulation of cellular differ-
entiation and embryonic development [31,32,34,45]. Moreover,
TRPM7 was shown to regulate EMT in bladder cancer cells [46] and
expression of the EMT marker vimentin in MDA-MB-468 breast cancer
cells [47]. We therefore speculated that the effect of TRPM7 knock-
down on the morphology of MDA-231 cells could represent a (partial)
mesenchymal to epithelial transition (MET). Indeed, MDA-231
shTRPM7 cells showed increased formation of cell-cell adhesions, as
observed by translocation of the tight junction protein ZO-1 to sites of
cell-cell contacts (Fig. 1B), while the expression of ZO-1 was not af-
fected (Fig. 1D). In addition, TRPM7 knockdown markedly increased
the expression of the epithelial markers and cell-cell adhesion proteins
E-cadherin (CDH1) and claudin-1 (CLDN1), both at the mRNA and
protein level (Fig. 1C–D), whereas expression of the mesenchymal
markers fibronectin (FN1) and vimentin (VIM) decreased (Fig. 1C–D &
Supplementary Fig. 1A). N-cadherin (CDH2), which is known to re-
spond in an inverse manner to E-cadherin expression, did not sig-
nificantly decrease upon TRPM7 knockdown (data not shown). These
observations were largely reproduced by incubating cells with the
TRPM7-specific inhibitor Waixenicin A (Waix A) [48], which led to an
increase in CLDN1 expression and a decrease in FN1 expression (Sup-
plementary Fig. 1B). Unexpectedly however, CDH1 expression de-
creased in response to Waix A treatment (Supplementary Fig. 1B).
TRPM7 mRNA remained unaffected by Waix A treatment expression
(Supplementary Fig. 1B), consistent with the notion that Waix A affects
TRPM7 activity rather than gene expression. Importantly, TRPM7
knockdown as well as inhibition of TRPM7 with Waix A induced a si-
milar epithelial-like transition in the mesenchymal-type breast cancer
cell line Hs 578T (Supplementary Fig. 2A–E). Taken together, these
results indicate that TRPM7 is required for the maintenance of a me-
senchymal phenotype of breast cancer cells, although loss of TRPM7
expression or activity is not sufficient to acquire a complete epithelial-
like state.

3.2. TRPM7 regulates expression of the EMT transcription factor SOX4

To further investigate how TRPM7 maintains mesenchymal prop-
erties of breast cancer cells, we performed microarray analysis com-
paring MDA-231 shControl and shTRPM7 cells focusing on a set of
transcription factors implicated in EMT or MET (EMT-TF) [49,50].
While inducers of MET remained largely unaffected, we found that the
transcription factor SOX4 was most significantly downregulated in re-
sponse to TRPM7 knockdown (~6×) (Fig. 2A). SOX4 was previously
identified as an important determinant of EMT, affecting tumor cell
migration and metastasis in mouse experimental metastasis models
[43]. Moreover, and similar to TRPM7 [35], high SOX4 expression was
found to correlate with metastatic progression in breast cancer patients
[43]. Reduced expression of SOX4 in response to TRPM7 shRNA-
mediated knockdown was confirmed at both mRNA and protein level in
MDA-231 and Hs 578T cells (Fig. 2B–C & Supplementary Fig. 3A–B). To
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Fig. 1. TRPM7 is necessary for maintenance of the mesenchymal phenotype of MDA-231 cells. (A) Phase-contrast images showing morphology of MDA-231
shControl, shTRPM7 and shTRPM7#2. Scale bar= 50 μM. (B) Representative immunofluorescence staining of F-actin (cytoskeletal protein) and ZO-1 (tight junction
protein). Red arrows in ZO-1 pictures indicate ZO-1 localization to cell-cell adhesions. Right panels are a zoom in of middle panels. Scale bars= 20 μM for left and
middle panels, 5 μM for right panels. (C) Relative mRNA expression of indicated EMT markers, depicted as fold changes in expression over MDA-231 shControl as
determined by q-PCR. Data are mean ± SEM of n=3 experiments that were performed in duplicate. Statistical significance was determined by a one-sample t-test.
*= p < 0.05, **= p < 0.01, ***= p < 0.001. (D) Protein expression of indicated EMT markers as determined by Western blotting. γ-Tubulin was used as loading
control. Representative examples of n= 3 experiments.
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further substantiate the results from our gene expression profiling, we
determined the expression of the well-established EMT-TFs SNAI1,
SNAI2, ZEB1 and ZEB2 by q-PCR (TWIST1 expression was not detected
in MDA-231 cells) and observed that SNAI2 expression was only weakly
(< 2-fold) downregulated by TRPM7 knockdown in MDA-231 cells
(Fig. 2B), but not in Hs 578T cells (Supplementary Fig. 3A). Similarly,
inhibition of TRPM7 by treating MDA-231 and Hs 578T cells with Waix
A induced a decrease in SOX4 expression within hours after incubation
with Waix A, while the expression of SNAI2 remained largely un-
affected (Fig. 2D & Supplementary Fig. 3C). Together, these results
indicate that SOX4 is a common downstream transcriptional target of
TRPM7 signaling in mesenchymal-type breast cancer cell lines. In fur-
ther support of these observations, we found that TRPM7 and SOX4
mRNA expression are positively correlated in primary breast tumor
samples, as determined in four independent, publicly available breast
cancer patient cohorts (R2: Genomics Analysis and Visualization Plat-
form, http://r2.amc.nl) (Fig. 2E).

3.3. SOX4 maintains the mesenchymal phenotype of breast cancer cells

To test whether reduced SOX4 expression induces a similar MET-
like process in MDA-231 cells, we performed shRNA-mediated knock-
down of SOX4 using two independent SOX4 targeting shRNAs
(Supplementary Fig. 4A–B). Similar to TRPM7 knockdown cells, MDA-
231 shSOX4 cells adopted an epithelial cell-like morphology (Fig. 3A)
accompanied by a translocation of ZO-1 to sites of cell-cell contacts
(Supplementary Fig. 4C). In addition, the expression of the cell-cell
adhesion proteins E-cadherin and claudin-1 was strongly induced in
MDA-231 shSOX4 cells, both at the mRNA and protein level
(Fig. 3B–C). However, although N-cadherin was previously reported to
be induced upon SOX4-mediated EMT [43], we did not observe a sig-
nificant effect on N-cadherin expression levels upon SOX4 knockdown
(data not shown). The second hairpin (shSOX4#2) produced a similar
but less pronounced increase in E-cadherin and claudin-1, which most
likely reflects a less efficient knockdown of SOX4 in these cells
(Fig. 3B–C & Supplementary Fig. 4A–B). Fibronectin expression de-
creased to a similar extent in both SOX4 shRNA MDA-231 cell lines
(Fig. 3B–C). No decrease in vimentin expression was observed
(Fig. 3B–C). Expression of other EMT-TFs remained unaffected by
knockdown of SOX4 in MDA-231 cells, with the exception of ZEB2,
which increased in MDA-231 shSOX4 cells (< 2-fold, Supplementary
Fig. 4D).

To determine to what extent SOX4 mediates the effects on gene
expression that we observed in response to TRPM7 knockdown, we
performed microarray analysis on MDA-231 shControl and shSOX4
cells, and compared the up- and downregulated genes between MDA-
231 shTRPM7 and shSOX4 cells. Using as cut-off a 2-fold change, we
found a highly significant overlap in up- and downregulated genes (135
upregulated genes, p= 1.70e−97 and 84 downregulated genes,
p= 5.01e−40) (Fig. 3D & Supplementary Table 1). Additionally,
rescue of SOX4 activity, by expression of a tamoxifen-inducible
ER:SOX4 construct [51] in MDA-231 shTRPM7 cells, rescued mRNA
and protein expression levels of E-cadherin, fibronectin and claudin-1
(Supplementary Fig. 5). Together, these data identify SOX4 as a key
determinant of the TRPM7-induced gene expression signature. More-
over, our results indicate that activation of a TRPM7-SOX4 axis acts to
preserve a mesenchymal-like state in breast cancer cells.

3.4. SOX4 expression is inversely correlated with cellular tension

We have shown previously that the TRPM7 kinase domain phos-
phorylates the myosin II heavy chain to inhibit myosin II-based cytos-
keletal contraction [35,40]. Following the idea that cell mechanics
control developmental gene expression programs [15,52–55], we hy-
pothesized that TRPM7 may regulate SOX4 expression by modulating
cellular tension.

Cellular tension is generated by contraction of the actomyosin cy-
toskeleton which is linked to the underlying substrate by cell-substrate
adhesions. Typically, increased matrix stiffness activates an internal
feedback loop that enforces sites of cell adhesion, promoting cell
spreading and allowing active myosin to build up tension [10,12]. We
applied traction force microscopy to quantitatively assess if and how
TRPM7-mediated effects on myosin II activity modulate cellular ten-
sion. This technique is based on measurements of cell-induced substrate
deformation by imaging displacements of fluorescent nanobeads em-
bedded in the substrate [10,56]. MDA-231 shControl, shTRPM7 and
shTRPM7#2 cells were cultured as single cells on collagen-coated
substrates of different rigidities, covering physiologically relevant
stiffness regimes (1–30 kPa) [17]. We observed that shControl cells
generated more tension and elongated more efficiently when substrate
stiffness increased (Fig. 4A–B). Supporting the notion that reduced
TRPM7 expression increases cellular tension, MDA-231 shTRPM7 cells
(n > 30 cells per condition) and shTRPM7#2 cells (n > 15 cells per
condition) generated substantially more traction forces relative to
shControl cells (n > 30 cells per condition) using substrates stiffer than
1 kPa (Fig. 4B; p < 0,0001, two-way ANOVA), without affecting cell
surface area (Fig. 4C). Consistently, we observed that shTRPM7 cells
formed larger focal adhesions on substrates stiffer than 1 kPa, when
compared to shControl cells (Fig. 4D–E; p < 0,0001, two-way ANOVA,
n=10 cells per condition). Since focal adhesion reinforcement is
driven by cellular tension, these results support the view that TRPM7
knockdown increases intracellular tension, independent of substrate
stiffness.

To assess whether increased cytoskeletal tension is sufficient to re-
duce expression of SOX4, we stably transduced MDA-231 shControl
cells with constitutive active RhoA (V14RhoA, Supplementary Fig. 6A),
which activates actomyosin-based contraction by stimulation of the
myosin light chain kinase [57]. Similar to TRPM7 knockdown cells,
traction force measurements revealed that these cells generate more
tension when compared to empty vector-transduced cells (Fig. 5A;
p < 0,0001, two-way ANOVA, n > 10 cells per condition). Con-
sistently, V14RhoA significantly reduced expression levels of SOX4 and
fibronectin, and increased expression of claudin-1 (Fig. 5B–D). We also
treated shControl cells with lysophosphatidic acid (LPA), a potent ac-
tivator of RhoA [58], which similarly reduced the protein expression of
SOX4 and increased expression of claudin-1 (Supplementary Fig. 6B–C).
Since TRPM7 expression was not significantly affected by either
V14RhoA or LPA, we can rule out the possibility that V14RhoA and LPA
act by expression regulation of TRPM7. In contrast to TRPM7 and SOX4
knockdown (Figs. 1C & 3B), but similar to what we observed following
Waix A treatment (Supplementary Fig. 1A), E-cadherin expression un-
expectedly decreased in MDA-231 V14RhoA cells and after 8 h treat-
ment with LPA (Fig. 5B & Supplementary Fig. 6B). At the same time,
expression of the EMT-TF SNAI2 remained largely unaffected by in-
creased cytoskeletal tension (Fig. 5B & Supplementary Fig. 6B). To-
gether, these results demonstrate that increased cytoskeletal tension
reduces SOX4 expression and downstream mesenchymal features,
without bringing about a full MET.

We next determined to what extent reducing cytoskeletal tension
can rescue SOX4 expression in MDA-231 shTRPM7 cells. To this end,
we stimulated MDA-231 shTRPM7 cells with the myosin II ATPase in-
hibitor blebbistatin. Traction force measurements indicated that treat-
ment of MDA-231 shTRPM7 cells with 10 μM blebbistatin reduced
traction force generation to the level of shControl cells (p < 0,0001,
two-way ANOVA, n > 10 cells per condition), whereas treatment with
25 μM blebbistatin almost completely blocked force generation on pli-
able substrates (Fig. 5E; p < 0,0001, two-way ANOVA, n > 10 cells
per condition). This release of cellular tension was associated with a
concordant increase in SOX4 and fibronectin expression levels, and
reduced expression of claudin-1, whereas E-cadherin, SNAI2 and
TRPM7 expression remained largely unaffected, indicating that TRPM7
controls SOX4 expression via the regulation of cytoskeletal tension
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Fig. 2. TRPM7 knockdown reduces expression of the EMT transcription factor SOX4. (A) Microarray results depicted in a heatmap containing log10 transformed
intensity values of known EMT and MET inducers in MDA-231 shControl and shTRPM7 cells. (B) Relative mRNA expression of well-established EMT-TFs, depicted as
fold changes in expression over MDA-231 shControl. (C) Protein expression of SOX4 after stable knockdown of TRPM7, determined by Western blotting.
Representative example of n=3 experiments. (D) Effect of Waix A (3.3 μM) stimulation on SOX4 and SNAI2 mRNA expression in MDA-231 cells at different
timepoints. Waix A activity is reduced in the presence of serum [48]. Therefore, stimulation was performed in serum-depleted medium. (B) and (D) mRNA expression
levels were determined by q-PCR. Data are mean ± SEM of n=3 experiments that were performed in duplicate. Statistical significance was determined by a one-
sample t-test. *= p < 0.05, **= p < 0.01. (E) Correlation coefficients between TRPM7 and SOX4 in four breast cancer patient datasets. Patient dataset analysis
was performed using R2 microarray analysis tools (http://r2.amc.nl). Pearsons' correlations tests were performed to test for statistical significance of correlation.
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(Fig. 5F–H). Similar results were obtained when shTRPM7 cells were
treated with the Rho-kinase inhibitor Y27632 (Supplementary
Fig. 6D–E). Note that MDA-231 shControl cells were similarly re-
sponsive to Y27632 treatment (Supplementary Fig. 6D), in line with the
notion that expression of these genes is primarily controlled by cytos-
keletal tension rather than by TRPM7 expression levels. Importantly,
inhibition of cytoskeletal tension induced a comparable mesenchymal
phenotype in Hs 578T cells (Supplementary Fig. 6F).

Since increased substrate stiffness allows the build-up of tension by
active myosin, we determined how cellular tension controls the ex-
pression of SOX4, FN1 and CLDN1 by seeding cells onto collagen-coated
substrates with different rigidities. Consistent with the previous ex-
periments, SOX4 and FN1 expression in MDA-231 shControl and
shTRPM7 cells gradually decreased on stiffer matrices (Fig. 5I,
p= 0,012 and p=0,026 for SOX4 and FN1 respectively, two-way
ANOVA, n= 5 independent experiments). Moreover, CLDN1 expression

Fig. 3. SOX4 knockdown MDA-231 phenotypically mimic TRPM7 knockdown MDA-231. (A) Phase-contrast images showing morphology of MDA shControl, shSOX4
and shSOX4#2. Scale bar= 50 μM. (B) Relative mRNA expression of EMT markers, depicted as fold changes in expression over MDA-231 shControl as determined by
q-PCR. Data are mean ± SEM of n= 3 experiments that were performed in duplicate. Statistical significance was determined by a one-sample t-test. *= p < 0.05,
**= p < 0.01. (C) Protein expression of EMT markers as determined by Western blotting. γ-Tubulin was used as loading control. Representative examples of n=3
experiments. (D) Overlapping up- and downregulated genes in shSOX4#1 (total up: 457; total down: 445) and shT7#1 (total up: 661; total down: 727) microarray. A
fold-change ≥|2| was used as cut-off. p-Values were determined by means of a hypergeometric distribution test.
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strongly increased on stiff substrates (Fig. 5I, p < 0,0001, two-way
ANOVA, n=5 independent experiments). Taken together, our findings
indicate that TRPM7 controls mesenchymal features of breast tumor
cells by tensional regulation of SOX4.

4. Discussion

Cancer cells acquire progenitor-like features by re-activating de-
velopmental transcription programs such as EMT that promote metas-
tasis and therapy resistance. There is mounting evidence that mechano-
signaling affects such transcriptional programs. However, the molecular
mechanisms involved remain incompletely understood [15,54,55]. We
and others previously established that TRPM7, a cation channel with
kinase activity and implicated in mechano-sensory processes, controls

embryogenesis and drives tumor progression by regulating cytoskeletal
dynamics [30–35,39–41,45]. Here, we show that TRPM7-induced cy-
toskeletal relaxation drives the mesenchymal features of breast tumor
cells by promoting expression of the transcription factor SOX4, a re-
cently identified regulator of EMT in breast cancer cells [43,44,59].

Consistent with promoting progenitor-like features in breast cancer
cells, previous studies revealed that TRPM7 contributes to early em-
bryonic development and organogenesis while it has been implicated in
the maintenance of tissue homeostasis in the adult [31,32]. Clapham
and colleagues reported an essential role for TRPM7 in neural crest
development [32]. Neural crest cells arise when epithelial-like cells
from the neuro-ectoderm undergo EMT to acquire migratory properties,
allowing them to populate distinct parts of the embryo [60]. Tissue
specific knockout experiments in mice revealed that TRPM7 expression

Fig. 4. TRPM7 knockdown increases cytoskeletal tension in MDA-231. (A) Color maps showing the traction forces applied to collagen-coated polyacrylamide gels of
increasing rigidity by representative shControl and shTRPM7 MDA-231 cells. (B) Average traction forces exerted by single cells cultured on collagen coated poly-
acrylamide gels of increasing rigidity. In grey, background noise levels show the minimum detectable force for each rigidity value. (C) Average area of shControl and
shTRPM7 MDA-231 cells seeded on collagen-coated polyacrylamide gels of increasing rigidity. (D) Representative examples of cell-substrate adhesions, revealed by
anti-vinculin antibodies, in shControl and shTRPM7 MDA-231 cells cultured on polyacrylamide gels of increasing rigidity. (E) Quantification of vinculin adhesion
length of single cells cultured on collagen-coated polyacrylamide gels of increasing rigidity.
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is required for maintaining neural crest cells in a progenitor-like, mi-
gratory state during embryogenesis [32]. In addition, we showed that
TRPM7 maintains progenitor-like features of neuroblastoma cells,
tumor cells derived from poorly differentiated neural crest cells, by
promoting the expression of the EMT-TF SNAI2 [39]. Furthermore, our
results are in accordance with findings showing that TRPM7 is able to
regulate protein expression of the EMT marker vimentin in MDA-MB-
468 breast cancer cells [47]. Altogether, these findings point to a role
for TRPM7 as a regulator of EMT-like transcriptional programs during
embryogenesis and tumor progression.

Based on biochemical and cell biological evidence, we previously
put forward that TRPM7 directly inhibits myosin II function by

phosphorylating the myosin II heavy chain, resulting in disassembly of
bipolar myosin II filaments [35,40]. Here, we applied traction force
microscopy confirming that knockdown of TRPM7 increases cellular
tension. Interestingly, we find that the expression of SOX4, and the
majority of its downstream mesenchymal effectors, is inversely corre-
lated with cellular tension, while expression of other EMT-TF factors
remains unaffected. Moreover, we were able to (partially) restore the
phenotypical consequences of TRPM7 knockdown by inhibiting cytos-
keletal contraction, indicating that TRPM7 regulates gene expression by
modulating cytoskeletal contraction. Surprisingly however, expression
of the epithelial marker E-cadherin (CDH1) was downregulated upon
temporary inhibition of TRPM7 or induction of cellular tension, while

Fig. 5. SOX4 is inversely regulated by cytoskeletal tension. (A–D) Effect of stable overexpression of empty vector (EV) or V14RhoA in MDA-231 shControl cells on
traction force generation (A), mRNA (B) and protein (C) expression of indicated genes. (D) Quantification of SOX4 protein expression upon overexpression of
V14RhoA. To enhance SOX4 protein expression, MDA-231 EV and V14RhoA cells were incubated in medium containing 0.1% FCS for 16 h before protein lysate was
harvested. (E–H) Effect of myosin II inhibition in MDA-231 shTRPM7#1 on traction force generation (E), mRNA (F) and protein (G) expression of indicated genes. (H)
Quantification of SOX4 protein expression after myosin II inhibition. MDA-231 shTRPM7 cells were stimulated with DMSO vehicle or indicated concentrations
blebbistatin for 2 h to quantify effects on traction force generation. To measure effects of blebbistatin on mRNA and protein expression, cells were treated with 10 μM
blebbistatin for 2 consecutive days or 16 h, respectively. (I) Effect of matrix rigidity on SOX4, FN1 and CLDN1 mRNA expression in MDA-231 shControl and shTRPM7
cells. Cells were seeded onto collagen-coated substrates with indicated rigidities and cultured for 72 h. (A & E) Traction force generation was determined by traction
force microscopy on n > 10 cells per condition. Significance was tested using a two-way ANOVA. (B, F & I) mRNA expression levels were determined by q-PCR. Data
are mean ± SEM of n= 3 (B & F) or n= 5 (I) experiments that were performed in duplicate. Statistical significance was determined by a one-sample t-test (B & F)
and a two-way ANOVA (G). *= p < 0.05, **=p < 0.01. (C & G) Protein levels of EMT markers were determined by Western blotting. γ-Tubulin was used as
loading control. Representative examples of n=3 experiments are shown. (D & H) SOX4 protein levels were normalized to the γ-tubulin loading control. Data are
mean ± SEM of n= 3. Statistical significance was determined by a one-sample t-test. *= p < 0.05, **= p < 0.01.
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E-cadherin expression was upregulated both in TRPM7 shRNA and
SOX4 shRNA cells. We speculate that a more sustained decrease in
TRPM7 activity, as observed in response to shRNA-mediated knock-
down, is required to induce CDH1 expression. In contrast to previous
studies, modulation of SOX4 expression did not affect N-cadherin ex-
pression in our breast cancer cell models. However, cell plasticity is not
a binary process (on/off) but reflects context dependent activation of
different gene expression programs that control cell survival, pro-
liferation and cell motility [61]). Consequently, different cell types may
respond differently to the same input.

Since TRPM7 localizes to cell-substrate adhesions and controls cel-
lular tension, our data support a model in which TRPM7 is part of a
unique mechanical signaling hub that controls cell plasticity at the level
of gene expression, and contributes to tissue development and main-
tenance. How cytoskeletal relaxation promotes SOX4 expression re-
mains to be established. Possibly, cytoskeletal relaxation maintains
and/or enhances nuclear localization of a yet to be determined tran-
scriptional regulator. A similar mechanism has been described for the
transcriptional regulators YAP and TAZ, which translocate to the nu-
cleus in response to increased cytoskeletal tension [14]. Alternatively,
cytoskeletal tension may be transmitted directly to the nucleus, af-
fecting tension on the nuclear membrane and consequently chromatin
organization, which in turn may affect transcription [15,62].

It is well known that the mechanical properties of the tumor mi-
croenvironment affect the metastatic capabilities of tumor cells
[17,54,55,63]. High tumor stiffness is generally considered to promote
tumor development and progression [22,63,64]. Although our ob-
servations need confirmation using experimental models that represent
tumor progression in the patient, they challenge this model by showing
that limiting cell contractility can also lead to activation of transcrip-
tion programs driving metastasis and therapy resistance. In support of
our findings, a number of papers report that low cellular tension and
softness is correlated with metastatic features and a mesenchymal
phenotype at the cellular level, as well as disease progression in cancer
patients [65–72]. For instance, EMT induces cellular softness in both
endometrial and breast cancer cells [68,73]. Additionally, although
high mammographic density increases the risk of breast cancer devel-
opment [74], very low mammographic density (< 10%) correlates with
poor patient survival, prognosis and histological tumor grade [75–77].
It was furthermore shown in late-stage breast tumors that, although the
periphery of primary tumors is stiffer than healthy breast tissue, the
hypoxic core is in fact softer than healthy counterparts [66]. Con-
sistently, migration and metastatic spreading were positively correlated
with the low stiffness of these hypoxic core-associated cells [66].
Combined, these results suggest that low mammographic density and
decreased cellular tension at later stages of tumor progression in fact
promote metastasis formation and poor outcome. Hence, it appears
that, dependent on cellular context and disease stage, both high and
low cellular tension can contribute to tumor progression.

In the past few years, the importance of epithelial to mesenchymal
plasticity, particularly with respect to invasion and metastasis, has been
subject to debate [61]. We observe that loss of cytoskeletal tension
contributes to at least some mesenchymal features in our breast cancer
model, while we have shown previously that high TRPM7 expression is
correlated with metastatic behavior of breast cancer cells [35]. Alto-
gether our data imply that breast cancer-associated plasticity is affected
by both tissue rigidity and the tensional state of tumor cells, which
appears to involve the tensional regulation of SOX4 expression by
TRPM7. In this cellular context, limiting the contractile response to
tissue stiffness may therefore promote rather than inhibit metastasis
formation.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.bbadis.2018.04.017.
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